JPS63285878A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPS63285878A
JPS63285878A JP62122303A JP12230387A JPS63285878A JP S63285878 A JPS63285878 A JP S63285878A JP 62122303 A JP62122303 A JP 62122303A JP 12230387 A JP12230387 A JP 12230387A JP S63285878 A JPS63285878 A JP S63285878A
Authority
JP
Japan
Prior art keywords
lithium
plate
alloy
negative electrode
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62122303A
Other languages
Japanese (ja)
Other versions
JPH0795454B2 (en
Inventor
Kazuo Terashi
和生 寺司
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62122303A priority Critical patent/JPH0795454B2/en
Publication of JPS63285878A publication Critical patent/JPS63285878A/en
Publication of JPH0795454B2 publication Critical patent/JPH0795454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To inhibit the detaching of an outside alloy and to increase the cycle performance of a battery by decreasing the lithium alloying rate of a negative plate made of lithium-aluminum alloy on the outside than that on the inside. CONSTITUTION:An aluminum plate is immersed in an electrolyte prepared by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, and electrolytically reduced by using a lithium plate as the counter electrode. By controlling the time for electrolysis, a lithium- aluminum alloy in which the lithium alloying rate of the aluminum plate on the outside is lower than that on the inside is obtained, and the alloy obtained is used as a negative plate 2. A positive plate 1 and the negative plate 2 are spirally wound with a separator 3 interposed to form a spiral electrode. The negative terminal of the spiral electrode is connected to an outer can 4 and the positive terminal is connected to a cap 5, then the outer can 4 is sealed through an insulating gasket 6 to form a battery. The detaching of the alloy on the outside of the negative plate is retarded and the cycle performance is increased.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は三酸化モリブデン、五酸化バナジウム、チタン
或いはニオブの硫化物などの再充電可能な活物質よりな
る正極と、リチウムを活物質とする負極とを備えた非水
系二次電池に関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention comprises a positive electrode made of a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide, and lithium as the active material. The present invention relates to a non-aqueous secondary battery equipped with a negative electrode.

(ロ)従来の技術 この種二次電池は放電時に負極活物質であるリチウムが
イオンとなって溶解し、充電時にその逆反応で負極上に
金属リチウムとして電析する反応であるが、電析リチウ
ムは樹枝状に成長する傾向があり最終的に正極に達して
内部短絡を引起すという問題がある。
(b) Conventional technology In this type of secondary battery, lithium, which is the active material of the negative electrode, becomes ions and dissolves during discharging, and during charging, the reaction is reversed to deposit metal lithium on the negative electrode. The problem is that lithium tends to grow in a dendritic fashion, eventually reaching the positive electrode and causing an internal short circuit.

このような不都合に対処するため、例えば特開昭52−
5423号公報に開示されているリチウム−アルミニウ
ム合金のようにリチウム合金を負極とすることが提案さ
れている。リチウム合金の利点は次述の如くである。即
ち、リチウム単独の場合にはリチウムがイオンとなって
溶出すると負極表面が凹凸状となり、その後の充電の際
、リチウムが凸部に集中的に電析して樹枝状に成長する
のに対し、リチウム−アルミニウム合金の場合には充電
時にリチウムが負極の基体となるアルミニウムと合金を
形成するように復元するためリチウムの樹枝状成長が抑
制されるためである。
In order to deal with such inconveniences, for example,
It has been proposed to use a lithium alloy as a negative electrode, such as the lithium-aluminum alloy disclosed in Japanese Patent No. 5423. The advantages of lithium alloys are as follows. That is, in the case of lithium alone, when lithium is eluted as ions, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the protrusions and grows in a dendritic shape. This is because, in the case of a lithium-aluminum alloy, lithium restores itself to form an alloy with aluminum, which is the base of the negative electrode, during charging, thereby suppressing dendritic growth of lithium.

(ハ)発明が解決しようとする問題点 ところでこのようなリチウム−アルミニウム合金からな
る負極板を用い、渦巻電極体を形成した場合、負極板の
内周側と外周側とでは外周側の方が引張強度が強く、一
方リチウムの合金化率が犬である程機械的強度は弱くな
るものである。従って負極板の内周側と外周側のリチウ
ム合金化率が同じ若しくは外周側の方が犬であれば巻回
した際外周側の合金が脱落しサイクル特性の劣化が生じ
る。
(c) Problems to be solved by the invention By the way, when a spiral electrode body is formed using such a negative electrode plate made of a lithium-aluminum alloy, the inner circumferential side of the negative electrode plate is better than the outer circumferential side. The tensile strength is strong, while the higher the lithium alloying ratio, the weaker the mechanical strength. Therefore, if the lithium alloying ratios on the inner and outer sides of the negative electrode plate are the same, or the outer side is higher, the alloy on the outer side will fall off during winding, resulting in deterioration of cycle characteristics.

(ニ)問題点を解決するための手段 負極板として、リチウムの合金化率が内周側より外周側
の方が小であるリチウム−アルミニウム合金を用いる。
(d) Means for solving the problem A lithium-aluminum alloy is used as the negative electrode plate, in which the alloying rate of lithium is smaller on the outer circumferential side than on the inner circumferential side.

(ホ) 作用 リチウム−アルミニウム合金よりなる負極板の外周側は
リチウム合金化率が小であるため、内周側に比して機械
的強度が強い。それ故、この負極板を用いて渦巻電極体
を形成した場合、負極板の外周側の合金の脱落は抑制さ
れサイクル特性が向上する。
(e) Function: Since the outer circumferential side of the negative electrode plate made of a lithium-aluminum alloy has a small lithium alloying ratio, its mechanical strength is stronger than that on the inner circumferential side. Therefore, when a spiral electrode body is formed using this negative electrode plate, falling off of the alloy on the outer peripheral side of the negative electrode plate is suppressed, and cycle characteristics are improved.

(へ) 実施例 以下本発明の実施例について詳述する。(f) Examples Examples of the present invention will be described in detail below.

負極板の作成: 1) 電解法 アルミニウム板をプロピレンカーボネートと1.2ジメ
トキシエタンとの混合溶媒に過塩素酸リチウムを1モル
/!溶解した電解液中に浸漬し、対極にリチウム板を用
い電流密度0.5mA/ cm 2で1超速元してアル
ミニウム板の内周側及び外周側にリチウム−アルミニウ
ム合金を形成する。
Preparation of negative electrode plate: 1) Electrolytically process an aluminum plate and add 1 mole of lithium perchlorate to a mixed solvent of propylene carbonate and 1.2 dimethoxyethane. A lithium-aluminum alloy is formed on the inner and outer circumferential sides of the aluminum plate by immersing it in a dissolved electrolytic solution and using a lithium plate as a counter electrode at a current density of 0.5 mA/cm 2 at a super-high speed.

この際、例えばアルミニウム板の両側にリチウム板を配
置し、通電時間を調整してアルミニウム板の各側面のリ
チウム合金化率が第1表に示すような割合となるNO1
〜Nα5の負極板を得た。
At this time, for example, lithium plates are placed on both sides of the aluminum plate, and the energization time is adjusted so that the lithium alloying rate on each side of the aluminum plate is as shown in Table 1.
A negative electrode plate of ~Nα5 was obtained.

第  1  表 2)接触法 アルミニウム板の両面に夫々リチウム板を圧着し、その
後前記せる電解液中に浸漬し七アルミニウム板の内周側
及び外周側にリチウム−アルミニウム合金を形成する。
Table 1 2) Contact method Lithium plates are pressed onto both sides of an aluminum plate, and then immersed in the electrolytic solution described above to form a lithium-aluminum alloy on the inner and outer circumferential sides of the aluminum plate.

尚、リチウム板の厚みを種々変化させて内周側と外周側
のリチウム合金化率が第2表に示すような割合となる&
6〜尚10の負極板を得た。
In addition, by varying the thickness of the lithium plate, the lithium alloying rate on the inner and outer circumferential sides becomes the ratio shown in Table 2.
Six to ten negative electrode plates were obtained.

第  2  表 正極板は活物質としてのTiS280重量%に導電剤と
してのアセチレンブラック10重量%及び結着剤として
のフッ素樹脂粉末10重量%を加え混合した正極合剤を
集電体としてのステンレス製パンチング板を中央にして
ローラーにより圧延した後所定寸法に裁断したものであ
る。
The positive electrode plate in Table 2 is made of stainless steel as a current collector, and contains a positive electrode mixture prepared by adding and mixing 280% by weight of TiS as an active material, 10% by weight of acetylene black as a conductive agent, and 10% by weight of fluororesin powder as a binder. It is rolled by a roller with a punched plate in the center and then cut into a predetermined size.

第1図は上記の正負極板を用いて組立てた円筒型非水系
二次電池を示し、正極板(1)と負極板(2)とをポリ
プロピレン不織布よりなるセパレータ(3)を介して巻
回した渦巻電極体が負極端子兼用の外装缶(4)内に収
納されている。(5)は絶縁バッキング(6)を介して
外装缶(4)の開口部に装着されている正極端子兼用の
キャップである。そして負極(2)はリード板(7)を
介して外装缶(4)に接続され、又正極(1)はリード
板(8)を介してキャップ(5)に接続されている。尚
、電解液としてはプロピレンカーボネートと1,2ジメ
トキシエタンとの等容積混合溶媒に過塩素酸リチウムを
1モル/1m解したものを用いた。
Figure 1 shows a cylindrical nonaqueous secondary battery assembled using the positive and negative electrode plates described above, in which the positive electrode plate (1) and the negative electrode plate (2) are wound with a separator (3) made of polypropylene nonwoven fabric interposed therebetween. The spiral electrode body is housed in an outer can (4) which also serves as a negative electrode terminal. (5) is a cap that also serves as a positive electrode terminal and is attached to the opening of the outer can (4) via an insulating backing (6). The negative electrode (2) is connected to the outer can (4) via the lead plate (7), and the positive electrode (1) is connected to the cap (5) via the lead plate (8). The electrolytic solution used was one obtained by dissolving 1 mol/1 m of lithium perchlorate in an equal volume mixed solvent of propylene carbonate and 1,2 dimethoxyethane.

第2図及び第3図は夫々第1表及び第2表における各負
極板を用いた円筒型非水電解液電池のサイクル特性を示
す、尚、サイクル条件は充電電流50mAで充電終止電
圧4.OV、放1E電流50mAで放電終止電圧1.5
vとした。
2 and 3 show the cycle characteristics of a cylindrical non-aqueous electrolyte battery using each negative electrode plate in Tables 1 and 2, respectively.The cycle conditions are a charging current of 50 mA and a charge end voltage of 4.0 mA. OV, discharge end voltage 1.5 at discharge 1E current 50mA
v.

第2図及び第3図から明らかなように、リチウム合金化
率が内周側と外周間と同等若しくは外周側の方が犬であ
る電池(陽1.歯5 、No 6 、隘10)に比して
外周側の方が小である電池(No2.Nn3゜No4,
47.No8.No9)においてはサイクル特性が向上
しているのがわかる。
As is clear from Fig. 2 and Fig. 3, the lithium alloying ratio is the same between the inner and outer circumferential sides, or the outer circumferential side is higher (Pos. 1, Teeth 5, No. 6, Diagonal 10). Batteries whose outer periphery is smaller than those (No. 2, No. 3, No. 4,
47. No.8. It can be seen that in No. 9), the cycle characteristics are improved.

(ト)発明の効果 上述した如く、再充電可能な活物質よりなる正極板と、
リチウム−アルミニウム合金よりなる負極板とをセパレ
ータを介して巻回した渦巻電極体を備える非水系二次電
池において、負極板としてリチウム合金化率が内側側よ
り外周側の方が小であるリチウム合金を用いることによ
り、この種電池のサイクル特性を改善することができる
ものであり、その工業的価値は極めて大である。
(g) Effects of the invention As mentioned above, a positive electrode plate made of a rechargeable active material,
In a non-aqueous secondary battery equipped with a spiral electrode body in which a negative electrode plate made of a lithium-aluminum alloy is wound with a separator interposed therebetween, a lithium alloy is used as the negative electrode plate in which the lithium alloying rate is smaller on the outer circumferential side than on the inner side. By using this, the cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする渦巻電極体を備えた非水電
解液電池の縦断面図、第2図及び第3図は内周1則と外
周側のリチウム合金化率を種々変化させたりチウム−ア
ルミニウム合金よりなる負極板を用いた各種電池のサイ
クル特性図を示す。 (1)・・・正極板、(2)・・・負極板、(3)・・
・セパレータ、(4)・・・負極端子兼用外装缶、(5
)・・・正極端子兼用キャップ、(6)・・・絶縁バッ
キング、(7)。 (8)・・・リード板。 第1図       。
FIG. 1 is a longitudinal cross-sectional view of a non-aqueous electrolyte battery equipped with a spiral electrode body, which is the subject of the present invention, and FIGS. 3 shows cycle characteristic diagrams of various batteries using negative electrode plates made of lithium-aluminum alloy. (1)... Positive electrode plate, (2)... Negative electrode plate, (3)...
・Separator, (4)...Outer can that also serves as negative electrode terminal, (5
)...Positive terminal cap, (6)...Insulating backing, (7). (8)...Lead plate. Figure 1.

Claims (1)

【特許請求の範囲】[Claims] (1)再充電可能な活物質よりなる正極板と、リチウム
−アルミニウム合金よりなる負極板とをセパレータを介
して巻回した渦巻電極体を備えるものであって、前記負
極板はリチウム合金化率が内周側より外周側の方が小で
あることを特徴とする非水系二次電池。
(1) A spiral electrode body comprising a positive electrode plate made of a rechargeable active material and a negative electrode plate made of a lithium-aluminum alloy are wound with a separator interposed therebetween, and the negative electrode plate has a lithium alloying rate. A non-aqueous secondary battery characterized in that is smaller on the outer circumferential side than on the inner circumferential side.
JP62122303A 1987-05-19 1987-05-19 Non-aqueous secondary battery Expired - Lifetime JPH0795454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122303A JPH0795454B2 (en) 1987-05-19 1987-05-19 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122303A JPH0795454B2 (en) 1987-05-19 1987-05-19 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63285878A true JPS63285878A (en) 1988-11-22
JPH0795454B2 JPH0795454B2 (en) 1995-10-11

Family

ID=14832618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122303A Expired - Lifetime JPH0795454B2 (en) 1987-05-19 1987-05-19 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0795454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412471A (en) * 1990-04-28 1992-01-17 Sony Corp Secondary battery
CN110364686A (en) * 2019-07-15 2019-10-22 湖北锂诺新能源科技有限公司 The production method of button type lithium-manganese battery cathode can be filled
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412471A (en) * 1990-04-28 1992-01-17 Sony Corp Secondary battery
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
CN110364686B (en) * 2019-07-15 2023-01-20 湖北锂诺新能源科技有限公司 Method for manufacturing negative electrode of rechargeable button lithium-manganese battery
CN110364686A (en) * 2019-07-15 2019-10-22 湖北锂诺新能源科技有限公司 The production method of button type lithium-manganese battery cathode can be filled

Also Published As

Publication number Publication date
JPH0795454B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JPS6223433B2 (en)
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPS62243247A (en) Nonaqueous secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH0536401A (en) Lithium secondary battery
JP2639934B2 (en) Non-aqueous secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JP3133316B2 (en) Rechargeable battery
JP2919531B2 (en) Battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPH0719595B2 (en) Non-aqueous secondary battery
JP2594035B2 (en) Rechargeable battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JPS63150867A (en) Nonaqueous secondary cell
JPS63119171A (en) Nonaqueous type secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12