JP3021478B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3021478B2
JP3021478B2 JP1237863A JP23786389A JP3021478B2 JP 3021478 B2 JP3021478 B2 JP 3021478B2 JP 1237863 A JP1237863 A JP 1237863A JP 23786389 A JP23786389 A JP 23786389A JP 3021478 B2 JP3021478 B2 JP 3021478B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
active material
manganese
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1237863A
Other languages
Japanese (ja)
Other versions
JPH03101056A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1237863A priority Critical patent/JP3021478B2/en
Publication of JPH03101056A publication Critical patent/JPH03101056A/en
Application granted granted Critical
Publication of JP3021478B2 publication Critical patent/JP3021478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質と
する非水系二次電池に係り、特に正極の改良に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and more particularly to improvement of a positive electrode.

従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化など
が提案されており、一部実用化されているものもある。
2. Description of the Related Art Molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide has been proposed as a positive electrode active material of this type of secondary battery, and some of them have been put to practical use.

一方、非水系一次電池の正極活物質としては、二酸化
マンガン,フッ化炭素が代表的なものとして知られてお
り、且つこれらは既に実用化されている。特に、二酸化
マンガンは保存性に優れ、資源的に豊富であり、且つ安
価であるという利点を有するものである。
On the other hand, manganese dioxide and fluorocarbon are known as typical examples of a positive electrode active material of a nonaqueous primary battery, and these have already been put to practical use. In particular, manganese dioxide has the advantage of being excellent in preservability, abundant in resources, and inexpensive.

このような背景に鑑みて、非水系二次電池の正極活物
質として二酸化マンガンを用いることが有益であると考
えられるが、二酸化マンガンは可逆性に難があり充放電
サイクル特性に問題があった。
In view of such a background, it is considered to be beneficial to use manganese dioxide as a positive electrode active material of a non-aqueous secondary battery, but manganese dioxide has difficulty in reversibility and has a problem in charge / discharge cycle characteristics. .

そこで、二酸化マンガンを用いた場合の上記欠点を抑
制すべく、特開昭63−114064号公報に示すように、Li2M
nO3を含有するMnO2を正極活物質とすることを出願人は
先に提案した。また、リチウムを含有し、CuKα線によ
るX線回折図において、2θ=22゜,31.5゜,37゜,42゜,
55゜にピークを有するマンガン酸化物を正極活物質とす
ることも先に提案している。これらの提案により非水系
二次電池のサイクル性能が大幅に向上した。
Therefore, in order to suppress the above-mentioned disadvantages when manganese dioxide is used, as shown in Japanese Patent Application Laid-Open No. 63-114064, Li 2 M
The applicant has previously proposed that MnO 2 containing nO 3 be used as the positive electrode active material. Further, it contains lithium, and in the X-ray diffraction diagram by CuKα ray, 2θ = 22 °, 31.5 °, 37 °, 42 °,
It has been previously proposed that manganese oxide having a peak at 55 ° be used as the positive electrode active material. These proposals have greatly improved the cycle performance of non-aqueous secondary batteries.

発明が解決しようとする課題 しかしながら、上記物質を正極活物質として用いた場
合には、充放電サイクルが進むにしたがって正極で電解
液の分解が生じるため、電池性能が低下するという課題
を有していた。
Problems to be Solved by the Invention However, when the above-mentioned substance is used as a positive electrode active material, there is a problem that as the charge / discharge cycle progresses, the electrolytic solution is decomposed at the positive electrode, and the battery performance is reduced. Was.

本発明はかかる現状に鑑みてなされたものであり、繰
り返し充放電を行った場合であっても正極で電解液の分
解が生じるのを抑制しうる非水系二次電池を提供するこ
とを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a non-aqueous secondary battery capable of suppressing the occurrence of decomposition of an electrolytic solution in a positive electrode even when repeatedly charged and discharged. I do.

課題を解決するための手段 本発明は上記目的を達成するために、リチウム或いは
リチウム合金を活物質とする負極と、LixMnOy(x,yは正
の整数であり、2y−x>3という関係を有している)で
表される酸化物を活物質とする正極とを有する非水系二
次電池において、上記LixMnOyで表される酸化物中に、
マンガンの価数が3以下のマンガン酸化物と、Li2MnO3
とが含有されていることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a negative electrode using lithium or a lithium alloy as an active material and LixMnOy (x and y are positive integers and 2y−x> 3). In a non-aqueous secondary battery having a positive electrode containing an oxide represented by the formula (1) as an active material, in the oxide represented by LixMnOy,
A manganese oxide having a manganese valence of 3 or less and Li 2 MnO 3
Is contained.

作用 LixMnOyで表されるマンガン酸化物としては、前述の
本願出願人が先に提案した2つのものがある。これらマ
ンガン酸化物はリチウム電池に用いた場合に十分な放電
特性を維持すべく、マンガンの価数としては4価に近い
値を有している。このため、充電時の電解液分解に対す
る活性度が高くなって充電時に電解液が分解する結果、
充放電サイクル特性が低下する。
Action As the manganese oxide represented by LixMnOy, there are the two previously proposed by the present applicant. These manganese oxides have values close to tetravalent as the valence of manganese in order to maintain sufficient discharge characteristics when used in a lithium battery. For this reason, the activity with respect to the decomposition of the electrolytic solution during charging is increased, and the electrolytic solution is decomposed during charging.
The charge / discharge cycle characteristics deteriorate.

一方、Mn2O3やMn3O4等のマンガンの価数が3価以下の
酸化物を単独でリチウムに用いた場合には放電特性は低
くなるが、充電時の電解液分解に対する活性度が低いた
め充電時に電解液が余り分解しない。
On the other hand, when an oxide having a valence of manganese such as Mn 2 O 3 or Mn 3 O 4 , which has a valence of 3 or less, is used alone for lithium, the discharge characteristics are low, but the activity with respect to decomposition of the electrolyte during charging is low. , The electrolyte does not decompose much during charging.

したがって、上記構成の如く、マンガンの価数が3価
を超えるLixMnOyで表されるマンガン酸化物に、マンガ
ンの価数が3以下のマンガン酸化物と、Li2MnO3とを含
有させることによって、十分な放電性能を維持しつつ充
電時に電解液が分解するのを抑制することが可能とな
る。
Therefore, as in the above configuration, the manganese oxide represented by LixMnOy in which the valence of manganese is more than three, the manganese oxide having the valence of manganese of 3 or less, and Li 2 MnO 3 are contained, Decomposition of the electrolyte during charging can be suppressed while maintaining sufficient discharge performance.

実 施 例 本発明の実施例を第1図及び第2図に基づいて、以下
に説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. 1 and FIG.

〔実施例1〕 第1図は本発明の非水系二次電池の半断面図であり、
リチウム金属から成る負極2は負極集電体7の内面に圧
着されている。この負極集電体7は断面略コ字状のステ
ンレスから成る負極缶5の内底面に固着されている。上
記負極缶5の周端はポリプロピレン製の絶縁パッキング
8の内部に固定されており、絶縁パッキング8の外周に
は上記負極缶5とは反応方向に断面略コ字状を成すステ
ンレス製の正極缶4が固定されている。この正極缶4の
内底面には正極集電体6が固定されており、この正極集
電体6の内面には正極1が固定さている。この正極1と
前記負極2との間にはポリプロピレン製微孔性薄膜より
成るセパレータ3が介装されている。尚、電池寸法は直
径24.0mm、厚み3.0mmでる。また、電解液としては、プ
ロピレンカーボネートとジメトキシエタンとの混合溶媒
に過塩素酸リチウムを1モル/溶解したものを用いて
いる。
Example 1 FIG. 1 is a half sectional view of a non-aqueous secondary battery of the present invention,
The negative electrode 2 made of lithium metal is pressed on the inner surface of the negative electrode current collector 7. The negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel having a substantially U-shaped cross section. A peripheral end of the negative electrode can 5 is fixed inside an insulating packing 8 made of polypropylene, and a stainless steel positive electrode can having a substantially U-shaped cross section in the reaction direction with the negative electrode can 5 is provided on the outer periphery of the insulating packing 8. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 made of a polypropylene microporous thin film is interposed between the positive electrode 1 and the negative electrode 2. The battery dimensions are 24.0 mm in diameter and 3.0 mm in thickness. Further, as the electrolytic solution, a solution obtained by dissolving lithium perchlorate at 1 mol / mol in a mixed solvent of propylene carbonate and dimethoxyethane is used.

ここで、本発明の要旨である正極1は、以下のように
して作製した。
Here, the positive electrode 1 according to the gist of the present invention was produced as follows.

先ず、平均粒径30μm以下の化学二酸化マンガン50g
と水酸化リチウム(LiOH)14gとを乳鉢にて混合した
後、空気中において温度375℃で20時間熱処理を行う。
その熱処理によって、Li2MnO3を含有するMnO2が得られ
る。尚、この生成物はマンガンの価数が略4価である。
次に、この生成物を550℃で2時間熱処理して正極活物
質を作成した。この正極活物質をX線回折したところ、
上記Li2MnO3と上記MnO2との他にマンガンの価数が3価
のMn2O3との回折ピークが確認された。これは、上記熱
処理によって粒子表面から酸素が離脱したことに起因し
たことによるものと考えられる。尚、上記活物質の全体
としてのマンガンの価数を測定したところ3.8価であっ
た。
First, 50 g of chemical manganese dioxide with an average particle size of 30 μm or less
And 14 g of lithium hydroxide (LiOH) in a mortar, and then heat-treated in air at 375 ° C. for 20 hours.
By the heat treatment, MnO 2 containing Li 2 MnO 3 is obtained. This product has a manganese valence of about four.
Next, this product was heat-treated at 550 ° C. for 2 hours to prepare a positive electrode active material. When this positive electrode active material was subjected to X-ray diffraction,
Diffraction peaks of Mn 2 O 3 having three valences of manganese in addition to the Li 2 MnO 3 and the MnO 2 were confirmed. This is considered to be due to the fact that oxygen was released from the particle surface by the heat treatment. The valence of manganese as a whole of the active material was measured to be 3.8.

次いで、上記の方法で作成した活物質粉末と、導電剤
としてのアセチレンブラックと、結着剤としてのフッ素
樹脂粉末とを重量比で90:6:4の比率で混合して正極合剤
とし、この正極合剤を2トン/cm2で直径20mmに加圧成型
した後250℃で熱処理することにより正極を作製した。
また、負極は所定厚みのリチウム板を直径20mmに打抜い
たものを用いた。
Then, the active material powder prepared by the above method, acetylene black as a conductive agent, and a fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4 to form a positive electrode mixture, This positive electrode mixture was press-molded to a diameter of 20 mm at 2 ton / cm 2 and then heat-treated at 250 ° C. to produce a positive electrode.
The negative electrode was obtained by punching a lithium plate having a predetermined thickness to a diameter of 20 mm.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II〕(Example II)

Li2MnO3を含有するMnO2を700℃で2時間熱処理して正
極活物質を作成する他は、上記実施例Iと同様にして電
池を作製した。尚、上記正極活物質をX線回折したとこ
ろ、実施例Iで示すLi2MnO3とMnO2とMn2O3との他に、マ
ンガンの価数が2.67のMn3O4の回折ピークが確認され
た。また、上記活物質の全体としてのマンガンの価数を
測定したところ3.75価であった。
A battery was produced in the same manner as in Example I above, except that MnO 2 containing Li 2 MnO 3 was heat-treated at 700 ° C. for 2 hours to produce a positive electrode active material. When the positive electrode active material was subjected to X-ray diffraction, in addition to Li 2 MnO 3 , MnO 2 and Mn 2 O 3 shown in Example I, the diffraction peak of Mn 3 O 4 having a manganese valence of 2.67 was found. confirmed. The valence of manganese as a whole of the active material was measured to be 3.75.

このようにして作製した電池を、以下(A2)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 2 ) battery.

〔実施例III〕(Example III)

Li2MnO3を含有するMnO2を熱処理することなく、これ
に13wt%のMn2O3を混合して正極活物質を作成する他
は、上記実施例Iと同様にして電池を作製した。尚、上
記活物質の全体としてのマンガンの価数を測定したとこ
ろ3.8価であった。
A battery was fabricated in the same manner as in Example I above, except that MnO 2 containing Li 2 MnO 3 was not heat-treated and mixed with 13 wt% of Mn 2 O 3 to form a positive electrode active material. The valence of manganese as a whole of the active material was measured to be 3.8.

このようにして作製した電池を、以下(A3)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 3 ) battery.

〔比較例I〕[Comparative Example I]

Li2MnO3を含有するMnO2を熱処理することなく、その
まま正極活物質として用いる他は、上記実施例Iと同様
にして電池を作製した。
A battery was fabricated in the same manner as in Example I, except that MnO 2 containing Li 2 MnO 3 was used as a positive electrode active material without heat treatment.

このようにして作製した電池を、以下(X1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 1 ) battery.

〔比較例II〕(Comparative Example II)

Mn2O3を単独で正極活物質として用いる他は、上記実
施例Iと同様にして電池を作製した。
A battery was fabricated in the same manner as in Example I, except that Mn 2 O 3 was used alone as the positive electrode active material.

このようにして作製した電池を、以下(X2)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 2 ) battery.

〔実験I〕[Experiment I]

上記本発明の(A1)電池〜(A3)電池及び比較例の
(X1)電池,(X2)電池の充放電サイクル特性を調べた
ので、その結果を第2図に示す。尚、実験条件は、電流
3mAで4.0Vまで充電した後、放電電流3mAで4時間放電す
るという条件で行い、放電終止電圧が2.0Vとなった時点
で電池寿命とした。
The charge / discharge cycle characteristics of the batteries (A 1 ) to (A 3 ) of the present invention and the batteries (X 1 ) and (X 2 ) of the comparative examples were examined. The results are shown in FIG. The experimental conditions were current
After the battery was charged at 3 mA to 4.0 V, the battery was discharged at a discharge current of 3 mA for 4 hours. When the discharge end voltage reached 2.0 V, the battery life was determined.

第2図に示すように、本発明の(A1)電池〜(A3)電
池では200サイクル以上とならなければ電池寿命となら
ないのに対して、比較例の(X1)電池,(X2)電池では
200サイクル以下で電池寿命となっていることが認めら
れる。したがって、本発明の電池は比較例の電池と比べ
てサイクル特性が著しく向上したことが伺える。
As shown in FIG. 2, the battery life of the batteries (A 1 ) to (A 3 ) of the present invention is not reached unless the battery life is 200 cycles or more, whereas the batteries (X 1 ) and (X 2 ) On batteries
It is recognized that the battery life is reached in 200 cycles or less. Therefore, it can be understood that the battery of the present invention had significantly improved cycle characteristics as compared with the battery of the comparative example.

ここで、(A1)電池と(A3)電池とを比較したとこ
ろ、同様の組成であるにも関わらず、(A1)電池の方が
(A3)電池よりもサイクル特性が優れていることが認め
られる。したがって、正極活物質の作成方法としては、
(A3)電池の如くLi2MnO2を含有するMnO2に単にMn2O3
混合するよりも、(A1)電池の如く活物質の粒子表面を
Mn2O3に変化させ粒子内部よりも粒子表面のマンガンの
価数を下げる方が好ましいことがわかる。
Here, (A 1) cells and (A 3) was compared with the battery, in spite of the same composition, (A 1) toward the battery (A 3) excellent cycle characteristics than batteries Is admitted. Therefore, as a method of preparing the positive electrode active material,
(A 3 ) Instead of simply mixing Mn 2 O 3 with MnO 2 containing Li 2 MnO 2 like a battery, (A 1 )
It can be seen that it is preferable to change to Mn 2 O 3 to lower the valence of manganese on the particle surface rather than inside the particle.

尚、上記実施例では非水電解液を用いた二次電池につ
いて説明したが、本発明の適用はこれに限定されるもの
ではなく、固体電解質を用いた非水系二次電池にも適用
することが可能である。
In the above embodiment, a secondary battery using a non-aqueous electrolyte was described.However, the application of the present invention is not limited to this, and the present invention is also applicable to a non-aqueous secondary battery using a solid electrolyte. Is possible.

発明の効果 以下説明したように本発明によれば、十分な放電特性
を維持しつつ、充電時に電解液が分解するのを抑制する
ことができるので、サイクル特性を飛躍的に向上させる
ことができるという効果を奏する。
Advantageous Effects of Invention As described below, according to the present invention, it is possible to suppress decomposition of an electrolytic solution during charging while maintaining sufficient discharge characteristics, so that cycle characteristics can be dramatically improved. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の非水系二次電池の半断面図、第2図は
本発明の(A1)電池〜(A3)電池及び比較例の(X1)電
池,(X2)電池のサイクル特性図を示すグラフである。 1……正極、2……負極、3……セパレータ。
FIG. 1 is a half-sectional view of a non-aqueous secondary battery of the present invention, and FIG. 2 is a battery (A 1 ) to (A 3 ) of the present invention and a battery (X 1 ) and a battery (X 2 ) of a comparative example. 5 is a graph showing a cycle characteristic diagram of FIG. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−114064(JP,A) 特開 平1−209663(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 - 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-114064 (JP, A) JP-A-1-209663 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02-4/04 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム或いはリチウム合金を活物質とす
る負極と、LixMnOy(x,yは正の整数であり、2y−x>3
という関係を有している)で表わされる酸化物を活物質
とする正極とを有する非水系二次電池において、 上記LixMnOyで表される酸化物中に、マンガンの価数が
3以下のマンガン酸化物と、Li2MnO3とが含有されてい
ることを特徴とする非水系二次電池。
1. A negative electrode using lithium or a lithium alloy as an active material, and LixMnOy (x, y are positive integers, and 2y−x> 3).
A non-aqueous secondary battery having a positive electrode containing an oxide represented by the formula (1) as an active material, wherein the oxide represented by LixMnOy has a manganese valence of 3 or less. A non-aqueous secondary battery characterized in that the non-aqueous secondary battery contains a substance and Li 2 MnO 3 .
JP1237863A 1989-09-13 1989-09-13 Non-aqueous secondary battery Expired - Lifetime JP3021478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237863A JP3021478B2 (en) 1989-09-13 1989-09-13 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237863A JP3021478B2 (en) 1989-09-13 1989-09-13 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH03101056A JPH03101056A (en) 1991-04-25
JP3021478B2 true JP3021478B2 (en) 2000-03-15

Family

ID=17021536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237863A Expired - Lifetime JP3021478B2 (en) 1989-09-13 1989-09-13 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3021478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612632B2 (en) 1995-08-11 2005-01-19 富士通株式会社 In-vehicle adapter for mobile phones

Also Published As

Publication number Publication date
JPH03101056A (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JP2578646B2 (en) Non-aqueous secondary battery
JP3244314B2 (en) Non-aqueous battery
JPH0746608B2 (en) Non-aqueous secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3086297B2 (en) Non-aqueous solvent secondary battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP3021478B2 (en) Non-aqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JP2815862B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3021758B2 (en) Non-aqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPH0679485B2 (en) Non-aqueous secondary battery
JP2957589B2 (en) Non-aqueous secondary battery
JPH0212768A (en) Lithium secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JPH0787098B2 (en) Non-aqueous secondary battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPH0748377B2 (en) Non-aqueous secondary battery
JP2846696B2 (en) Non-aqueous secondary battery
JP2627318B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10