JP3177257B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3177257B2
JP3177257B2 JP00058691A JP58691A JP3177257B2 JP 3177257 B2 JP3177257 B2 JP 3177257B2 JP 00058691 A JP00058691 A JP 00058691A JP 58691 A JP58691 A JP 58691A JP 3177257 B2 JP3177257 B2 JP 3177257B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
alloy
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00058691A
Other languages
Japanese (ja)
Other versions
JPH04249862A (en
Inventor
泰浩 藤田
育朗 中根
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00058691A priority Critical patent/JP3177257B2/en
Publication of JPH04249862A publication Critical patent/JPH04249862A/en
Application granted granted Critical
Publication of JP3177257B2 publication Critical patent/JP3177257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム合金からなる
負極と、二酸化マンガン、三酸化モリブデン、五酸化バ
ナジウム、硫化チタンなどを活物質とする正極とを備え
た非水電解液二次電池に係り、特に負極の改良に関する
ものである。
The present invention relates to a lithium alloy.
The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode and a positive electrode using manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide, or the like as an active material, and particularly relates to improvement of the negative electrode.

【0002】[0002]

【従来の技術】この種電池は、負極活物質であるリチウ
ムが、充電の際に負極表面に樹枝状に析出して正極に接
し、内部短絡を引き起こすため、充放電サイクルが極め
て短いという問題点があった。
2. Description of the Related Art This kind of battery has a problem that the charge / discharge cycle is extremely short because lithium, which is a negative electrode active material, precipitates in a dendritic manner on the surface of the negative electrode during charging and contacts the positive electrode, causing an internal short circuit. was there.

【0003】これは、負極がリチウム単独の場合、放電
によってリチウムがイオンになって溶出すると、負極表
面が凹凸状となり、その後の充電の際リチウムが凸部に
集中的に電析して樹枝状に生長するからである。
[0003] This is because, when the negative electrode is lithium alone, when the lithium is ionized and eluted by the discharge, the surface of the negative electrode becomes uneven, and during the subsequent charging, the lithium is intensively electrodeposited on the protruding portions and dendrites. Because it grows up.

【0004】この対策として、負極をリチウム合金で構
成することが提案されている。負極がリチウム合金の場
合には、充電時にリチウムが負極の基体となる金属と合
金を形成するように復元するため、リチウムの樹枝状生
長が抑制されるという利点があるためである。
As a countermeasure, it has been proposed that the negative electrode is made of a lithium alloy. This is because, when the negative electrode is a lithium alloy, the lithium is restored to form an alloy with the metal serving as the base of the negative electrode during charging, so that there is an advantage that the dendritic growth of lithium is suppressed.

【0005】特開昭61-158665号公報には、負極をリチ
ウム合金及び導電剤及び結着剤で構 成する方法が開示
されている。
Japanese Patent Application Laid-Open No. 61-158665 discloses a method in which a negative electrode is composed of a lithium alloy, a conductive agent and a binder.

【0006】又、その導電剤としては、特開平1-276563
号公報に開示されているように、比表面積が大きければ
大きいほど電極の導電性が高くなり、充放電特性が向上
すると考えられていた。
The conductive agent is disclosed in Japanese Patent Application Laid-Open No. 1-276563.
As disclosed in Japanese Unexamined Patent Publication, it was thought that the larger the specific surface area, the higher the conductivity of the electrode and the better the charge / discharge characteristics.

【0007】しかしながら、比表面積が大きくなれば吸
油量も大きくなるため、電解液中に浸漬した後、さらに
は充放電した後に負極の膨潤が大きくなり、そのサイク
ル特性は十分なものではなかった。
However, as the specific surface area increases, the amount of oil absorption also increases, so that the swelling of the negative electrode increases after immersion in the electrolytic solution and further after charging and discharging, and the cycle characteristics have not been sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、非水電解液
二次電池において、特にリチウム合金からなる負極の充
放電や膨潤による体積変化を抑制し、充放電サイクル特
性を改善することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery, in particular, to suppress a change in volume due to charge and discharge and swelling of a negative electrode made of a lithium alloy, and to improve charge and discharge cycle characteristics. And

【0009】[0009]

【課題を解決するための手段】本発明は、正極と、リチ
ウム合金と比表面積が5〜50m 2 /gである黒鉛粉末か
らなる導電剤とオレフィン系樹脂である結着剤とで構成
される負極と、非水電解液とを備えた非水電解液二次電
池であって、前記リチウム合金が、リチウムとアルミニ
ウムとマンガンとの合金であることを特徴とする。そし
て、オレフィン系樹脂が、ポリエチレンまたはポリプロ
ピレンであることを特徴とするものである。
The present invention provides a positive electrode, a lithium battery,
Powder with a specific surface area of 5 to 50 m 2 / g
Consisting of conductive agent consisting of olefin resin and binder
Non-aqueous electrolyte secondary battery comprising a negative electrode to be used and a non-aqueous electrolyte
A pond, wherein the lithium alloy is lithium and aluminum
It is an alloy of chromium and manganese. Soshi
The olefin resin is polyethylene or polypropylene
It is characterized by being pyrene.

【0010】[0010]

【作用】導電剤の比表面積を大きくすれば導電性は高く
なるが、吸油量も増加するため、負極が膨張して負極活
物質と導電剤の密着が悪くなり、導電性が低下したり、
脱落したり、又、電解液が導電剤に吸収されることによ
り、セパレ−タ中の電解液が減少して、抵抗が高くな
り、サイクル特性は満足できるものではなかった。
When the specific surface area of the conductive agent is increased, the conductivity is increased, but the oil absorption is also increased. Therefore, the negative electrode expands, the adhesion between the negative electrode active material and the conductive agent is deteriorated, and the conductivity decreases.
When the electrolyte was dropped or the electrolyte was absorbed by the conductive agent, the amount of the electrolyte in the separator was reduced, the resistance was increased, and the cycle characteristics were not satisfactory.

【0011】そこで本発明では、導電性とサイクル特性
の両方を満足するように、リチウム合金と比表面積が5
〜50m 2 /gである黒鉛粉末からなる導電剤とオレフィ
ン系樹脂である結着剤とで構成される負極において、前
記リチウム合金が、リチウムとアルミニウムとマンガン
との合金を用いることにより、サイクル特性の向上を図
っている。
Therefore, in the present invention, the conductivity and the cycle characteristics
To satisfy both, the lithium alloy and the specific surface area are 5
Conductive agent composed of graphite powder is 50 m 2 / g and olefins
Negative electrode composed of a binder resin
The lithium alloy is lithium, aluminum and manganese
Improved cycle characteristics by using an alloy with
ing.

【0012】[0012]

【0013】[0013]

【実施例】以下に、本発明の理解を助ける為の参考例
と、本発明の実施例につき詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following is a reference example for assisting understanding of the present invention.
The embodiment of the present invention will be described in detail.

【0014】図1に、本発明の一実施例としての扁平型
非水電解液二次電池の縦断面図を示す。
FIG . 1 is a longitudinal sectional view of a flat nonaqueous electrolyte secondary battery as one embodiment of the present invention.

【0015】1は本発明の要旨とするリチウム合金より
なる負極であって、負極缶2の内底面に固着せる負極集
電体3に圧着されている。4は正極であって活物質とし
てのマンガン酸化物に導電剤としてのアセチレンブラッ
クと結着剤としてのフッ素樹脂とを80:10:10の重量比
で混合した合剤を成型したものであり、正極缶5の内底
面に圧接されている。この正極缶5の内底面には集電効
果を高めるため、導電性ペ−ストを塗っているが、集電
体を用いても良い。6はポリプロピレン不織布よりなる
セパレ−タであって、このセパレ−タはプロピレンカ−
ボネ−トと1, 2−ジメトキシエタンとの等体積混合溶
媒に過塩素酸リチウムを1モル/l溶解 した非水電解液
が含浸されている。7は正負極缶を電気絶縁する絶縁パ
ッキングであり、電池寸法は直径25mm、厚み3.0mm
である。
Reference numeral 1 denotes a negative electrode made of a lithium alloy according to the gist of the present invention, which is pressed to a negative electrode current collector 3 fixed to the inner bottom surface of a negative electrode can 2. Reference numeral 4 denotes a positive electrode, which is obtained by molding a mixture of manganese oxide as an active material, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 80:10:10, It is pressed against the inner bottom surface of the positive electrode can 5. Although a conductive paste is applied to the inner bottom surface of the positive electrode can 5 to enhance the current collecting effect, a current collector may be used. Reference numeral 6 denotes a separator made of a polypropylene non-woven fabric.
A non-aqueous electrolyte obtained by dissolving 1 mol / l of lithium perchlorate in an equal volume mixed solvent of carbonate and 1,2-dimethoxyethane is impregnated. Reference numeral 7 denotes an insulating packing for electrically insulating the positive and negative electrode cans. The battery dimensions are 25 mm in diameter and 3.0 mm in thickness.
It is.

【0016】次に負極の作成例について詳述する。次の
具体的な数値は参考例1のものであるが、本発明の実施
例の場合は、リチウムーアルミニウム合金をリチウム−
アルミニウム−マンガン合金に代えて使用すれば良い。 [参考例1] 負極としてリチウムとアルミニウムをモル比で1:1と
なるように混合し、800度で反応させて作製したリチウ
ム−アルミニウム合金を粉砕して作製した合金粉末に、
導電剤として黒鉛粉末、結着剤としてポリオレフィン系
樹脂を90:8:2の重量比で混合した合剤を1.5t/cm2
の圧力で加圧成型し、直径20mm、厚さ1.0mmとしたリチ
ウム合金板を用いた。用いた黒鉛粉末の比表面積と電池
番号を表1に示す。
Next, an example of forming a negative electrode will be described in detail. next
Although specific numerical values are those of Reference Example 1, the present invention
In the case of the example, the lithium-aluminum alloy is replaced with lithium-
It may be used instead of the aluminum-manganese alloy. Reference Example 1 As an anode, lithium and aluminum were mixed at a molar ratio of 1: 1 and reacted at 800 ° C. to produce an alloy powder obtained by pulverizing a lithium-aluminum alloy,
A mixture obtained by mixing graphite powder as a conductive agent and a polyolefin-based resin as a binder in a weight ratio of 90: 8: 2 was 1.5 t / cm 2.
A lithium alloy plate having a diameter of 20 mm and a thickness of 1.0 mm was used. Table 1 shows the specific surface area of the used graphite powder and the battery number.

【0017】[0017]

【表1】 [Table 1]

【0018】以上の参考電池(1)〜(8)及び比較電池(A)
〜(D)について充放電試験を行い、その結果を図2及び
表1に示した。尚、充放電条件は充放電電流2mA、充放
電時間を6時間とし、放電時間内に2Vに達した電池を
寿命とした。
The above reference batteries (1) to (8) and comparative battery (A)
A charge / discharge test was performed for (D) to (D), and the results are shown in FIG. The charge / discharge conditions were a charge / discharge current of 2 mA, a charge / discharge time of 6 hours, and a battery that reached 2 V within the discharge time as its life.

【0019】図2より明らかなように、導電剤の比表面
積が1〜200m2/g、好ましくは5〜50m2/gの場合のサ
イクル特性が優れている。
As is apparent from FIG. 2, the cycle characteristics are excellent when the specific surface area of the conductive agent is 1 to 200 m 2 / g, preferably 5 to 50 m 2 / g.

【0020】[実施例] 負極として1重量%のマンガンを添加したアルミニウム
板を、LiClO4を 1モル/l溶解した1,3-ジオキソラン
溶液中でリチウムと電気化学的に合金化したリチウム−
アルミニウム−マンガン合金を粉砕して作製した合金粉
末に、導電剤として黒鉛粉末、結着剤としてポリオレフ
ィン系樹脂を90:8:2の重量比で混合した合剤を1.5
t/cm2の圧力で加圧成型し、直径20mm、厚さ1.0mmとし
たリチウム合金板を用いた以外は参考例1と同様にして
電池を作製した。用いた黒鉛粉末の比表面積と電池番号
を表2に示す。
[ Example ] An aluminum plate to which 1% by weight of manganese was added as a negative electrode was electrochemically alloyed with lithium in a 1,3-dioxolane solution in which 1 mol / l of LiClO 4 was dissolved.
A mixture obtained by mixing graphite powder as a conductive agent and a polyolefin-based resin as a binder at a weight ratio of 90: 8: 2 to an alloy powder prepared by pulverizing an aluminum-manganese alloy was added to 1.5.
A battery was fabricated in the same manner as in Reference Example 1, except that a lithium alloy plate having a diameter of 20 mm and a thickness of 1.0 mm was formed by pressure molding at a pressure of t / cm 2 . Table 2 shows the specific surface area of the used graphite powder and the battery number.

【0021】[0021]

【表2】 [Table 2]

【0022】以上の本発明電池(1)〜(4)、参考電池(9)
〜(12)及び比較電池(E)〜(H)について、参考例1と同様
の条件で充放電試験を行い、その結果を図3及び表2に
示した。
The above batteries (1) to (4) of the present invention and reference battery (9)
-(12) and Comparative batteries (E)-(H) were subjected to a charge / discharge test under the same conditions as in Reference Example 1, and the results are shown in FIG.

【0023】図3より、導電剤の比表面積を5〜50m 2
/gとすることによって、サイクル特性が飛躍的に向上
していることが分かる。
FIG. 3 shows that the specific surface area of the conductive agent is 5 to 50 m 2.
/ G dramatically improves cycle characteristics
You can see that it is doing.

【0024】また、マンガンを少量添加したリチウム−
アルミニウム−マンガン合金負極を用いることにより、
添加していないリチウム−アルミニウム合金負極より更
にサイクル特性が向上することが表1及び表2より分か
る。
Also, lithium-manganese to which a small amount of manganese is added
By using an aluminum-manganese alloy negative electrode,
It can be seen from Tables 1 and 2 that the cycle characteristics are further improved as compared with the lithium-aluminum alloy negative electrode not added.

【0025】[参考例2] 負極として1重量%のクロムを添加したアルミニウム板
を、LiClO4を1 モル/l溶解した1,3-ジオキソラン溶
液中でリチウムと電気化学的に合金化したリチウム−ア
ルミニウム−クロム合金を粉砕して作製した合金粉末
に、導電剤として黒鉛粉末、結着剤としてポリオレフィ
ン系樹脂を90:8:2の重量比で混合した合剤を1.5t
/cm2の圧力で加圧成型し、直径20mm、厚さ1.0mmとした
リチウム合金板を用いた以外は参考例1と同様にして電
池を作製した。用いた黒鉛粉末の比表面積と電池番号を
表3に示す。
Reference Example 2 An aluminum plate to which 1% by weight of chromium was added as a negative electrode was electrochemically alloyed with lithium in a 1,3-dioxolane solution in which 1 mol / l of LiClO 4 was dissolved. 1.5 t of a mixture obtained by mixing graphite powder as a conductive agent and a polyolefin-based resin as a binder at a weight ratio of 90: 8: 2 to an alloy powder prepared by pulverizing an aluminum-chromium alloy.
A battery was fabricated in the same manner as in Reference Example 1 except that a lithium alloy plate having a diameter of 20 mm and a thickness of 1.0 mm was formed by pressure molding at a pressure of / cm 2 . Table 3 shows the specific surface area of the used graphite powder and the battery number.

【0026】[0026]

【表3】 [Table 3]

【0027】以上の参考電池(13)〜(20)及び比較電池
(I)〜(L)について充放電試験を行い、その結果を図4
及び表3に示した。
The above reference batteries (13) to (20) and comparative batteries
A charge / discharge test was performed for (I) to (L), and the results were shown in FIG.
And Table 3.

【0028】図4より、導電剤の比表面積が1〜200m2/
g、好ましくは5〜50m2/gの場合 のサイクル特性が優
れていることが分かる。
FIG. 4 shows that the specific surface area of the conductive agent is 1 to 200 m 2 /
g, preferably 5 to 50 m 2 / g.

【0029】ここで、表1〜表3において、導電剤の比
表面積が5〜50m 2 /gの場合における各電池のサイク
ル数を比較する。この結果、同じ比表面積の導電剤を用
いた場合、本発明電池(1)〜(4)は、参考電池(2)〜(5)及
び参考電池(14)〜(17)よりも、サイクル特性が優れてい
ることが分かる。これは、負極に、リチウム−アルミニ
ウム−マンガンからなる合金を使用したことに起因する
と考えられる。
Here, in Tables 1 to 3, the ratio of the conductive agent is shown.
The cycle of each battery when the surface area is 5 to 50 m 2 / g
Compare the number of files. As a result, a conductive agent with the same specific surface area is used.
In this case, the batteries (1) to (4) of the present invention correspond to the reference batteries (2) to (5) and
Cycle characteristics are superior to those of reference batteries (14) to (17).
You can see that This is because lithium-aluminum
Due to the use of an alloy consisting of
it is conceivable that.

【0030】尚、本実施例において、負極は、リチウム
合金の粉末を導電剤、結着剤と共に混合し、加圧成型し
て作成したが、基体金属と導電剤と結着剤を混合し加圧
成型した後に、リチウムと合金化して作成しても同様の
効果が得られる。
In the present embodiment, the negative electrode was prepared by mixing a lithium alloy powder together with a conductive agent and a binder and press-molding the mixture. However, the base metal, the conductive agent and the binder were mixed and added. The same effect can be obtained by forming by alloying with lithium after pressing.

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】又、本発明は固体電解質二次電池への応用
も可能である。
The present invention can be applied to a solid electrolyte secondary battery.

【0035】[0035]

【発明の効果】以上詳述したとおり、本発明は、正極
と、リチウム合金と比表面積が5〜50m 2 /gである黒
鉛粉末からなる導電剤とオレフィン系樹脂である結着剤
とで構成される負極と、非水電解液とを備えた非水電解
液二次電池であって、前記リチウム合金として、リチウ
ムとアルミニウムとマンガンとの合金を用いるものであ
るから、高導電性で、電極の形状変化もない、サイクル
特性に優れた非水電解液二次電池の提供が可能であっ
て、その工業的価値は極めて大である。
As described above in detail, the present invention relates to a positive electrode
And black having a specific surface area of 5 to 50 m 2 / g with a lithium alloy
Lead powder conductive agent and olefin resin binder
Non-aqueous electrolysis comprising a negative electrode composed of
A liquid secondary battery, wherein the lithium alloy is lithium
Using an alloy of aluminum, manganese,
High conductivity, no change in electrode shape, cycle
It is possible to provide non-aqueous electrolyte secondary batteries with excellent characteristics.
Therefore , its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の半断面図である。FIG. 1 is a half sectional view of a battery of the present invention.

【図2】参考電池と比較電池との充放電サイクル特性比
較図である。
FIG. 2 is a comparison diagram of charge / discharge cycle characteristics of a reference battery and a comparative battery.

【図3】本発明電池と参考電池と比較電池との充放電サ
イクル特性比較図である。
FIG. 3 is a comparison diagram of charge / discharge cycle characteristics of the battery of the present invention, a reference battery, and a comparative battery .

【図4】参考電池と比較電池との充放電サイクル特性比
較図である。
FIG. 4 is a comparison diagram of charge / discharge cycle characteristics of a reference battery and a comparative battery.

【符号の説明】[Explanation of symbols]

1 負極 2 負極缶 3 負極集電体 4 正極 5 正極缶 6 セパレ−タ 7 絶縁パッキング Reference Signs List 1 negative electrode 2 negative electrode can 3 negative electrode current collector 4 positive electrode 5 positive electrode can 6 separator 7 insulating packing

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−276563(JP,A) 特開 平1−209662(JP,A) 特開 昭64−6367(JP,A) 特開 昭63−174275(JP,A) 特開 平1−248469(JP,A) 特開 平1−298645(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04M 4/02 - 4/04 H04M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-276563 (JP, A) JP-A-1-209662 (JP, A) JP-A-64-6367 (JP, A) JP-A-63-63 174275 (JP, A) JP-A-1-248469 (JP, A) JP-A-1-298645 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04M 4/02-4 / 04 H04M 4/36-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、リチウム合金と比表面積が5〜
50m 2 /gである黒鉛粉末からなる導電剤とオレフィン
系樹脂である結着剤とで構成される負極と、非水電解液
とを備えた非水電解液二次電池であって、前記リチウム
合金が、リチウムとアルミニウムとマンガンとの合金で
あることを特徴とする非水電解液二次電池。
A positive electrode, a lithium alloy and a specific surface area of 5 to 5.
Conductive agent consisting of graphite powder of 50m 2 / g and olefin
And a non-aqueous electrolyte
A non-aqueous electrolyte secondary battery comprising:
The alloy is an alloy of lithium, aluminum and manganese
A non-aqueous electrolyte secondary battery characterized by the following.
【請求項2】 オレフィン系樹脂が、ポリエチレンまた
はポリプロピレンであることを特徴とする請求項1記載
の非水電解液二次電池。
2. The method according to claim 1, wherein the olefin resin is polyethylene or
2. Polypropylene is polypropylene.
Non-aqueous electrolyte secondary battery.
JP00058691A 1991-01-08 1991-01-08 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3177257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00058691A JP3177257B2 (en) 1991-01-08 1991-01-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00058691A JP3177257B2 (en) 1991-01-08 1991-01-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04249862A JPH04249862A (en) 1992-09-04
JP3177257B2 true JP3177257B2 (en) 2001-06-18

Family

ID=11477830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00058691A Expired - Lifetime JP3177257B2 (en) 1991-01-08 1991-01-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3177257B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746499B2 (en) 2003-08-22 2006-02-15 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US7223498B2 (en) 2003-10-09 2007-05-29 Samsung Sdi Co., Ltd. Electrode for a lithium secondary battery and a lithium secondary battery comprising the same
US7635540B2 (en) * 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP5859332B2 (en) * 2011-02-15 2016-02-10 住友化学株式会社 Method for recovering active material from battery waste
CN104701508A (en) * 2013-12-05 2015-06-10 天津赫维科技有限公司 Making method for rechargeable 3V button type lithium battery
JP7138038B2 (en) * 2018-12-21 2022-09-15 三洋電機株式会社 Method for manufacturing composite layer material and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JPH04249862A (en) 1992-09-04

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH0646578B2 (en) Non-aqueous secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JP3124749B2 (en) Lithium ion secondary battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JPH05101827A (en) Non-aqueous secondary battery
JPH0355770A (en) Lithium secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP3306386B2 (en) Non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte
JPH06181060A (en) Nonaqueous electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP3311602B2 (en) Non-aqueous electrolyte battery
JPH04160766A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10