JP3133321B2 - Non-aqueous battery - Google Patents

Non-aqueous battery

Info

Publication number
JP3133321B2
JP3133321B2 JP02334964A JP33496490A JP3133321B2 JP 3133321 B2 JP3133321 B2 JP 3133321B2 JP 02334964 A JP02334964 A JP 02334964A JP 33496490 A JP33496490 A JP 33496490A JP 3133321 B2 JP3133321 B2 JP 3133321B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02334964A
Other languages
Japanese (ja)
Other versions
JPH04174971A (en
Inventor
俊之 能間
祐司 山本
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02334964A priority Critical patent/JP3133321B2/en
Publication of JPH04174971A publication Critical patent/JPH04174971A/en
Application granted granted Critical
Publication of JP3133321B2 publication Critical patent/JP3133321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム、又はリチウムを貯蔵することので
きる物質を負極活物質とする非水系一次、及び二次電池
に係かり、特に正極の改良に関するものである。
The present invention relates to nonaqueous primary and secondary batteries using lithium or a substance capable of storing lithium as a negative electrode active material, and particularly to a positive electrode for a positive electrode. It is about improvement.

(ロ)従来の技術 リチウムを負極活物質とし非水系電解液を用いた非水
系一次電池は、高電圧、高エネルギー密度、優れた低温
特性、低い自己放電率等の長所を有し、携帯用の小型電
気機器、又は携帯用の小型電子機器のための電源、或る
いはコンピュータのメモリバックアップ用の電源等の用
途に広く用いられている。
(B) Conventional technology Non-aqueous primary batteries using lithium as a negative electrode active material and a non-aqueous electrolyte have the advantages of high voltage, high energy density, excellent low-temperature characteristics, low self-discharge rate, and the like. It is widely used as a power source for small electric devices or portable small electronic devices, or as a power source for computer memory backup.

これら非水系一次電池の正極活物質としては従来二酸
化マンガン、或るいはフッ化炭素が代表的なものとして
用いられており、特に二酸化マンガンは保存性に優れ、
且つ資源的に豊富であり、又安価であるという利点を有
するものである。
As a positive electrode active material of these non-aqueous primary batteries, manganese dioxide or carbon fluoride has conventionally been used as a typical one, and manganese dioxide is particularly excellent in storage stability,
It has the advantage of being abundant in resources and inexpensive.

一方、この種電池を繰り返し充放電して使用できるよ
うにした非水系二次電池も開発されている。この非水系
二次電池の負極活物質としてはリチウム金属の他に、ア
ルミニウム等の、リチウムと合金化する金属を用いたリ
チウム合金、或るいはリチウムをインターカレートさせ
た炭素材料が知られている。又、正極活物質としては、
Li2MnO3を含有する二酸化マンガン(特開昭63−114064
号公報参照)、リチウム含有二酸化マンガン(特開平1
−235158号公報参照)、酸化バナジウム、酸化コバルト
等が提案されており、これらの負極と正極とを組み合わ
せた非水系二次電池も一部実用化されている。
On the other hand, a non-aqueous secondary battery in which this kind of battery can be repeatedly charged and discharged for use has been developed. As the negative electrode active material of this non-aqueous secondary battery, in addition to lithium metal, a lithium alloy using a metal that can be alloyed with lithium, such as aluminum, or a carbon material obtained by intercalating lithium is known. I have. Also, as a positive electrode active material,
Manganese dioxide containing Li 2 MnO 3 (JP-A-63-114064)
Manganese dioxide (see Japanese Patent Application Laid-Open No.
-235158), vanadium oxide, cobalt oxide and the like have been proposed, and some non-aqueous secondary batteries combining these negative and positive electrodes have been put to practical use.

ところで上記の小型電気機器、及び小型電子機器はそ
の小型化が一層進み、これに伴って電源用としての非水
系一次電池にも小型化、即ち高容量化と、高エネルギー
密度化が求められつつある。
By the way, the above-mentioned small electric devices and small electronic devices are further miniaturized, and accordingly, the non-aqueous primary batteries for power supply are also required to be miniaturized, that is, to have high capacity and high energy density. is there.

又、現在実用化されている非水系二次電池においても
その特性はまだ不充分な点が多く、高容量化、且つ高エ
ネルギー密度化が望まれている。
In addition, the characteristics of non-aqueous secondary batteries that are currently in practical use are still insufficient, and there is a demand for higher capacity and higher energy density.

(ハ)発明が解決しようとする課題 上記従来の非水系電池では、小型化のためには正極の
二酸化マンガンのエネルギー密度が不十分であるととも
に、充放電サイクル特性も不十分であるという問題点が
あった。
(C) Problems to be Solved by the Invention In the conventional non-aqueous battery described above, the problem is that the energy density of manganese dioxide of the positive electrode is insufficient for miniaturization, and the charge / discharge cycle characteristics are also insufficient. was there.

本発明が解決しようとする課題は、かかる点に鑑み、
正極の二酸化マンガンの放電容量、及び放電電圧を改善
し、非水系電池の容量、及びエネルギー密度を向上させ
るとともに充放電サイクル特性を向上させることであ
る。
The problem to be solved by the present invention is, in view of such a point,
It is to improve the discharge capacity and discharge voltage of manganese dioxide of the positive electrode, to improve the capacity and energy density of a non-aqueous battery, and to improve charge / discharge cycle characteristics.

(ニ)課題を解決するための手段 本発明は、リチウム、又はリチウムを貯蔵することの
できる材料を負極活物質とし、リチウムを含有するマン
ガン酸化物を、二酸化マンガンとリチウム塩との混合物
を、150〜430℃の温度にて熱処理して得るとともに、こ
のリチウム含有マンガン酸化物(比表面積30m2/g以下)
を電気化学的に充電して正極活物質を形成する非水系電
池において、前記正極活物質は、CuKαによるX線回折
図の2θ=37゜近傍と、2θ=38゜近傍との両方にピー
クを有したものである。
(D) Means for Solving the Problems The present invention uses lithium or a material capable of storing lithium as a negative electrode active material, a manganese oxide containing lithium, a mixture of manganese dioxide and a lithium salt, Obtained by heat treatment at a temperature of 150 to 430 ° C and this lithium-containing manganese oxide (specific surface area 30 m 2 / g or less)
In a non-aqueous battery in which the positive electrode active material is electrochemically charged to form a positive electrode active material, the positive electrode active material has peaks in both the vicinity of 2θ = 37 ° and the vicinity of 2θ = 38 ° in the X-ray diffraction diagram by CuKα. It had.

尚、上記正極活物質を主とし、この主正極活物質に対
してこれよりも充電時の電極電位が貴なる物質を副正極
活物質として主正極活物質に添加すると良い。この場合
の前記副正極活物質は、LixCoO2(0〈x≦1)、或る
いはスピネル型構造のLixMn2O4(0〈x≦1)であるこ
とが望ましい。
It is preferable that the above-mentioned positive electrode active material is mainly used, and a substance whose electrode potential is more noble during charging than the main positive electrode active material is added to the main positive electrode active material as an auxiliary positive electrode active material. In this case, the secondary positive electrode active material is desirably Li x CoO 2 (0 <x ≦ 1) or Li x Mn 2 O 4 (0 <x ≦ 1) having a spinel structure.

(ホ)作用 上記の構成において、二酸化マンガンとリチウム塩を
熱処理して得られるところのリチウム含有マンガン酸化
物の結晶構造は、その熱処理温度によって異なり、例え
ば150〜300℃では、CuKαによるX線回折図で2θ=22
゜、31.5゜、37゜、42゜、55゜付近にピークを有するリ
チウム含有マンガン酸化物が得られ、一方、焼成温度が
300〜430℃では、Li2MnO3を含有するマンガン酸化物が
得られる。
(E) Action In the above structure, the crystal structure of the lithium-containing manganese oxide obtained by heat-treating manganese dioxide and a lithium salt depends on the heat treatment temperature. For example, at 150 to 300 ° C., X-ray diffraction by CuKα In the figure, 2θ = 22
リ チ ウ ム, 31.5 ゜, 37 ゜, 42 ゜, and 55 ゜, lithium-containing manganese oxides with peaks were obtained.
At 300 to 430 ° C., a manganese oxide containing Li 2 MnO 3 is obtained.

そしてこのようなリチウム含有マンガン酸化物はその
まま正極活物質に用いることもできるが、これを電気化
学的に充電することによって、より高い放電容量、及び
放電電圧を示す。
Such a lithium-containing manganese oxide can be used as it is as a positive electrode active material, but shows a higher discharge capacity and a higher discharge voltage by being electrochemically charged.

また、かかるリチウム含有マンガン酸化物を主正極活
物質として、これに充電時の電極電位が貴なる副正極活
物質を添加すれば充放電サイクル特性も向上する。
If such a lithium-containing manganese oxide is used as a main positive electrode active material and a sub-positive electrode active material having a noble electrode potential during charging is added to the main positive electrode active material, the charge / discharge cycle characteristics are also improved.

(ヘ)実施例 以下本発明をいくつかの実施例について図面に基づき
説明する。
(F) Examples Hereinafter, the present invention will be described with reference to the drawings for some examples.

[実施例1] 水酸化リチウムと、二酸化マンガンとをモル比1:2で
混合し、空気中において、250℃で20時間熱処理するこ
とにより、CuKαによるX線回折で2θ=22゜、31.5
゜、37゜、42゜、55゜の夫々の近傍にピークを有するリ
チウム含有マンガン酸化物を得る。
[Example 1] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of 1: 2, and heat-treated in air at 250 ° C for 20 hours to obtain 2θ = 22 °, 31.5% by X-ray diffraction with CuKα.
Lithium-containing manganese oxides having peaks near {, 37}, 42 °, and 55 ° are obtained.

この物質と、導電剤としてのアセチレンブラック、及
び結着剤としてのフッ素樹脂を重量比で85:10:5の比率
で混合して正極合剤とし、この正極合剤を2t/cm2の力で
直径20mmに加圧成形する。
This material, acetylene black as a conductive agent, and a fluororesin as a binder were mixed at a weight ratio of 85: 10: 5 to form a positive electrode mixture, and the positive electrode mixture was subjected to a force of 2 t / cm 2 . Press to form a 20mm diameter.

この後、加圧成形した合剤を、真空中250℃で熱処理
して正極とする。
Thereafter, the pressure-formed mixture is heat-treated at 250 ° C. in vacuum to form a positive electrode.

一方、負極は所定の厚み寸法を有するリチウム板を直
径20mmに打ち抜いたものを用いる。
On the other hand, the negative electrode is formed by punching a lithium plate having a predetermined thickness into a diameter of 20 mm.

第1図は上記の正極、及び負極を用いて組み立てた扁
平型非水電解液二次電池の半断面を示し、1、2はステ
ンレス製の正極缶、及び負極缶であって、これらはポリ
プロピレン製の絶縁パッキング3により隔離されてい
る。
FIG. 1 shows a half section of a flat non-aqueous electrolyte secondary battery assembled using the above-mentioned positive electrode and negative electrode, wherein 1 and 2 are a stainless steel positive electrode can and a negative electrode can, which are polypropylene. Isolated by an insulating packing 3 made of stainless steel.

4は本発明の要旨となる正極であって、前記正極缶1
の内底面に固着された正極集電体5に圧接されたもので
ある。
Reference numeral 4 denotes a positive electrode which is the gist of the present invention.
Are pressed into contact with the positive electrode current collector 5 fixed to the inner bottom surface.

6は負極であって前記負極缶2の内底面に固着された
負極集電体7に圧接されたものである。
Reference numeral 6 denotes a negative electrode which is pressed against a negative electrode current collector 7 fixed to the inner bottom surface of the negative electrode can 2.

8はポリプロピレン製の微孔性薄膜よりなるセパレー
タであり、又、電解液としてプロピレンカーボネートと
ジメトキシエタンとの混合溶媒に過塩素酸リチウムを1
モル/溶解したものを用いた。
Reference numeral 8 denotes a separator made of a microporous thin film made of polypropylene, and lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane as an electrolytic solution.
Mole / dissolved was used.

尚、電池寸法は直径24.0mm、厚み3.0mmであった。 The dimensions of the battery were 24.0 mm in diameter and 3.0 mm in thickness.

こうして組み立てられた電池を電流3mAで、4.3Vまで
充電したものを本発明電池A1とする。そしてこの時の充
電電気量は60mAhであった。
A battery assembled in this way and charged to 4.3 V with a current of 3 mA is referred to as a battery A1 of the present invention. The amount of electricity charged at this time was 60 mAh.

[実施例2] 水酸化リチウムと、二酸化マンガンとを、モル比1:2
で混合し、空気中で375℃で20時間熱処理することによ
り、Li2MnO3を含有するマンガン酸化物を得る。
[Example 2] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of 1: 2.
And heat-treated in air at 375 ° C. for 20 hours to obtain a manganese oxide containing Li 2 MnO 3 .

この後、先の実施例1と同様にして正極、及び負極を
形成して電池を組立て、電流3mAで4.3Vまで充電したも
のを本発明電池A2とする。尚、この時の充電電気量は50
mAhであった。
Thereafter, a battery was assembled by forming a positive electrode and a negative electrode in the same manner as in Example 1 and charged to 4.3 V at a current of 3 mA to obtain a battery A2 of the present invention. The amount of electricity charged at this time is 50
mAh.

[実施例3] 水酸化リチウムと、二酸化マンガンとをモル比1:2で
混合し、空気中において150℃で20時間熱処理すること
により、CuKαによるX線回折で2θ=22゜、31.5゜、3
7゜、42゜、55゜のそれぞれの近傍にピークを有するリ
チウム含有マンガン酸化物を得る。その後、第1の実施
例と同様に導電剤と結着剤とを混合して加圧成形し、真
空中で150℃の熱処理を施して正極を得た。この正極を
用いて第1図の電池構成に組立て、電流3mAで4.3Vまで
充電したものを本発明電池A3とする。尚、この時の充電
電気量は60mAhであった。
[Example 3] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of 1: 2, and heat-treated in air at 150 ° C for 20 hours to obtain 2θ = 22 °, 31.5 ° by X-ray diffraction with CuKα. Three
A lithium-containing manganese oxide having peaks near 7 °, 42 ° and 55 ° is obtained. Thereafter, similarly to the first embodiment, a conductive agent and a binder were mixed and molded under pressure, and subjected to a heat treatment at 150 ° C. in a vacuum to obtain a positive electrode. A battery A3 according to the present invention assembled using the positive electrode into the battery configuration shown in FIG. 1 and charged to 4.3 V with a current of 3 mA. The amount of electricity charged at this time was 60 mAh.

[比較例1] 前記実施例1と同じ構成、及び工程で組み立てられた
電池であって、組立て後の充電を行わないものを比較電
池B1とする。
[Comparative Example 1] A battery assembled in the same configuration and in the same process as in Example 1 described above, and which does not perform charging after assembly is referred to as Comparative Battery B1.

[比較例2] 前記実施例2と同じ構成、及び工程で組み立てられた
電池であって、組立て後の充電を行わないものを比較電
池B2とする。
[Comparative Example 2] A battery assembled in the same configuration and in the same process as in Example 2 but not charged after the assembly is referred to as Comparative Battery B2.

[比較例3] 正極に水酸化リチウムを加えず、二酸化マンガンのみ
を250℃で熱処理してこれを正極活物質とし、その他の
構成、及び工程を前記実施例1と同様にして組立てた電
池を、電流3mAで4.3Vまで充電することにより比較電池B
3を得た。尚、この時の充電電気量は0mAhであった。
Comparative Example 3 A battery assembled in the same manner as in Example 1 except that lithium hydroxide was not added to the positive electrode and only manganese dioxide was heat-treated at 250 ° C. to obtain a positive electrode active material, and other configurations and steps were the same as in Example 1 above. By charging to 4.3V with a current of 3mA, the comparative battery B
Got three. At this time, the amount of electricity charged was 0 mAh.

[比較例4] 上記比較例3と同様の構成、及び工程で組立て、組立
て後の充電を行わないで比較電池B4を得た。
Comparative Example 4 A comparative battery B4 was obtained without assembling and charging after assembling in the same configuration and process as in Comparative Example 3 described above.

[比較例5] 水酸化リチウムと、二酸化マンガンとをモル比1:2で
混合し、空気中において125℃で20時間熱処理した。こ
の後、加圧成形した正極の真空中の熱処理温度を125℃
とすることを除いては、先の実施例1と同様にして正
極、及び負極を形成して電池を組立て、電流3mAで4.3V
まで充電したものを比較電池B5とする。尚、この時の充
電電気量は30mAhであった。
Comparative Example 5 Lithium hydroxide and manganese dioxide were mixed at a molar ratio of 1: 2, and heat-treated at 125 ° C. in air for 20 hours. After that, the heat treatment temperature of the pressure-formed positive electrode in vacuum is 125 ° C.
A battery was assembled by forming a positive electrode and a negative electrode in the same manner as in Example 1 except that
The battery charged up to is referred to as a comparative battery B5. The amount of electricity charged at this time was 30 mAh.

第2図は本発明電池A1〜A3、比較電池B1〜B5の正極の
X線回折図を夫々示すものである。これら回折図のうち
A1、A2、A3、B3、B5はいずれも組み立て後の充電を施し
た電池である。この第2図に示されたX線回折図では全
ての電池に2θ=37゜の近傍にピークが見られる。しか
しながら2θ=38゜の近傍にピークが見られるのはA1〜
A3及びB5のみであり、その他の電池にはこのピークが見
られない。
FIG. 2 shows the X-ray diffraction patterns of the positive electrodes of the batteries A1 to A3 of the present invention and the comparative batteries B1 to B5, respectively. Of these diffraction diagrams
A1, A2, A3, B3, and B5 are all batteries that have been charged after assembly. In the X-ray diffraction diagram shown in FIG. 2, a peak is observed near 2θ = 37 ° in all the batteries. However, peaks near 2θ = 38 ° are seen from A1 to
Only A3 and B5, and other batteries do not show this peak.

尚、比較電池B1、B2を組立て後充電したものが本発明
電池A1、A2に対応するものである。
The batteries charged after assembling the comparative batteries B1 and B2 correspond to the batteries A1 and A2 of the present invention.

更に、二酸化マンガンのみを熱処理して正極活物質に
用いた比較電池B3は、電池組立後の充電時にこの正極を
充電することができないため、第2図のX線回折図にお
いて、比較電池B3とB4とは殆ど差がない。しかも両B3、
B4ともに2θ=37゜近傍のピークは存在するが、2θ=
38゜近傍のピークは存在しない。
Further, the comparative battery B3 using only the manganese dioxide as the positive electrode active material by heat treatment cannot charge the positive electrode at the time of charging after assembling the battery. Therefore, in the X-ray diffraction diagram of FIG. There is almost no difference from B4. Moreover, both B3,
B4 has a peak near 2θ = 37 °, but 2θ =
There is no peak near 38 ゜.

また、125℃でリチウム塩と二酸化マンガンとを焼成
した時には、未反応のリチウム塩と思われる白色の微粉
末が見られた。しかしこれを電気化学的に充電して作製
した比較電池B5の正極活物質のX線回折図には、リチウ
ム塩と思われるピークは見られなかったので、未反応リ
チウムは少量であると思われる。
In addition, when the lithium salt and manganese dioxide were calcined at 125 ° C., fine white powder, which was considered to be an unreacted lithium salt, was observed. However, in the X-ray diffraction pattern of the positive electrode active material of the comparative battery B5 produced by electrochemically charging the same, no peaks that seemed to be lithium salts were found, so it seems that unreacted lithium was in a small amount. .

上記本発明電池A1〜A3のように、二酸化マンガンとリ
チウム塩とを熱処理することによって得られる、リチウ
ムを含有するマンガン酸化物を充電したときの物質の結
晶構造については未確認ではあるが、第2図のCuKαに
よるX線回折図において、2θ=37゜、及び2θ=38゜
の近傍にあるピークを有するという特徴をもっているこ
とは明らかである。
As in the batteries A1 to A3 of the present invention, the crystal structure of a substance obtained by heat-treating manganese dioxide and a lithium salt when the lithium-containing manganese oxide is charged is not confirmed, but the second It is clear that the X-ray diffraction diagram by CuKα shown in the figure has peaks near 2θ = 37 ° and 2θ = 38 °.

しかもいずれのピークも半値幅が広く、特に37゜近傍
のピークのほうが高いために、38゜近傍のピークはちょ
うど37゜近傍のピークのショルダーのように見える。
In addition, since all the peaks have a wide half width, and particularly a peak near 37 ° is higher, a peak near 38 ° looks just like a shoulder of a peak near 37 °.

第3図は本発明電池A1〜A3、及び比較電池B1〜B5を3m
Aで2.0Vまで放電したときの放電特性曲線を示す。ここ
でリチウム含有マンガン酸化物を充電した正極を有する
本発明電池A1、A2及びA3は、リチウム含有マンガン酸化
物を充電せずに用いた比較電池B1、及びB2、或るいは二
酸化マンガンのみを正極とする電池B4や、この電池B4を
充電した電池B3に比べて、放電容量が大きく、又放電初
期の電圧が高いことが明らかである。
FIG. 3 shows the batteries A1 to A3 of the present invention and the comparative batteries B1 to B5 each having a length of 3 m.
3 shows a discharge characteristic curve when discharging is performed to 2.0 V at A. Here, batteries A1, A2, and A3 of the present invention having positive electrodes charged with lithium-containing manganese oxides are comparative batteries B1, and B2 using lithium-containing manganese oxides without charging, or positive electrodes of only manganese dioxide. It is apparent that the battery B4 has a larger discharge capacity and a higher voltage at the initial stage of discharge than the battery B3 charged with the battery B4.

また、150℃でリチウム塩と二酸化マンガンとを焼成
し、これを電気化学的に充電して作製した本発明電池A3
は、本発明電池A1及びA2と同程度の放電容量と放電電圧
を持つが、熱処理温度を125℃に変えた比較電池B5で
は、放電容量が小さく、これは熱処理温度が125℃と低
いために、正極中の水分除去が不十分なためと考えられ
る。
Further, the battery A3 of the present invention prepared by calcining a lithium salt and manganese dioxide at 150 ° C. and electrochemically charging the calcined lithium salt and manganese dioxide.
Has the same discharge capacity and discharge voltage as the batteries A1 and A2 of the present invention, but the comparative battery B5 in which the heat treatment temperature is changed to 125 ° C. has a small discharge capacity, which is because the heat treatment temperature is as low as 125 ° C. It is considered that the water removal from the positive electrode was insufficient.

次に第4図は、上述の実施例とは別に、比表面積の異
なるリチウム含有マンガン酸化物を正極活物質として先
の実施例1と同様の電池を組立て、その後電流3mAで4.3
Vまで充電したときの電池自身のふくれ量をデータとし
て取ったものを示す。
Next, FIG. 4 shows that a battery similar to that of Example 1 was assembled using lithium-containing manganese oxide having a different specific surface area as a positive electrode active material, and then 4.3 mA at a current of 3 mA.
The figure shows the blister amount of the battery itself when charged to V as data.

この図から明らかなように比表面積が30m2/gより大き
いリチウム含有マンガン酸化物を正極活物質に用いた電
池を充電したときに、電池のふくれは急激に大きくな
る。これはリチウム含有マンガン酸化物の比表面積が大
きいと、電解液との反応性が高くなるため、充電時に電
解液分解されることが原因であると考えられる。
As is clear from this figure, when a battery using a lithium-containing manganese oxide having a specific surface area of more than 30 m 2 / g as a positive electrode active material is charged, the blister of the battery rapidly increases. This is considered to be caused by the fact that when the specific surface area of the lithium-containing manganese oxide is large, the reactivity with the electrolytic solution increases, so that the electrolytic solution is decomposed during charging.

尚、上記のCuKαによるX線回折図において、2θ=3
7゜及び38゜近傍にピークを有するリチウム含有マンガ
ン酸化物を得る方法としては、本実施例のみに限定され
るものではなく、使用されるリチウム塩として、硝酸リ
チウムやリン酸リチウムを適用できると共に、リチウム
塩と二酸化マンガンとの混合比率はLiとMnのモル比で1
0:90〜70:30の範囲が望ましい。
In the above X-ray diffraction diagram by CuKα, 2θ = 3
The method for obtaining a lithium-containing manganese oxide having a peak near 7 ° and 38 ° is not limited to only this example, and as a lithium salt used, lithium nitrate or lithium phosphate can be applied. , The mixing ratio of lithium salt and manganese dioxide is 1 by the molar ratio of Li and Mn.
The range of 0:90 to 70:30 is desirable.

又、熱処理温度については150℃未満ではリチウム塩
と二酸化マンガンとの焼成反応が充分に進行しないこ
と、及び430℃以上では二酸化マンガンが分解してしま
うことから150〜430℃が望ましい。しかもここで得られ
るリチウム含有マンガン酸化物の比表面積は、電解液の
分解を抑制するために、30m2/g以下が望ましい。
If the heat treatment temperature is lower than 150 ° C., the firing reaction between the lithium salt and manganese dioxide does not proceed sufficiently, and if the heat treatment temperature is higher than 430 ° C., manganese dioxide is decomposed. Moreover, the specific surface area of the lithium-containing manganese oxide obtained here is desirably 30 m 2 / g or less in order to suppress the decomposition of the electrolytic solution.

更に、リチウム塩と二酸化マンガンとの熱処理によっ
て得られるリチウム含有マンガン酸化物を充電する電圧
も任意の値を選ぶことが可能である。
Further, the voltage for charging the lithium-containing manganese oxide obtained by the heat treatment of the lithium salt and manganese dioxide can also be selected at an arbitrary value.

尚、本発明のリチウム含有マンガン酸化物は、リチウ
ム塩と二酸化マンガンを熱処理して得られるリチウム含
有マンガン酸化物を充電することによって得られること
から分かるように、充放電に対する可逆性があり、実施
例で示した非水系一次電池の正極活物質としての適用以
外に非水系二次電池の正極活物質としての汎用性が期待
できる。
The lithium-containing manganese oxide of the present invention has reversibility to charge and discharge, as can be seen from the fact that it is obtained by charging a lithium-containing manganese oxide obtained by heat-treating a lithium salt and manganese dioxide. In addition to the application as the positive electrode active material of the nonaqueous primary battery shown in the examples, versatility as a positive electrode active material of a nonaqueous secondary battery can be expected.

[実施例4] 水酸化リチウムと二酸化マンガンをモル比1:2で混合
し、空気中において250℃で20時間熱処理することによ
り、CuKαによるX線回折で2θ=22゜,31.5゜,37゜,42
゜,55゜付近にピークを有するリチウム含有マンガン酸
化物を得、ここに、このマンガン酸化物よりも充電時の
電極電位が貴なるLixCoO2(0〈x≦1)としてのLiCoO
2を10wt%添加し、正極活物質とする。
[Example 4] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of 1: 2, and heat-treated at 250 ° C for 20 hours in the air to obtain 2θ = 22 °, 31.5 °, 37 ° by X-ray diffraction using CuKα. , 42
Lithium-containing manganese oxide having a peak near {, 55 } is obtained, and LiCoO as Li x CoO 2 (0 <x ≦ 1) where the electrode potential during charging is more noble than this manganese oxide
2 is added in an amount of 10 wt% to form a positive electrode active material.

これに導電剤としてのアセチレンブラック及び結着剤
としてのフッ素樹脂を重量比85:10:5の比率で混合し、
正極合剤とし、正極合剤を2t/cm2で加圧成形した後、真
空中で250℃で熱処理して正極とする。
Acetylene black as a conductive agent and a fluororesin as a binder were mixed with this in a weight ratio of 85: 10: 5,
After forming the positive electrode mixture under pressure at 2 t / cm 2 , heat treatment is performed at 250 ° C. in vacuum to obtain a positive electrode mixture.

また、負極は所定厚みのリチウム板を直径20mmに打ち
抜いたものである。
The negative electrode is obtained by punching a lithium plate having a predetermined thickness to a diameter of 20 mm.

この電池を電流3mAで4.3Vまで充電したものを本発明
電池A4とする。
A battery obtained by charging this battery to 4.3 V with a current of 3 mA is referred to as battery A4 of the present invention.

[実施例5] 炭酸リチウムと二酸化マンガンをモル比で1:4に混合
し、空気中において850℃で20時間熱処理することによ
って前記リチウム含有マンガン酸化物よりも充電時の電
極電位が貴なるスピネル構造のLixMn2O4(0〈x≦1)
としてのスピネル型構造LiMn2O4を得る。
[Example 5] Spinel in which lithium carbonate and manganese dioxide are mixed at a molar ratio of 1: 4, and heat-treated at 850 ° C for 20 hours in air, whereby the electrode potential at the time of charging is higher than that of the lithium-containing manganese oxide. Li x Mn 2 O 4 of structure (0 <x ≦ 1)
To obtain LiMn 2 O 4 having a spinel structure.

そして上記のようにして得られたLiMn2O4を前記実施
例4のLiCoO2の代わりに添加することを除き実施例4と
同様の本発明電池A5を作製した。
A battery A5 of the present invention was produced in the same manner as in Example 4, except that LiMn 2 O 4 obtained as described above was added instead of LiCoO 2 in Example 4.

[比較例6] LiCoO2を添加しないことを除く他は実施例4と同様の
比較電池B6(先の実施例1の本発明電池A1と同じ)を作
製した。
[Comparative Example 6] A comparative battery B6 (same as the battery A1 of the present invention in Example 1 above) was prepared in the same manner as in Example 4 except that LiCoO 2 was not added.

[比較例7] LiCoO2のみを正極活物質とすることを除く他は実施例
4と同様の比較電池B7を作製した。
Comparative Example 7 A comparative battery B7 was produced in the same manner as in Example 4 except that only LiCoO 2 was used as the positive electrode active material.

[比較例8] スピネル型構造のLiMn2O4のみを正極活物質とするこ
とを除く他は実施例4と同様の比較電池B8を作製した。
Comparative Example 8 A comparative battery B8 was produced in the same manner as in Example 4 except that only LiMn 2 O 4 having a spinel structure was used as the positive electrode active material.

第5図に本発明電池A4、A5及び比較電池B6〜B8を電流
3mAで2.5Vまで放電し、電流3mAで4.3Vまで充電したとき
の放電容量のサイクル数に対する変化を示す。
FIG. 5 shows the currents of batteries A4 and A5 of the present invention and comparative batteries B6 to B8.
The graph shows changes in the discharge capacity with respect to the number of cycles when discharging to 2.5 V at 3 mA and charging to 4.3 V at 3 mA.

本発明電池A4、A5は夫々64サイクル、61サイクルまで
使用し得るのに対し、比較電池B7では55サイクル、比較
電池B8では50サイクル減少し、特に比較電池B6では23サ
イクルと極端に低くなっていることが分かる。さらに前
記本発明電極A4、A5と比較電池B6とを比較することによ
りA4、A5の方が前記比較電池B6よりサイクル数の大きい
ことが明らかである。このように比較電池B7、B8は放電
容量が小さく、又比較電池B6は充放電サイクルの劣化が
早い。また充放電サイクル終了後の電池を分解したとこ
ろ比較電池B6は溶解したマンガンが負極であるリチウム
上に析出していることが観察されたが他の本発明電池及
び比較電池には見られなかった。
The batteries A4 and A5 of the present invention can be used up to 64 cycles and 61 cycles, respectively, whereas the comparative battery B7 has 55 cycles, the comparative battery B8 has reduced by 50 cycles, and the comparative battery B6 has an extremely low 23 cycles. You can see that there is. Further, by comparing the electrodes A4 and A5 of the present invention with the comparative battery B6, it is clear that A4 and A5 have a larger number of cycles than the comparative battery B6. As described above, the comparative batteries B7 and B8 have a small discharge capacity, and the comparative battery B6 has a rapid deterioration of the charge / discharge cycle. In addition, when the battery after the completion of the charge / discharge cycle was disassembled, it was observed that the dissolved manganese was precipitated on lithium as the negative electrode in the comparative battery B6, but was not observed in the other batteries of the present invention and the comparative battery. .

さらに、第5図によるとLixCoO2(0〈x≦1)やLix
Mn2O4(0〈x≦1)の放電容量は2θ=37゜,38゜にピ
ークを有するリチウム含有二酸化マンガン酸化物だけの
場合よりも劣るが、前者の放電時の電位は高く、又充電
時にはリチウムに対して3.8〜4.5V程度の電極電位を示
し、且つ4.3V程度ではコバルトやマンガンの溶解は見ら
れない。このためLixCoO2やLixMn2O4を主正極活物質で
ある前記リチウム含有二酸化マンガンに添加することに
よって過充電時マンガンの溶解よりもLixCoO2、LixMn2O
4の充電反応が優先的に起こり、マンガンの溶解が抑制
できる。又、LixCoO2、LixMn2O4は放電反応時にも利用
されるため、活物質全体の放電容量もそれ程低下しな
い。
Further, according to FIG. 5, Li x CoO 2 (0 <x ≦ 1) and Li x
Although the discharge capacity of Mn 2 O 4 (0 <x ≦ 1) is inferior to the case of only the lithium-containing manganese dioxide having a peak at 2θ = 37 °, 38 °, the former has a higher potential at the time of discharge, and At the time of charging, the electrode potential is about 3.8 to 4.5 V with respect to lithium, and at about 4.3 V, no dissolution of cobalt or manganese is observed. Therefore, by adding Li x CoO 2 or Li x Mn 2 O 4 to the lithium-containing manganese dioxide as the main positive electrode active material, Li x CoO 2 , Li x Mn 2 O rather than dissolution of manganese during overcharge
The charging reaction of 4 occurs preferentially, and dissolution of manganese can be suppressed. Further, since Li x CoO 2 and Li x Mn 2 O 4 are also used during the discharge reaction, the discharge capacity of the entire active material does not decrease so much.

(ト)発明の効果 本発明は上述した如く、リチウム、又はリチウムを貯
蔵することのできる材料を負極活物質とする非水電池
で、二酸化マンガンとリチウム塩との混合物を、150〜4
30℃の温度にて熱処理し、前記リチウム含有マンガン酸
化物を得るとともに、このリチウム含有マンガン酸化物
を電気化学的に充電して正極活物質としたことによっ
て、電池の放電容量、並びに放電電圧を向上させること
ができる。
(G) Effect of the Invention As described above, the present invention relates to a non-aqueous battery using lithium or a material capable of storing lithium as a negative electrode active material, wherein a mixture of manganese dioxide and a lithium salt is used in an amount of 150 to 4%.
Heat treatment at a temperature of 30 ° C. to obtain the lithium-containing manganese oxide, and by electrochemically charging the lithium-containing manganese oxide to form a positive electrode active material, the discharge capacity and discharge voltage of the battery are reduced. Can be improved.

さらに、前記正極活物質を、CuKαによるX線回折図
の2θ=37゜近傍と、2θ=38゜近傍との両方にピーク
を有するものとし、上記リチウム含有二酸化マンガンに
これよりも電極電位が貴なるLiCoO2、LiMn2O4を添加す
れば充放電サイクル特性が向上する。
Further, it is assumed that the positive electrode active material has peaks in both the vicinity of 2θ = 37 ° and the vicinity of 2θ = 38 ° in the X-ray diffraction diagram by CuKα, and the electrode potential of the lithium-containing manganese dioxide is higher than this. If LiCoO 2 and LiMn 2 O 4 are added, the charge / discharge cycle characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の半断面図、第2図は本発明電池及
び比較電池の正極のX線回折図、第3図は同じく本発明
電池及び比較電池の放電特性図、第4図は種々の比表面
積を有するリチウム含有マンガン酸化物を正極活物質と
する扁平型電池を充電したときの電池のふくれとの関係
を示す図、第5図は本発明電池及び比較電池の充放電サ
イクル特性を示す図である。 1……正極缶、2……負極缶、3……絶縁パッキング、
4……正極、5……正極集電体、6……負極、7……負
極集電体、8……セパレータ、 A1〜A5……本発明電池、 B1〜B8……比較電池。
1 is a half sectional view of the battery of the present invention, FIG. 2 is an X-ray diffraction diagram of the positive electrode of the battery of the present invention and the comparative battery, FIG. 3 is a discharge characteristic diagram of the battery of the present invention and the comparative battery, and FIG. FIG. 5 is a graph showing the relationship between battery flatness when a flat battery using lithium-containing manganese oxide having various specific surface areas as a positive electrode active material is charged, and FIG. 5 shows charge / discharge cycle characteristics of the battery of the present invention and a comparative battery FIG. 1 ... Positive electrode can, 2 ... Negative electrode can, 3 ... Insulating packing,
4. Positive electrode, 5 ... Positive electrode current collector, 6 ... Negative electrode, 7 ... Negative electrode current collector, 8 ... Separator, A1-A5 ... Battery of the present invention, B1-B8 ... Comparative battery.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−114064(JP,A) 特開 平1−235158(JP,A) 特開 平1−272051(JP,A) 特開 昭61−17424(JP,A) 特開 昭62−145652(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-114064 (JP, A) JP-A-1-235158 (JP, A) JP-A-1-272051 (JP, A) JP-A-61-164 17424 (JP, A) JP-A-62-145652 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/36-4/62 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム、又はリチウムを貯蔵することの
できる材料を負極活物質とし、リチウムを含有するマン
ガン酸化物を正極活物質とする非水系電池において、 二酸化マンガンとリチウム塩との混合物を、150〜430℃
の温度にて熱処理し、前記リチウム含有マンガン酸化物
を得るとともに、このリチウム含有マンガン酸化物を電
気化学的に充電して正極活物質としたことを特徴とする
非水系電池。
1. A non-aqueous battery using lithium or a material capable of storing lithium as a negative electrode active material and a lithium-containing manganese oxide as a positive electrode active material, wherein a mixture of manganese dioxide and a lithium salt is 150-430 ° C
A non-aqueous battery, wherein the lithium-containing manganese oxide is obtained by heat-treating at a temperature of, and the lithium-containing manganese oxide is electrochemically charged to obtain a positive electrode active material.
【請求項2】前記正極活物質は、CuKαによるX線回折
図の2θ=37゜近傍と、2θ=38゜近傍との両方にピー
クを有することを特徴とする上記請求項(1)記載の非
水系電池。
2. The positive electrode active material according to claim 1, wherein the positive electrode active material has peaks both in the vicinity of 2θ = 37 ° and in the vicinity of 2θ = 38 ° in the X-ray diffraction pattern by CuKα. Non-aqueous battery.
【請求項3】比表面積30m2/g以下の前記リチウム含有マ
ンガン酸化物を電気化学的に充電することにより、前記
正極活物質としたことを特徴とする上記請求項(2)記
載の非水系電池。
3. The non-aqueous system according to claim 2, wherein the positive electrode active material is obtained by electrochemically charging the lithium-containing manganese oxide having a specific surface area of 30 m 2 / g or less. battery.
【請求項4】前記正極活物質を主正極活物質とし、この
主正極活物質に対してこれよりも充電時の電極電位が貴
なる物質を副正極活物質として添加することを特徴とす
る上記請求項(1)記載の非水系電池。
4. The method according to claim 1, wherein the positive electrode active material is used as a main positive electrode active material, and a substance having a higher electrode potential during charging than the main positive electrode active material is added as an auxiliary positive electrode active material. The non-aqueous battery according to claim 1.
【請求項5】前記副正極活物質はLixCoO2(0〈x≦
1)、或るいはスピネル型構造のLixMn2O4(0〈x≦
1)である上記請求項(4)記載の非水系電池。
5. The method according to claim 1, wherein the auxiliary cathode active material is Li x CoO 2 (0 <x ≦
1) or Li x Mn 2 O 4 having a spinel structure (0 <x ≦
The non-aqueous battery according to claim 4, which is 1).
JP02334964A 1990-05-17 1990-11-29 Non-aqueous battery Expired - Fee Related JP3133321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02334964A JP3133321B2 (en) 1990-05-17 1990-11-29 Non-aqueous battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-127988 1990-05-17
JP12798890 1990-05-17
JP2-231691 1990-08-31
JP23169190 1990-08-31
JP02334964A JP3133321B2 (en) 1990-05-17 1990-11-29 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH04174971A JPH04174971A (en) 1992-06-23
JP3133321B2 true JP3133321B2 (en) 2001-02-05

Family

ID=27315659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02334964A Expired - Fee Related JP3133321B2 (en) 1990-05-17 1990-11-29 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3133321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686852B2 (en) * 2000-12-04 2011-05-25 ソニー株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPH04174971A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP2003242978A (en) Non-aqueous secondary battery
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP2001266876A (en) Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
JPH09147863A (en) Nonaqueous electrolyte battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH1154120A (en) Lithium ion secondary battery
JP2600214B2 (en) Non-aqueous electrolyte secondary battery
JP3133321B2 (en) Non-aqueous battery
JPH10144291A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06243869A (en) Nonaqueous secondary battery
JP2003346799A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees