JP2698180B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2698180B2
JP2698180B2 JP1186795A JP18679589A JP2698180B2 JP 2698180 B2 JP2698180 B2 JP 2698180B2 JP 1186795 A JP1186795 A JP 1186795A JP 18679589 A JP18679589 A JP 18679589A JP 2698180 B2 JP2698180 B2 JP 2698180B2
Authority
JP
Japan
Prior art keywords
mno
lithium
positive electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1186795A
Other languages
Japanese (ja)
Other versions
JPH0353455A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1186795A priority Critical patent/JP2698180B2/en
Publication of JPH0353455A publication Critical patent/JPH0353455A/en
Application granted granted Critical
Publication of JP2698180B2 publication Critical patent/JP2698180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はリチウム或いはリチウム合金よりなる負極を
備えた非水系二次電池に係り、特に正極の改良に関する
ものである。
The present invention relates to a non-aqueous secondary battery provided with a negative electrode made of lithium or a lithium alloy, and more particularly to an improvement in a positive electrode.

(ロ) 従来の技術 この種二次電池の正極活物質としては二酸化マンガ
ン、フッ化炭素が代表的なものとして知られており、且
これらは既に実用化されている。
(B) Conventional technology Manganese dioxide and fluorocarbon are known as typical examples of the positive electrode active material of this type of secondary battery, and these have already been put to practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的
に豊富であり、且つ安価であるという利点を有するもの
である。
Here, manganese dioxide in particular has the advantage of being excellent in preservability, abundant in resources, and inexpensive.

上記せる背景に鑑みて、非水系二次電池の正極活物質
として二酸化マンガンを用いることが有益であると考え
られるが、二酸化マンガンは可逆性に難があり充放電サ
イクル特性に問題があった。
In view of the background described above, it is considered to be beneficial to use manganese dioxide as the positive electrode active material of the non-aqueous secondary battery. However, manganese dioxide has difficulty in reversibility and has a problem in charge / discharge cycle characteristics.

(ハ) 発明が解決しようとする課題 可逆性に優れたマンガン酸化物を正極活物質に用いる
ことにより、保存性に優れ、安価であり、且つ充放電サ
イクル特性に優れた非水系二次電池を提供することを目
的とする。
(C) Problems to be Solved by the Invention By using a manganese oxide having excellent reversibility as the positive electrode active material, a non-aqueous secondary battery having excellent storage stability, low cost, and excellent charge / discharge cycle characteristics can be obtained. The purpose is to provide.

(ニ) 課題を解決するための手段 本発明は、正極活物質として、充電状態におけるX線
回折図がLi2MnO3のみの回折ピークを示し、Li/Mn比が2
より小なるリチウム含有マンガン酸化物を用いることを
特徴とする。
(D) Means for Solving the Problems According to the present invention, as a positive electrode active material, an X-ray diffraction diagram in a charged state shows a diffraction peak of only Li 2 MnO 3 and a Li / Mn ratio of 2
It is characterized in that a smaller lithium-containing manganese oxide is used.

(ホ) 作用 本件出願人が特願昭61−258940号で提案したように、
正極活物質として二酸化マンガンにLi2MnO3を添加した
ものを用いると、二酸化マンガン単独の場合に比して可
逆性が改善されるが、浅い深度での充放電サイクル特性
に若干難点がある。
(E) Function As proposed by the present applicant in Japanese Patent Application No. 61-258940,
When manganese dioxide to which Li 2 MnO 3 is added is used as the positive electrode active material, the reversibility is improved as compared with the case of using manganese dioxide alone, but there are some drawbacks in the charge / discharge cycle characteristics at a shallow depth.

そこで、本件出願人は特願昭63−34151号で、正極活
物質としてLi2MnO3で表されるマンガン酸化物を用いる
ことを提案した。
In view of this, the present applicant has proposed in Japanese Patent Application No. 63-34151 that manganese oxide represented by Li 2 MnO 3 is used as a positive electrode active material.

ここで、本発明者等はLi2MnO3について、さらに追求
した結果、Li2MnO3からリチウムを脱ドープしたもの
は、Li2MnO3の構造を維持したままで放電容量の増加が
見られた。又、Li2MnO3の構造を維持しているため充放
電に対する可逆性もLi2MnO3単独の場合と同程度に優れ
るものであった。
Here, the present inventors have for the Li 2 MnO 3, further result of pursuing, those dedoped lithium from Li 2 MnO 3, the increase in discharge capacity was observed while maintaining the structure of Li 2 MnO 3 Was. In addition, since the structure of Li 2 MnO 3 was maintained, the reversibility to charge and discharge was as excellent as that of Li 2 MnO 3 alone.

尚、Li2MnO3の構造を維持したままでリチウムを脱ド
ープする方法としては以下の方法がある。即ち、Li2MnO
3を水中に浸漬した後、熱処理を行う方法である。Li2Mn
O3を水中に浸漬すると、リチウムイオンがプロトンとの
イオン交換反応により置換される。ここで比較的低温
(200℃以下)で熱処理を行うことにより、結晶構造を
維持したままでプロトンを取り除くことができる。
The following methods are available for undoping lithium while maintaining the structure of Li 2 MnO 3 . That is, Li 2 MnO
This is a method in which 3 is immersed in water and then heat-treated. Li 2 Mn
When O 3 is immersed in water, lithium ions are replaced by an ion exchange reaction with protons. Here, by performing the heat treatment at a relatively low temperature (200 ° C. or lower), protons can be removed while maintaining the crystal structure.

(ヘ) 実施例 以下本発明の実施例について詳述する。(F) Examples Examples of the present invention will be described in detail below.

実施例1 平均粒径30μ以下の化学二酸化マンガン50gと水酸化
リチウム28gを乳鉢にて混合した後、空気中において375
℃で20時間熱処理する。この熱処理によりLi2MnO3が得
られる。
Example 1 After mixing 50 g of chemical manganese dioxide having an average particle diameter of 30 μm or less and 28 g of lithium hydroxide in a mortar, the mixture was mixed in air in a volume of 375 μm.
Heat treat at 20 ° C for 20 hours. By this heat treatment, Li 2 MnO 3 is obtained.

このようにして得られたLi2MnO3を水に24時間浸漬し
た後、真空中で150℃で熱処理を行う。この熱処理によ
って、X線回折図がLi2MnO3のみの回折ピークを示し、L
i/Mn比が1.5であるリチウム含有マンガン酸化物が得ら
れる。
After immersing the thus obtained Li 2 MnO 3 in water for 24 hours, a heat treatment is performed at 150 ° C. in a vacuum. By this heat treatment, the X-ray diffraction diagram shows a diffraction peak of Li 2 MnO 3 only,
A lithium-containing manganese oxide having an i / Mn ratio of 1.5 is obtained.

上記リチウム含有マンガン酸化物を正極活物質とし、
この活物質粉末と、導電剤としてのアセチレンブラック
及び結着剤としてのフッ素樹脂粉末を重量比で90:6:4の
比率で混合して正極合剤とし、この正極合剤を2トン/c
m2で直径20mmに加圧成型したのち真空中で150℃で熱処
理して正極とする。
The lithium-containing manganese oxide as a positive electrode active material,
This active material powder, acetylene black as a conductive agent and a fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4 to form a positive electrode mixture, and the positive electrode mixture was mixed at 2 ton / c.
After pressure molding to a diameter of 20 mm with m 2 , heat treatment is performed at 150 ° C. in vacuum to obtain a positive electrode.

負極は所定厚みのリチウム板を直径20mmに打ち抜いた
ものである。
The negative electrode is obtained by punching a lithium plate having a predetermined thickness to a diameter of 20 mm.

第1図は上記せる正負極を用いて組立てた扁平型非水
電解液二次電池の半断面図を示し、(1)(2)はステ
ンレス製の正負極缶であってこれらはポリプロピレン製
の絶縁パッキング(3)により隔離されている。(4)
は本発明の要旨とする正極であって正極缶(1)の内底
面に固着せる正極集電体(5)に圧接されている。
(6)は負極であって負極缶(2)の内底面に固着せる
負極集電体(7)に圧着されている。(8)はポリプロ
ピレン製微孔性薄膜よりなるセパレータであり、又電解
液としてプロピレンカーボネートとジメトキシエタンと
の混合溶媒に過塩素酸リチウムを1モル/溶解したも
のを用いた。電池寸法は直径24.0mm、厚み3.0mmであっ
た。
FIG. 1 shows a half cross-sectional view of a flat nonaqueous electrolyte secondary battery assembled using the positive and negative electrodes described above. Insulated by insulating packing (3). (4)
Is a positive electrode as the gist of the present invention, and is pressed against a positive electrode current collector (5) fixed to the inner bottom surface of the positive electrode can (1).
Reference numeral (6) denotes a negative electrode, which is crimped to a negative electrode current collector (7) fixed to the inner bottom surface of the negative electrode can (2). (8) is a separator made of a polypropylene microporous thin film, and used as an electrolytic solution was 1 mol / dissolved lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane. The battery dimensions were 24.0 mm in diameter and 3.0 mm in thickness.

この本発明電池を(A1)とする。 This battery of the present invention is referred to as (A1).

実施例2 実施例1で得られたLi2MnO3を水中に1週間浸漬した
後、真空中において150℃で熱処理を行う。この熱処理
によって、X線回折図がLi2MnO3のみの回折ピークを示
し、Li/Mn比が1.0であるリチウム含有マンガン酸化物が
得られる。
Example 2 After immersing Li 2 MnO 3 obtained in Example 1 in water for one week, heat treatment is performed at 150 ° C. in a vacuum. By this heat treatment, an X-ray diffraction diagram shows a diffraction peak of only Li 2 MnO 3 and a lithium-containing manganese oxide having a Li / Mn ratio of 1.0 is obtained.

このリチウム含有マンガン酸化物を正極活物質とする
ことを除いて他は実施例1と同様の本発明電池(A2)を
作製した。
A battery of the present invention (A2) was produced in the same manner as in Example 1 except that this lithium-containing manganese oxide was used as a positive electrode active material.

比較例1 正極活物質として、実施例1で得られたLi2MnO3、即
ちLi/Mn比が2であるLi2MnO3を水中浸漬処理を行なわず
単独で用いることを除いて、他は実施例1と同様の比較
電池(B1)を作製した。
Comparative Example 1 a positive electrode active material, but using Li 2 MnO 3 The resulting Li 2 MnO 3, i.e. Li / Mn ratio of 2 in Example 1 alone without immersion in water treatment, others A comparative battery (B1) similar to that of Example 1 was produced.

比較例2 平均粒径30μ以下の化学二酸化マンガン50gと水酸化
リチウム6gを乳鉢にて混合した後、空気中において375
℃で20時間熱処理する。
Comparative Example 2 After mixing 50 g of chemical manganese dioxide having an average particle size of 30 μm or less and 6 g of lithium hydroxide in a mortar, the mixture was 375 in air.
Heat treat at 20 ° C for 20 hours.

この熱処理によりLi/Mn比が3/7であるリチウム含有マ
ンガン酸化物と、MnO2(二酸化マンガン)との複合体が
得られる。この複合体のX線回折図はLi2MnO3とMnO2
の回折ピークを示す。この複合体を正極活物質として、
用いることを除いて、他は実施例1と同様の比較電池
(B2)を作製した。
By this heat treatment, a composite of lithium-containing manganese oxide having a Li / Mn ratio of 3/7 and MnO 2 (manganese dioxide) is obtained. The X-ray diffraction pattern of this composite shows the diffraction peaks of Li 2 MnO 3 and MnO 2 . Using this composite as a positive electrode active material,
A comparative battery (B2) similar to that of Example 1 was made, except that it was used.

比較例3 平均粒径30μ以下の化学二酸化マンガン50gと水酸化
リチウム25gを乳鉢にて混合した後、空気中において375
℃で20時間熱処理する。この熱処理によりLi/Mn比が1.5
であるリチウム含有マンガン酸化物と、MnO2(二酸化マ
ンガン)との複合体が得られる。この複合体のX線回折
図はLi2MnO3とMnO2との回折ピークを示す。この複合体
を正極活物質として、用いることを除いて、他は実施例
1と同様の比較電池(B3)を作製した。
Comparative Example 3 After mixing 50 g of chemical manganese dioxide having an average particle size of 30 μm or less and 25 g of lithium hydroxide in a mortar, the mixture was mixed in the air at 375 g.
Heat treat at 20 ° C for 20 hours. By this heat treatment, the Li / Mn ratio becomes 1.5
And a complex of lithium-containing manganese oxide and MnO 2 (manganese dioxide). The X-ray diffraction pattern of this composite shows the diffraction peaks of Li 2 MnO 3 and MnO 2 . A comparative battery (B3) similar to that of Example 1 was made except that this composite was used as a positive electrode active material.

第2図及び第3図はこれら電池の充放電サイクル特性
図を示す。
2 and 3 show charge / discharge cycle characteristics of these batteries.

第2図の充放電条件は電池3mAで1時間放電し、電流3
mAで充電し充電終止電圧4.0Vとした。又、第3図の充放
電条件は電流3mAで8時間放電し、電流3mAで充電し充電
終止電圧4.0Vとした。
The charging / discharging conditions in FIG. 2 are as follows.
The battery was charged with mA to a final charge voltage of 4.0 V. The charge / discharge conditions in FIG. 3 were discharge at a current of 3 mA for 8 hours, charged at a current of 3 mA, and set to a charge termination voltage of 4.0 V.

第2図及び第3図より、本発明電池(A1)(A2)は、
比較電池(B1)(B2)(B3)に比して浅い深度及び深い
深度のいずれの条件においても優れた充放電サイクル特
性を示すことがわかる。
2 and 3, the batteries (A1) and (A2) of the present invention
It can be seen that excellent charge / discharge cycle characteristics are exhibited under both shallow and deep conditions as compared with the comparative batteries (B1), (B2), and (B3).

(ト) 発明の効果 上述した如く、リチウム或いはリチウム合金よりなる
負極を備えた非水系二次電池において、正極活物質とし
て、充電状態におけるX線回折図がLi2MnO3のみの回折
ピークを示し、Li/Mn比が2より小なるリチウム含有マ
ンガン酸化物を用いることにより、この種電池の充放電
サイクル特性を改善することができるものであり、その
工業的価値は極めて大である。
(G) Effect of the Invention As described above, in a non-aqueous secondary battery provided with a negative electrode made of lithium or a lithium alloy, the X-ray diffraction diagram in the charged state as a positive electrode active material shows a diffraction peak of only Li 2 MnO 3 . By using a lithium-containing manganese oxide having a Li / Mn ratio smaller than 2, the charge / discharge cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.

尚、本発明を説明するに際して、非水電解液二次電池
を例にとり説明したが、固体電解質二次電池にも適用す
ることができる。
In the description of the present invention, a non-aqueous electrolyte secondary battery has been described as an example, but the present invention can also be applied to a solid electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の半断面図、第2図及び第3図は電
池の充放電サイクル特性図であり、第2図は浅い深度で
の特性、第3図は深い深度での特性を夫々示す。 (1)……正極缶、(2)……負極缶、(3)……絶縁
パッキング、(4)……正極、(5)……正極集電体、
(6)……負極、(7)……負極集電体、(8)……セ
パレータ、(A1)(A2)……本発明電池、(B1)(B2)
(B3)……比較電池。
1 is a half sectional view of the battery of the present invention, FIGS. 2 and 3 are charge / discharge cycle characteristics of the battery, FIG. 2 shows the characteristics at a shallow depth, and FIG. 3 shows the characteristics at a deep depth. Shown respectively. (1) Positive electrode can, (2) Negative electrode can, (3) Insulating packing, (4) Positive electrode, (5) Positive electrode current collector,
(6)… negative electrode, (7)… negative electrode current collector, (8)… separator, (A1) (A2)… battery of the present invention, (B1) (B2)
(B3)… Comparative battery.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム或いはリチウム合金よりなる負極
と、充電状態におけるX線回折図がLi2MnO3のみの回折
ピークを示し、Li/Mn比が2より小なるリチウム含有マ
ンガン酸化物を活物質とする正極とを備えた非水系二次
電池。
1. An active material comprising a negative electrode made of lithium or a lithium alloy and a lithium-containing manganese oxide having a Li / Mn ratio of less than 2 in an X-ray diffraction pattern in a charged state showing a diffraction peak of only Li 2 MnO 3 . Non-aqueous secondary battery comprising a positive electrode.
JP1186795A 1989-07-19 1989-07-19 Non-aqueous secondary battery Expired - Fee Related JP2698180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186795A JP2698180B2 (en) 1989-07-19 1989-07-19 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186795A JP2698180B2 (en) 1989-07-19 1989-07-19 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH0353455A JPH0353455A (en) 1991-03-07
JP2698180B2 true JP2698180B2 (en) 1998-01-19

Family

ID=16194721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186795A Expired - Fee Related JP2698180B2 (en) 1989-07-19 1989-07-19 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2698180B2 (en)

Also Published As

Publication number Publication date
JPH0353455A (en) 1991-03-07

Similar Documents

Publication Publication Date Title
JP2578646B2 (en) Non-aqueous secondary battery
JPH0746608B2 (en) Non-aqueous secondary battery
JP3369583B2 (en) Non-aqueous electrolyte battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPS6151387B2 (en)
JP2815862B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JP2950924B2 (en) Non-aqueous electrolyte battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2000090970A (en) Lithium secondary battery
JPH0679485B2 (en) Non-aqueous secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPH0355770A (en) Lithium secondary battery
JP2627304B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP2627318B2 (en) Non-aqueous secondary battery
JPH0424828B2 (en)
JPH0724220B2 (en) Non-aqueous secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JP3133321B2 (en) Non-aqueous battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees