JPH0787098B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH0787098B2
JPH0787098B2 JP60246671A JP24667185A JPH0787098B2 JP H0787098 B2 JPH0787098 B2 JP H0787098B2 JP 60246671 A JP60246671 A JP 60246671A JP 24667185 A JP24667185 A JP 24667185A JP H0787098 B2 JPH0787098 B2 JP H0787098B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
lithium
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60246671A
Other languages
Japanese (ja)
Other versions
JPS62108455A (en
Inventor
和生 寺司
修弘 古川
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60246671A priority Critical patent/JPH0787098B2/en
Publication of JPS62108455A publication Critical patent/JPS62108455A/en
Publication of JPH0787098B2 publication Critical patent/JPH0787098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はリチウムを負極活物質とする非水系二次電池に
係り、特に正極の改良に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery using lithium as a negative electrode active material, and particularly to improvement of a positive electrode.

(ロ) 従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化物な
どが提案されているが未だ実用化には至っていない。
(B) Conventional Technology Molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfides have been proposed as positive electrode active materials for secondary batteries of this type, but they have not yet been put to practical use.

一方、非水系一次電池の正極活物質としては二酸化マン
ガン、フッ化炭素が代表的なものとして知られており、
且これらは既に実用化されている。
On the other hand, manganese dioxide and fluorocarbon are known as typical examples of the positive electrode active material of the non-aqueous primary battery.
Moreover, these have already been put to practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的に
豊富であり、且安価であるという利点を有するものであ
る。そしてこのような利点を有する二酸化マンガンを非
水系電池の正極活物質として用いるに際しては、負極活
物質であるリチウムが水分との反応性に富むため水分除
去処理を施す必要があり、具体的には例えば特公昭57−
4064号公報に開示されているように350℃を越えて430℃
までの温度で熱処理している。この熱処理によって電解
二酸化マンガンの結晶構造はγ型からγ−β或いはβ型
に変化する。このように電解二酸化マンガンは熱処理温
度に伴って結晶構造が変化するという性質を有する。
Here, manganese dioxide is particularly advantageous in that it has excellent storability, is abundant in resources, and is inexpensive. When using manganese dioxide having such an advantage as a positive electrode active material of a non-aqueous battery, it is necessary to perform a water removal treatment because lithium, which is a negative electrode active material, is highly reactive with water. For example, Japanese Patent Publication Sho-57-
As disclosed in 4064 gazette, exceeding 350 ° C to 430 ° C
It is heat-treated at temperatures up to. This heat treatment changes the crystal structure of electrolytic manganese dioxide from γ type to γ-β or β type. Thus, electrolytic manganese dioxide has the property that the crystal structure changes with the heat treatment temperature.

ところで、上記したように数々の利点を奏する二酸化マ
ンガンを非水系二次電池の正極活物質として用いること
が有益であると考えられるが、ここで新たな問題が存す
ることが明らかとなった。即ち、γ−β或いはβ型の二
酸化マンガンは放電後の結晶構造の崩れが大きく可逆性
に難があることである。これに対してγ型の二酸化マン
ガンは放電後の結晶構造の崩れが小さい。
By the way, it is considered useful to use manganese dioxide, which has various advantages as described above, as a positive electrode active material of a non-aqueous secondary battery, but it has become clear that there is a new problem here. That is, γ-β or β-type manganese dioxide has a large collapse of the crystal structure after discharge and is difficult to be reversible. On the other hand, γ-type manganese dioxide has a small crystal structure collapse after discharge.

(ハ) 発明が解決しようとする問題点 本発明は改良せる二酸化マンガンを正極活物質に用いて
非水系二次電池のサイクル特性を向上させることを目的
とする。
(C) Problems to be Solved by the Invention An object of the present invention is to improve the cycle characteristics of a non-aqueous secondary battery by using improved manganese dioxide as a positive electrode active material.

(ニ) 問題点を解決するための手段 本発明は電解二酸化マンガンの結晶格子中にリチウムを
予めドープした後、熱処理して得た無水又は無水に近い
γ型二酸化マンガンを正極活物質として用いることを特
徴とする非水系二次電池にある。
(D) Means for Solving the Problems In the present invention, anhydrous or nearly anhydrous γ-type manganese dioxide obtained by preliminarily doping lithium in the crystal lattice of electrolytic manganese dioxide and then heat-treating it is used as the positive electrode active material. In a non-aqueous secondary battery.

(ホ) 作用 本発明によると、理由は詳かではないが、結晶格子中に
ドープせるリチウムの存在によって、熱処理しても結晶
構造の変化が抑制され無水又は無水に近いγ型の二酸化
マンガンを得ることができ、かかるγ型二酸化マンガン
を正極活物質として用いることによりサイクル特性に優
れた非水系二次電池が得られる。
(E) Action According to the present invention, although the reason is not clear, the presence of lithium to be doped in the crystal lattice suppresses the change of the crystal structure even by the heat treatment, so that γ-type manganese dioxide which is anhydrous or nearly anhydrous is obtained. A non-aqueous secondary battery having excellent cycle characteristics can be obtained by using such γ-type manganese dioxide as a positive electrode active material.

(ヘ) 実施例 以下本発明の実施例について詳述する。(F) Example Hereinafter, an example of the present invention will be described in detail.

実施例1 平均粒径約100μの電解二酸化マンガン40gを、1モル/
の水酸化リチウム溶液30ccに入れた容器中に浸漬し、
そして周波数約2.45GHzのマイクロ波を照射する。溶液
が蒸発した時点でマイクロ波の照射を止め、再度容器内
に1モル/の水酸化リチウム溶液を30cc入れ前回と同
様にマイクロ波を照射する。この操作を7回繰返した
後、1の水で洗浄してリチウムをドープせる二酸化マ
ンガンを得、ついで350℃を越えて約430℃までの温度で
熱処理する。尚、熱処理雰囲気は無水の雰囲気であれば
真空、不活性、還元性、酸化性を問わない。又、処理時
間は2時間以上であれば良い。このように処理して得た
二酸化マンガンはほとんど水分が除去されており、且結
晶構造はγ型を維持していた。
Example 1 40 g of electrolytic manganese dioxide having an average particle size of about 100 μ was added at 1 mol / mol.
Immerse in a container put in 30 cc of lithium hydroxide solution of
Then, the microwave of a frequency of about 2.45 GHz is irradiated. When the solution evaporates, the microwave irradiation is stopped, and 30 cc of 1 mol / liter lithium hydroxide solution is put in the container again, and microwave irradiation is performed as in the previous case. After repeating this operation 7 times, it is washed with water 1 to obtain lithium-doped manganese dioxide, and then heat-treated at a temperature of more than 350 ° C. to about 430 ° C. The heat treatment atmosphere may be vacuum, inert, reducing or oxidizing as long as it is an anhydrous atmosphere. The processing time may be 2 hours or more. The manganese dioxide obtained by the above treatment had almost all water removed, and the crystal structure maintained the γ type.

次に、この処理済二酸化マンガン90重量%と、導電剤と
してのアセチレンブラック6重量%及び結着剤としての
フッ素樹脂粉末4重量%を混合して正極合剤とし、この
合剤を成型圧5トン/cm2で直径20.0mmφに加圧成型した
後200〜350℃の温度で熱処理して正極とする。この際の
熱処理の雰囲気は水分の少ない雰囲気であれば特に限定
されない。
Next, 90% by weight of this treated manganese dioxide, 6% by weight of acetylene black as a conductive agent, and 4% by weight of fluororesin powder as a binder were mixed to form a positive electrode mixture, and this mixture was formed at a molding pressure of 5%. It is pressure-molded at a diameter of 20.0 mmφ at ton / cm 2 and then heat-treated at a temperature of 200 to 350 ° C. to obtain a positive electrode. The atmosphere for the heat treatment at this time is not particularly limited as long as it is an atmosphere with a low water content.

第1図は上記せる正極を用いて組立てた扁平型非水電解
液二次電池の半断面図を示し、(1)、(2)はステン
レス製の正、負極缶であって、これらはポリプロピレン
製の絶縁パッキング(3)によって隔離されている。
(4)は正極であって、正極缶(1)の内底面に固着せ
る正極集電体(5)に圧接されている。(6)はリチウ
ム圧延板を所定寸法に打抜いてなる負極であって、負極
缶(2)の内底面に固着せる負極集電体(7)に圧着さ
れている。(8)はポリプロピレン不織布よりなるセパ
レータであって電解液が含浸されている。電解液はプロ
ピレンカーボネートと1,2ジメトキシエタンとの等容積
混合溶媒に過塩素酸リチウムを1モル/溶解したもの
を用いた。電池寸法は直径24.0mmφ、厚み3.0mmであっ
た。この電池を(A1)とする。
FIG. 1 shows a half cross-sectional view of a flat type non-aqueous electrolyte secondary battery assembled by using the above positive electrode. (1) and (2) are positive and negative electrode cans made of stainless steel, which are polypropylene. It is separated by an insulating packing (3) made of.
Reference numeral (4) is a positive electrode, which is pressed against a positive electrode current collector (5) fixed to the inner bottom surface of the positive electrode can (1). (6) is a negative electrode obtained by punching out a rolled lithium plate to a predetermined size, and is pressed onto a negative electrode current collector (7) fixed to the inner bottom surface of the negative electrode can (2). (8) is a separator made of polypropylene nonwoven fabric, which is impregnated with an electrolytic solution. The electrolytic solution used was one in which 1 mol / mol of lithium perchlorate was dissolved in a mixed solvent of equal volume of propylene carbonate and 1,2 dimethoxyethane. The battery dimensions were 24.0 mm in diameter and 3.0 mm in thickness. Let this battery be (A 1 ).

比較例1 リチウムをドープせず、電解二酸化マンガンを150℃の
温度で熱処理したものを正極活物質とすることを除いて
他は実施例1と同様の第1の比較電池(B1)を作成し
た。
Comparative Example 1 A first comparative battery (B 1 ) was prepared in the same manner as in Example 1 except that the positive electrode active material was prepared by subjecting electrolytic manganese dioxide to a heat treatment at a temperature of 150 ° C. without lithium doping. did.

比較例2 リチウムをドープせず、電解二酸化マンガンを350℃を
越えて430℃までの温度で熱処理したものを正極活物質
とすることを除いて他は実施例1と同様の第2の比較電
池(B2)を作成した。
Comparative Example 2 A second comparative battery similar to Example 1 except that lithium manganese dioxide was not doped and electrolytic manganese dioxide was heat-treated at a temperature of higher than 350 ° C. to 430 ° C. as a positive electrode active material. (B 2 ) was created.

比較例イ 水酸化リチウムの飽和溶液に電解二酸化マンガンを約24
時間浸漬した後ろ過した。その後、350℃〜430℃で熱処
理したものを正極活物質とすることを除いて他は実施例
1と同様にして比較電池(C1)を作成した。
Comparative Example B About 24% of electrolytic manganese dioxide was added to a saturated solution of lithium hydroxide.
After soaking for a time, it was filtered. Then, a comparative battery (C 1 ) was prepared in the same manner as in Example 1 except that the positive electrode active material was heat-treated at 350 ° C to 430 ° C.

比較例ロ 水酸化リチウムの飽和溶液に電解二酸化マンガンを約72
時間浸漬した後ろ過した。その後、350℃〜430℃で熱処
理したものを正極活物質とすることを除いて他は実施例
1と同様にして比較電池(C2)を作成した。
Comparative Example B About 72% of electrolytic manganese dioxide was added to a saturated solution of lithium hydroxide.
After soaking for a time, it was filtered. Then, a comparative battery (C 2 ) was prepared in the same manner as in Example 1 except that the positive electrode active material was heat treated at 350 ° C to 430 ° C.

第2図はこれら電池(A1)(B1)(B2)(C1)(C2)の
サイクル特性比較図を示し、サイクル条件は充電電流2.
0mAで充電終止電圧4.0V、一方放電電流2.0mAで放電終了
電圧1.5Vとした。
Figure 2 shows the cycle characteristics comparison diagram of these batteries (A 1 ) (B 1 ) (B 2 ) (C 1 ) (C 2 ). The cycle condition is charging current 2.
The charge end voltage was 4.0 V at 0 mA, and the discharge end voltage was 1.5 V at a discharge current of 2.0 mA.

第2図より明白なるように本発明電池(A1)は比較電池
(B1)(B2)(C1)(C2)に比してサイクル特性が向上
している。
As is apparent from FIG. 2, the battery (A 1 ) of the present invention has improved cycle characteristics as compared with the comparative batteries (B 1 ) (B 2 ) (C 1 ) (C 2 ).

次に固体電解質を用いた場合の例を詳述する。Next, an example using a solid electrolyte will be described in detail.

実施例2 正、負極は実施例1と同様であり、電解質として(Li4S
iO4)0.5(Li3AsO4)0.5で表わされるリチウムイオン導
電性の固体電解質を用いることを除いて他は実施例1と
同様の本発明電池(A2)を作成した。
Example 2 The positive and negative electrodes were the same as in Example 1, and the electrolyte (Li 4 S
A battery (A 2 ) of the present invention was prepared in the same manner as in Example 1 except that the lithium ion conductive solid electrolyte represented by iO 4 ) 0.5 (Li 3 AsO 4 ) 0.5 was used.

比較例3 リチウムをドープせず、電解二酸化マンガンを150℃の
温度で熱処理したものを正極活物質とすることを除いて
他は実施例2と同様の第3の比較電池(B3)を作成し
た。
Comparative Example 3 A third comparative battery (B 3 ) was prepared in the same manner as in Example 2 except that lithium manganese dioxide was not doped and electrolytic manganese dioxide was heat-treated at a temperature of 150 ° C. to obtain a positive electrode active material. did.

比較例4 リチウムをドープせず、電解二酸化マンガンを350℃を
越えて430℃までの温度で熱処理したものを正極活物質
とすることを除いて他は実施例2と同様の第4の比較電
池(B4)を作成した。
Comparative Example 4 A fourth comparative battery similar to Example 2 except that lithium manganese dioxide was not doped and electrolytic manganese dioxide was heat-treated at a temperature of higher than 350 ° C. to 430 ° C. as a positive electrode active material. (B 4 ) was created.

第3図はこれら電池(A2)(B3)(B4)のサイクル特性
比較図を示し、サイクル条件は充電電流150μで充電
終止電圧4.0V、一方放電電流150μで放電終止電圧1.5
Vとした。
Figure 3 these cell (A 2) (B 3) (B 4) shows the cycle characteristics comparison diagram, charge end voltage 4.0V in Cycling conditions charge current 150 mu A, whereas the discharge current 150 mu A in discharge end voltage 1.5
V.

第3図より明白なるように本発明電池(A2)は比較電池
(B3)(B4)に比してサイクル特性が向上している。
As is apparent from FIG. 3, the battery (A 2 ) of the present invention has improved cycle characteristics as compared with the comparative batteries (B 3 ) and (B 4 ).

この理由を考察するに、比較電池(B1)(B3)の場合、
正極活物質である二酸化マンガンはγ型の結晶構造を呈
するものの熱処理温度は150℃と低いため二酸化マンガ
ンには結合水が残存しており、この結合水が負極活物質
であるリチウムと反応するために特性が劣化する。又、
比較電池(B2)(B4)の場合には二酸化マンガンの熱処
理温度が高いため水分はほとんど除去されているもの
の、γ−β或いはβ型の結晶構造を呈し可逆性に難を有
することが要因で特性が劣化すると考えられる。
To consider the reason for this, in the case of the comparative batteries (B 1 ) (B 3 ),
Manganese dioxide, which is the positive electrode active material, exhibits a γ-type crystal structure, but the heat treatment temperature is low at 150 ° C, so bound water remains in manganese dioxide, and this bound water reacts with lithium, which is the negative electrode active material. Characteristics deteriorate. or,
In the case of the comparative batteries (B 2 ) and (B 4 ), the heat treatment temperature of manganese dioxide is high, so that most of the water content is removed, but it exhibits a γ-β or β-type crystal structure and has difficulty in reversibility. It is considered that the characteristics deteriorate due to the factors.

さらに、比較電池(C1)(C2)の場合は、電解二酸化マ
ンガンの結晶格子中にリチウムが熱処理前に予めドープ
されなかったことに起因して、その後熱処理しても表面
部分のみしか改質されないこととなり、二酸化マンガン
の表面部分で起こる反応が関係する保存特性などは向上
し得ても、充放電時の放電後の結晶構造の崩れが大きい
ため、結晶格子中へのリチウムの挿入・離脱が繰り返さ
れる充放電サイクル特性は殆ど向上しないと考えられ
る。
Furthermore, in the case of the comparative batteries (C 1 ) and (C 2 ), only the surface portion was modified after the heat treatment because the lithium was not pre-doped in the crystal lattice of electrolytic manganese dioxide before the heat treatment. Therefore, although the storage characteristics related to the reaction that occurs on the surface of manganese dioxide can be improved, the crystal structure collapses significantly after discharge during charge and discharge, so that lithium is inserted into the crystal lattice. It is considered that the charge / discharge cycle characteristics in which the detachment is repeated are hardly improved.

これに対して本発明電池(A1)(A2)の場合には無水又
は無水に近いγ型の二酸化マンガンを正極活物質として
用いているため特性が向上したと考えられる。
On the other hand, in the case of the batteries (A 1 ) and (A 2 ) of the present invention, the characteristics are considered to be improved because anhydrous or nearly anhydrous γ-type manganese dioxide is used as the positive electrode active material.

(ト) 発明の効果 上述した如く、電解二酸化マンガンの結晶格子中にリチ
ウムを予めドープした後、熱処理して得た無水又は無水
に近いγ型二酸化マンガンを正極活物質として用いるこ
とによりサイクル特性に優れた非水系二次電池を得るこ
とができるものであり、その工業的価値は極めて大であ
る。
(G) Effect of the invention As described above, the use of anhydrous or near anhydrous γ-type manganese dioxide obtained by pre-doping lithium in the crystal lattice of electrolytic manganese dioxide as a positive electrode active material improves cycle characteristics. An excellent non-aqueous secondary battery can be obtained, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による非水系二次電池の半断
面図、第2図及び第3図は充放電サイクル特性比較図を
夫々示す。 (1)……正極缶、(2)……負極缶、(3)……絶縁
パッキング、(4)……正極、(6)……負極、(8)
……セパレータ、(A1)(A2)……本発明電池、(B1
(B2)(C1)(C2)(B3)(B4)……比較電池。
FIG. 1 is a half sectional view of a non-aqueous secondary battery according to an embodiment of the present invention, and FIGS. 2 and 3 are charge / discharge cycle characteristic comparison diagrams, respectively. (1) …… positive electrode can, (2) …… negative electrode can, (3) …… insulating packing, (4) …… positive electrode, (6) …… negative electrode, (8)
...... Separator, (A 1 ) (A 2 ) …… Battery of the present invention, (B 1 )
(B 2 ) (C 1 ) (C 2 ) (B 3 ) (B 4 ) …… Comparison battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 特開 昭52−73328(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshihiko Saito 2-18, Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-52-73328 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム或いはリチウム合金を活物質とす
る負極と、電解二酸化マンガンの結晶格子中にリチウム
を予めドープした後、熱処理して得た無水又は無水に近
いγ型二酸化マンガンを活物質とする正極とを備えた非
水系二次電池。
1. A negative electrode using lithium or a lithium alloy as an active material, and anhydrous or nearly anhydrous γ-type manganese dioxide obtained by pre-doping lithium in a crystal lattice of electrolytic manganese dioxide as an active material. Non-aqueous secondary battery having a positive electrode that
JP60246671A 1985-11-01 1985-11-01 Non-aqueous secondary battery Expired - Lifetime JPH0787098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246671A JPH0787098B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246671A JPH0787098B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS62108455A JPS62108455A (en) 1987-05-19
JPH0787098B2 true JPH0787098B2 (en) 1995-09-20

Family

ID=17151880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246671A Expired - Lifetime JPH0787098B2 (en) 1985-11-01 1985-11-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0787098B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631998B2 (en) * 1988-05-17 1997-07-16 三洋電機株式会社 Manufacturing method of positive electrode for non-aqueous secondary battery
JP2627304B2 (en) * 1988-05-20 1997-07-02 三洋電機株式会社 Manufacturing method of positive electrode for non-aqueous secondary battery
US4959282A (en) * 1988-07-11 1990-09-25 Moli Energy Limited Cathode active materials, methods of making same and electrochemical cells incorporating the same
JP2599975B2 (en) * 1988-09-22 1997-04-16 日本電池株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931182B2 (en) * 1975-12-17 1984-07-31 日立マクセル株式会社 Manufacturing method of non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPS62108455A (en) 1987-05-19

Similar Documents

Publication Publication Date Title
JP2578646B2 (en) Non-aqueous secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3133318B2 (en) Rechargeable battery
JPH09213348A (en) Non-aqueous electrolyte battery
JPH0576744B2 (en)
JPH0787098B2 (en) Non-aqueous secondary battery
JP3070936B2 (en) Rechargeable battery
JPH0679485B2 (en) Non-aqueous secondary battery
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JPH07114125B2 (en) Non-aqueous secondary battery
JPH0619997B2 (en) Non-aqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JP2951013B2 (en) Non-aqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2584246B2 (en) Non-aqueous secondary battery
JP3021478B2 (en) Non-aqueous secondary battery
JPH0748377B2 (en) Non-aqueous secondary battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term