JP2840357B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2840357B2
JP2840357B2 JP2026899A JP2689990A JP2840357B2 JP 2840357 B2 JP2840357 B2 JP 2840357B2 JP 2026899 A JP2026899 A JP 2026899A JP 2689990 A JP2689990 A JP 2689990A JP 2840357 B2 JP2840357 B2 JP 2840357B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
discharge capacity
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2026899A
Other languages
Japanese (ja)
Other versions
JPH03233870A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2026899A priority Critical patent/JP2840357B2/en
Publication of JPH03233870A publication Critical patent/JPH03233870A/en
Application granted granted Critical
Publication of JP2840357B2 publication Critical patent/JP2840357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム或いはリチウム合金から成る負極
と、正極と、これら正負極間に介装されたセパレータと
を有する非水電解液二次電池に関し、特に正極の改良に
関する。
The present invention relates to a non-aqueous electrolyte secondary battery having a negative electrode made of lithium or a lithium alloy, a positive electrode, and a separator interposed between the positive and negative electrodes. In particular, it relates to improvement of a positive electrode.

従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化物な
どが提案されており、一部実用化されているものがあ
る。
2. Description of the Related Art Molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide has been proposed as a positive electrode active material for a secondary battery of this type, and some of them have been put to practical use.

一方、非水系一次電池の正極活物質としては二酸化マ
ンガン、フッ化炭素が代表的なものとして知られてお
り、且これらは既に実用化されている。特に、二酸化マ
ンガンは保存性に優れ、資源的に豊富であり且つ安価で
あるという利点を有している。
On the other hand, manganese dioxide and fluorocarbon are known as typical examples of a positive electrode active material of a non-aqueous primary battery, and these have already been put to practical use. In particular, manganese dioxide has the advantage of being excellent in preservability, abundant in resources, and inexpensive.

このような背景に鑑みて、非水系二次電池の正極活物
質として二酸化マンガンを用いることが有益であると考
えられるが、二酸化マンガンは可逆性に難があり充放電
サイクル特性に問題がある。
In view of such a background, it is considered useful to use manganese dioxide as the positive electrode active material of the non-aqueous secondary battery. However, manganese dioxide has difficulty in reversibility and has a problem in charge / discharge cycle characteristics.

そこで本願出願人は、二酸化マンガンを用いる場合の
上記欠点を抑制すべく、特開昭63−114064号公報に示す
ようにLi2MnO3を含有する二酸化マンガンを正極活物質
として用いることを先に提案している。このような構造
であれば、結晶構造がリチウムイオンの侵入・脱離に対
して可逆性を有する構造であるので、サイクル特性の向
上が認められる。
Therefore, the applicant of the present application has proposed to use manganese dioxide containing Li 2 MnO 3 as a positive electrode active material as described in JP-A-63-114064 in order to suppress the above-mentioned disadvantages when using manganese dioxide. is suggesting. With such a structure, since the crystal structure has a reversibility with respect to intrusion and desorption of lithium ions, improvement in cycle characteristics is recognized.

一方、上記二次電池の負極としてはリチウムが用いら
れている。ところが、この場合、放電時には負極活物質
であるリチウムがイオンとなって溶解し、充電時にその
逆反応で負極上に金属リチウムとして電析する反応が起
こるが、この電析リチウムは樹枝状に成長する傾向があ
るため、正極に達して内部短絡を生じるという課題を有
していた。
On the other hand, lithium is used as the negative electrode of the secondary battery. However, in this case, during discharge, lithium, which is the negative electrode active material, dissolves as ions, and during charging, the reverse reaction causes a reaction to deposit as metal lithium on the negative electrode. Therefore, there has been a problem that the internal short circuit is caused by reaching the positive electrode.

そこで、特開昭52−5423号公報に示すように、負極に
リチウム−アルミニウム合金を用いるものが提案されて
いる。これはリチウム単独の場合、放電によってリチウ
ムがイオンとなって溶出すると負極表面が凹凸状とな
り、その後の放電の際にリチウムが凸部に集中的に電析
して樹枝状に成長するのに対して、リチウム−アルミニ
ウム合金であれば、充電時にリチウムが負極の基体とな
るアルミニウムと合金を形成するように復元するため、
リチウムの樹枝状成長が抑制できるという利点を奏する
ためである。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 52-5423, a negative electrode using a lithium-aluminum alloy has been proposed. This is because in the case of lithium alone, when lithium is ionized and eluted by discharge, the negative electrode surface becomes uneven, and during subsequent discharge lithium concentrates intensively on the protrusions and grows in a dendritic manner. Therefore, in the case of a lithium-aluminum alloy, in order to restore lithium to form an alloy with aluminum serving as a base of the negative electrode during charging,
This is because there is an advantage that the dendritic growth of lithium can be suppressed.

しかしながら、この場合であっても、充放電サイクル
を繰り返すと合金表面に微粉化したリチウム金属が生成
し、リチウムの利用率が低下する。加えて、この微粉化
した負極に電解液が吸収されるため、正負極間の電解液
量が減少して、サイクル特性が低下する。
However, even in this case, when the charge / discharge cycle is repeated, finely divided lithium metal is generated on the alloy surface, and the utilization rate of lithium decreases. In addition, since the electrolytic solution is absorbed by the finely divided negative electrode, the amount of the electrolytic solution between the positive and negative electrodes decreases, and the cycle characteristics deteriorate.

発明が解決しようとする課題 ところで、上記電池の充放電時には、エッジ効果によ
り電極反応が周辺部に集中する。このため、上記リチウ
ムの樹枝状成長や微粉化は、特に負極の周辺部で発生し
易くなる。しがって、電池のサイクル特性を向上させる
には、上記エッジ効果を抑制する必要がある。
Problems to be Solved by the Invention By the way, when the battery is charged and discharged, an electrode effect is concentrated on a peripheral portion due to an edge effect. Therefore, the dendritic growth and pulverization of lithium easily occur particularly in the peripheral portion of the negative electrode. Therefore, in order to improve the cycle characteristics of the battery, it is necessary to suppress the edge effect.

本発明はかかる現状に鑑みてなされたものであり、リ
チウムの樹枝状成長や微粉化を抑制してサイクル特性の
向上を図りうる非水電解液二次電池を提供することを目
的とする。
The present invention has been made in view of such a situation, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of suppressing dendritic growth and pulverization of lithium and improving cycle characteristics.

課題を解決するための手段 本発明は上記目的を達成するために、リチウム或いは
リチウム合金から成る負極と、正極と、これら正負極間
に介装されたセパレータとを有する非水電解液二次電池
において、前記正極の活物質として、正極板の平面中央
部に放電容量の大きな活物質を用いる一方、正極板の平
面周辺部に放電容量の小さな活物質を用いることを特徴
とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a nonaqueous electrolyte secondary battery having a negative electrode made of lithium or a lithium alloy, a positive electrode, and a separator interposed between the positive and negative electrodes. Wherein the active material having a large discharge capacity is used at the center of the plane of the positive electrode plate, and the active material having a small discharge capacity is used at the periphery of the plane of the positive electrode plate.

作用 上記構成であれば、正極における単位面積あたりの放
電容量は正極板の平面中央部より平面周辺部の方が小さ
くなる。したがって、負極における活物質利用率は中央
部より周辺部の方が小さくなる。このように、エッジ効
果により電流が集中しやすくなる負極周辺部において活
物質利用率を低減させることができるので、負極周辺部
におけるリチウムの樹状結晶の成長やリチウム合金の微
粉化が抑制されることになる。
Operation With the above configuration, the discharge capacity per unit area of the positive electrode is smaller at the periphery of the plane than at the center of the plane of the cathode plate. Therefore, the active material utilization rate in the negative electrode is smaller in the peripheral portion than in the central portion. As described above, the active material utilization rate can be reduced in the peripheral portion of the negative electrode where the current tends to concentrate due to the edge effect, so that the growth of dendritic crystals of lithium and the pulverization of the lithium alloy in the peripheral portion of the negative electrode are suppressed. Will be.

また、周辺部しか放電容量が小さくならないので、電
池の放電容量を余り低下させることがない。
Further, since the discharge capacity is reduced only in the peripheral portion, the discharge capacity of the battery is not reduced much.

実 施 例 本発明の一実施例を、第1図〜第3図に基づいて、以
下に説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS.

〔実施例I〕[Example I]

第1図は本発明に係る非水電解液二次電池の半断面図
であり、Li2MnO3を含有する二酸化マンガンを活物質と
する正極1と、リチウムを活物質とする負極2と、これ
ら正負両極1・2間に介挿されたポリプロピレン製のセ
パレータ3とから成る電極群4は渦巻状に巻回されてい
る。この電極群4は負極缶6内に配置されており、この
負極缶6と上記負極2とは負極リード5により接続され
ている。上記負極缶6の上部開口にはパッキング7を介
して正極キャップ8が装着されており、この正極キャッ
プ8と前記正極1とは正極リード9により接続されてい
る。尚、上記負極缶6と上記負極リード5及び上記正極
キャップ8と上記正極リード9とはスポット溶接法によ
り固定されている。
FIG. 1 is a half sectional view of a non-aqueous electrolyte secondary battery according to the present invention, and a positive electrode 1 using manganese dioxide containing Li 2 MnO 3 as an active material, a negative electrode 2 using lithium as an active material, An electrode group 4 composed of a polypropylene separator 3 interposed between the positive and negative electrodes 1 and 2 is spirally wound. The electrode group 4 is arranged in a negative electrode can 6, and the negative electrode can 6 and the negative electrode 2 are connected by a negative electrode lead 5. A positive electrode cap 8 is attached to the upper opening of the negative electrode can 6 via a packing 7, and the positive electrode cap 8 and the positive electrode 1 are connected by a positive electrode lead 9. The negative electrode can 6 and the negative electrode lead 5 and the positive electrode cap 8 and the positive electrode lead 9 are fixed by spot welding.

ここで、上記正極活物質として用いられるLi2MnO3
有二酸化マンガンでは、Li2MnO3の含有量が多くなるほ
ど放電容量が小さくなることが実験により確認されてい
る。したがって、本実施例の正極1においては、Li2MnO
3の含有量を異ならしめることにより、正極板の平面中
央部と平面周辺部との放電容量を異ならしめている。以
下に、正極1の具体的な作成方法を述べる。
Here, it has been experimentally confirmed that in the Li 2 MnO 3 -containing manganese dioxide used as the positive electrode active material, the discharge capacity decreases as the Li 2 MnO 3 content increases. Therefore, in the positive electrode 1 of this embodiment, Li 2 MnO
By making the content of 3 different, the discharge capacity of the central portion of the positive electrode plate and the discharge capacity of the peripheral portion of the flat plate are made different. Hereinafter, a specific method for forming the positive electrode 1 will be described.

(放電容量の大きな正極用合剤の作成方法) 先ず、LiOHと化学二酸化マンガンとを重量比で10:90
の割合に混合した後、空気中(温度:375℃)で20時間熱
処理して、正極活物質であるLi2MnO3含有二酸化マンガ
ンを作成する。次に、この正極活物質80wt%に、導電材
としてのアセチレンブラック10wt%と、結着剤としての
PTFEディスパージョン10wt%とを添加する。次いで、こ
れらを混練することにより放電容量の大きな正極用合剤
を作成した。
(Method of preparing positive electrode mixture having large discharge capacity) First, LiOH and chemical manganese dioxide were mixed in a weight ratio of 10:90.
And then heat-treated in the air (temperature: 375 ° C.) for 20 hours to produce Li 2 MnO 3 -containing manganese dioxide as a positive electrode active material. Next, 80% by weight of this positive electrode active material, 10% by weight of acetylene black as a conductive material, and
Add 10 wt% of PTFE dispersion. Subsequently, these were kneaded to prepare a positive electrode mixture having a large discharge capacity.

このようにして作製した正極用合剤を、以下(a1)合
剤と称する。
The positive electrode mixture thus prepared is hereinafter referred to as (a 1 ) mixture.

(放電容量の小さな正極用合剤の作成方法) LiOHと化学二酸化マンガンとを重量比で20:80の割合
に混合する他は、上記(a1)合剤と同様の方法で合剤を
作成した。
(Preparation method for positive electrode mixture with small discharge capacity) Except for mixing LiOH and chemical manganese dioxide in a weight ratio of 20:80, a mixture is prepared in the same manner as the above (a 1 ) mixture. did.

このようにして作製した正極用合剤を、以下(a2)合
剤と称する。
The positive electrode mixture thus prepared is hereinafter referred to as (a 2 ) mixture.

ここで、上記(a1)合剤と(a2)合剤とは、共にLi2M
nO3を含有する二酸化マンガンを活物質としているが、L
i2MnO3の含有量は(a1)合剤より(a2)合剤の方が多く
なっている。したがって、電池作製時には、(a1)合剤
を用いた部位は(a2)合剤を用いた部位よりも放電容量
が大きくなる。
Here, both the (a 1 ) mixture and the (a 2 ) mixture are Li 2 M
Although manganese dioxide containing nO 3 is used as the active material, L
The content of i 2 MnO 3 is increasingly towards (a 1) a fixed combination than (a 2) mixture. Therefore, at the time of producing the battery, the portion using the (a 1 ) mixture has a larger discharge capacity than the portion using the (a 2 ) mixture.

(上記2つの合剤を用いて電極を作製する方法) 先ず、第2図(a)に示す正極集電体としてのステン
レス製のラス体(長さ100mm、幅40mm)11の両面に、予
めシート状に圧延した(a2)合剤を載置する。次に、こ
のワークの総厚みが0.8mmになるように圧延する。次い
で、ラス体11の外側にはみ出した(a2)合剤を取り除く
と共に、同図(b)に示すように、両ラス面に圧着され
た(a2)合剤12のうちラス体11の周辺から5mm以内の(a
2)合剤だけを残して、その他の部位(中央部)の
(a2)合剤を取り除く。この後、このラス体11の両面
に、予めシート状に圧延した(a1)合剤を載置した後、
このワークの総厚みが0.8mmになるように再度圧延す
る。しかる後、同図(c)に示すように、ラス体11の周
囲の合剤を取り除き、更に250℃で真空熱処理すること
により正極1を作製した。
(Method for producing an electrode using the above two mixtures) First, a stainless lath body (length 100 mm, width 40 mm) 11 as a positive electrode current collector shown in FIG. The mixture (a 2 ) rolled into a sheet is placed. Next, the work is rolled so that the total thickness becomes 0.8 mm. Next, the mixture (a 2 ) protruding outside the lath body 11 is removed, and the lath body 11 of the mixture (a 2 ) crimped to both lath surfaces as shown in FIG. Within 5mm from the periphery (a
2 ) Remove the mixture (a 2 ) at other parts (center), leaving only the mixture. Thereafter, the mixture (a 1 ) previously rolled into a sheet is placed on both surfaces of the lath body 11,
The work is rolled again so that the total thickness becomes 0.8 mm. Thereafter, as shown in FIG. 3 (c), the mixture around the lath body 11 was removed, and a vacuum heat treatment was performed at 250 ° C. to produce the positive electrode 1.

このように作製した正極1においては、正極板の平面
周辺部にLi2MnO3の含有量が多い(放電容量が小さい)
(a2)合剤が配置される一方、正極板の平面中央部には
Li2MnO3の含有量が比較的少ない(放電容量が小さい)
(a1)合剤が配置されることになる。
In the positive electrode 1 thus manufactured, the content of Li 2 MnO 3 is large (the discharge capacity is small) in the periphery of the flat surface of the positive electrode plate.
(A 2 ) While the mixture is placed, the center of the plane of the positive electrode plate is
Li 2 MnO 3 content is relatively small (discharge capacity is small)
(A 1) so that the mixture is placed.

一方、負極2としては、厚さ0.4mmのリチウム板を長
さ110mm、幅40mmに切断したものを用い、また電解液と
してはプロピレンカーボネートと1,2−ジメトキシエタ
ンとの混合溶媒に過塩素酸リチウムを1モル/の割合
で溶解したものを用いた。
On the other hand, as the negative electrode 2, a 0.4 mm-thick lithium plate cut into a length of 110 mm and a width of 40 mm was used. As an electrolytic solution, a mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used as a perchloric acid. Lithium dissolved at a rate of 1 mol / was used.

このようにして作製した電池を、以下(A)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A) battery.

〔比較例I〕[Comparative Example I]

ラス体の両面に前記(a1)合剤のみを圧着,圧延して
正極を作製する他は、上記実施例Iと同様にして電池を
作製した。
Wherein on both sides of the lath (a 1) a fixed combination only crimping, other to produce a rolled to the positive electrode, the battery was fabricated in the same manner as described above in Example I.

このようにして作製した電池を、以下(X1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 1 ) battery.

〔比較例II〕(Comparative Example II)

ラス体の両面に前記(a2)合剤のみを圧着,圧延して
正極を作製する他は、上記実施例Iと同様にして電池を
作製した。
A battery was produced in the same manner as in Example I above, except that only the mixture (a 2 ) was pressed and rolled on both surfaces of the lath body to produce a positive electrode.

このようにして作製した電池を、以下(X2)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 2 ) battery.

〔実験〕[Experiment]

上記本発明の(A)電池及び比較例の(X1)電池,
(X2)電池のサイクル特性を調べたので、その結果を第
3図に示す。尚、実験条件は、充電電流50mAで終止電圧
4.0Vまで充電した後、放電電流50mAで終止電圧2.0Vまで
放電するという条件である。
(A) the battery of the present invention and the (X 1 ) battery of the comparative example,
(X 2 ) The cycle characteristics of the battery were examined, and the results are shown in FIG. The experimental conditions were as follows: charge current 50 mA, end voltage
After charging to 4.0 V, the condition is that the battery is discharged to a final voltage of 2.0 V with a discharge current of 50 mA.

第3図に示すように、(A)電池はサイクル初期の放
電容量も高く且つサイクル寿命も長いのに対して、
(X1)電池ではサイクル初期の放電容量は高いがサイク
ル寿命が短く、また(X2)電池ではサイクル初期から放
電容量が低くなっていることが認められる。
As shown in FIG. 3, (A) the battery has a high discharge capacity at the beginning of the cycle and a long cycle life,
The (X 1 ) battery has a high discharge capacity at the beginning of the cycle but a short cycle life, and the (X 2 ) battery has a low discharge capacity from the beginning of the cycle.

これは、(A)電池の正極では正極板の平面周辺部の
方が平面中央部よりLi2MnO3の含有量が多いため、周辺
部の単位面積当たりの放電容量が中央部よりも小さくな
る。したがって、この正極に対向する負極では周辺部の
電流集中が抑制され、この結果、負極の周辺部における
リチウムの樹状結晶の成長や微粉化を抑制することが可
能となる。これに対して、(X1)電池では全ての部位に
おいて(周辺部,中央部に係わらず)Li2MnO3の含有量
が少ないので周辺部に電流集中を生じ、周辺部でリチウ
ムの樹状結晶の成長や微粉化が起こる。また、(X2)電
池では全ての部位においてLi2MnO3の含有量が多いの
で、周辺部における電流集中よりも単位面積当たりの放
電容量が小さくなるという影響が大きくなるという理由
によるものと考えられる。
This is because (A) in the positive electrode of the battery, the discharge capacity per unit area of the peripheral portion is smaller than that of the central portion because the Li 2 MnO 3 content is larger in the peripheral portion of the positive plate than in the central portion of the planar plate. . Therefore, in the negative electrode opposed to the positive electrode, current concentration in the peripheral portion is suppressed, and as a result, it is possible to suppress the growth and pulverization of lithium dendritic crystals in the peripheral portion of the negative electrode. On the other hand, in the (X 1 ) battery, since the Li 2 MnO 3 content is small in all parts (regardless of the peripheral part and the central part), current concentration occurs in the peripheral part, and the lithium dendrites in the peripheral part. Crystal growth and pulverization occur. In addition, in the (X 2 ) battery, since the content of Li 2 MnO 3 is large in all parts, it is considered that the effect that the discharge capacity per unit area becomes smaller than the current concentration in the peripheral part becomes larger. Can be

尚、上記実施例では、正極活物質としてLi2MnO3の含
有量が異なる二種類の二酸化マンガンを用いているが、
これに限定するものではなく、放電容量が異なる二種類
の正極活物質を用いて正極を作製すれば上記と同様の効
果を奏することは勿論である。
In the above example, two kinds of manganese dioxide having different contents of Li 2 MnO 3 are used as the positive electrode active material,
The present invention is not limited to this, and the same effects as described above can be obtained if a positive electrode is manufactured using two types of positive electrode active materials having different discharge capacities.

また、放電容量の小さな正極活物質を配置する範囲と
しては、正極全体の放電容量が低下するのを防止すべ
く、以下のように設定するのが好ましい。即ち、円筒形
電池或いは角形電池に用いる矩形状の電極板において
は、周縁から内側端部までの距離が電極板の短辺の長さ
の1/4以内となり、偏平形電池に用いる円形状の電極板
においては、円の外周端から内側端までの距離が円の直
径の1/4以内に設定するのが望ましい。更に、上記に示
す以外の電極の場合では、上記の基準に準じて設定する
のが好ましい。
Further, the range in which the positive electrode active material having a small discharge capacity is arranged is preferably set as follows in order to prevent the discharge capacity of the entire positive electrode from being reduced. That is, in the case of a rectangular electrode plate used for a cylindrical battery or a prismatic battery, the distance from the peripheral edge to the inner end is within 1/4 of the length of the short side of the electrode plate, and the circular electrode used for the flat battery is not used. In the electrode plate, it is desirable that the distance from the outer peripheral end to the inner end of the circle is set within 1/4 of the diameter of the circle. Further, in the case of electrodes other than those described above, it is preferable to set according to the above criteria.

加えて、上記実施例では負極にリチウムを用いている
が、リチウム合金を用いても同様の効果を奏することは
勿論である。
In addition, although lithium is used for the negative electrode in the above-described embodiment, it goes without saying that a similar effect can be obtained even if a lithium alloy is used.

発明の効果 以上説明したように本発明によれば、負極周辺部にお
けるリチウムの樹状結晶の成長やリチウム合金の微粉化
を抑制することができ、且つ放電容量を高く維持するこ
とができるので、非水電解液二次電池のサイクル特性を
飛躍的に向上させることができる等の効果を奏する。
Effect of the Invention As described above, according to the present invention, it is possible to suppress the growth of lithium dendrite crystals and pulverization of lithium alloy in the negative electrode peripheral portion, and it is possible to maintain a high discharge capacity, There are effects such as that the cycle characteristics of the non-aqueous electrolyte secondary battery can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の非水電解液二次電池の一例を示す半断
面図、第2図は正極の製造方法を示す斜視図、第3図は
本発明の(A)電池及び比較例の(X1)電池,(X2)電
池のサイクル特性を示すグラフ。 1……正極、2……負極、3……セパレータ。
FIG. 1 is a half sectional view showing an example of the non-aqueous electrolyte secondary battery of the present invention, FIG. 2 is a perspective view showing a method for producing a positive electrode, and FIG. 9 is a graph showing the cycle characteristics of the (X 1 ) battery and the (X 2 ) battery. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/00 - 4/04 H01M 4/36 - 4/62 H01M 10/36 - 10/40Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/00-4/04 H01M 4/36-4/62 H01M 10/36-10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム或いはリチウム合金から成る負極
と、正極と、これら正負極間に介装されたセパレータと
を有する非水電解液二次電池において、 前記正極の活物質として、正極板の平面中央部に放電容
量の大きな活物質を用いる一方、正極板の平面周辺部に
放電容量の小さな活物質を用いることを特徴とする非水
電解液二次電池。
1. A non-aqueous electrolyte secondary battery having a negative electrode made of lithium or a lithium alloy, a positive electrode, and a separator interposed between the positive and negative electrodes, wherein the active material of the positive electrode is a flat surface of a positive electrode plate. A non-aqueous electrolyte secondary battery characterized in that an active material having a large discharge capacity is used in a central portion and an active material having a small discharge capacity is used in a peripheral portion of a plane of a positive electrode plate.
JP2026899A 1990-02-06 1990-02-06 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2840357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026899A JP2840357B2 (en) 1990-02-06 1990-02-06 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026899A JP2840357B2 (en) 1990-02-06 1990-02-06 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03233870A JPH03233870A (en) 1991-10-17
JP2840357B2 true JP2840357B2 (en) 1998-12-24

Family

ID=12206087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026899A Expired - Fee Related JP2840357B2 (en) 1990-02-06 1990-02-06 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2840357B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329077A (en) * 2006-06-09 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JPH03233870A (en) 1991-10-17

Similar Documents

Publication Publication Date Title
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH09213348A (en) Non-aqueous electrolyte battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP2989230B2 (en) Non-aqueous battery
JP2950924B2 (en) Non-aqueous electrolyte battery
JPH04206267A (en) Nonaqueous electrolyte secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JPH05101827A (en) Non-aqueous secondary battery
JPH11195410A (en) Lithium secondary battery
JPH0864239A (en) Nonaqueous electrolyte battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JP3021478B2 (en) Non-aqueous secondary battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees