JP2815862B2 - Manufacturing method of positive electrode for non-aqueous secondary battery - Google Patents

Manufacturing method of positive electrode for non-aqueous secondary battery

Info

Publication number
JP2815862B2
JP2815862B2 JP63101131A JP10113188A JP2815862B2 JP 2815862 B2 JP2815862 B2 JP 2815862B2 JP 63101131 A JP63101131 A JP 63101131A JP 10113188 A JP10113188 A JP 10113188A JP 2815862 B2 JP2815862 B2 JP 2815862B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
melting point
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63101131A
Other languages
Japanese (ja)
Other versions
JPH01272051A (en
Inventor
修弘 古川
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63101131A priority Critical patent/JP2815862B2/en
Publication of JPH01272051A publication Critical patent/JPH01272051A/en
Application granted granted Critical
Publication of JP2815862B2 publication Critical patent/JP2815862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質と
する非水系二次電池に係り、特に正極の製造法に関する
ものである。
The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and more particularly to a method for producing a positive electrode.

ロ、従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化物な
どが提案されており、一部実用化されているものもあ
る。
B. Prior art Molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide, and the like have been proposed as the positive electrode active material of this type of secondary battery, and some of them have been put to practical use.

一方、非水系一次電池の正極活物質としては二酸化マ
ンガン、フッ化炭素が代表的なものとして知られてお
り、且これらは既に実用化されている。
On the other hand, manganese dioxide and fluorocarbon are known as typical examples of a positive electrode active material of a non-aqueous primary battery, and these have already been put to practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的
に豊富であり且安価であるという利点を有するものであ
る。
Here, in particular, manganese dioxide has the advantage of being excellent in preservability, abundant in resources, and inexpensive.

上記せる背景に鑑みて、非水系二次電池の正極活物質
として二酸化マンガンを用いることが有益であると考え
られるが、二酸化マンガンは可逆性に難があり充放電特
性に問題があった。
In view of the background described above, it is considered to be beneficial to use manganese dioxide as a positive electrode active material of a non-aqueous secondary battery, but manganese dioxide has difficulty in reversibility and has a problem in charge / discharge characteristics.

ハ、発明が解決しようとする課題 本発明は可逆性に優れたマンガン酸化物を正極活物質
に用いて非水系二次電池の充放電サイクル特性を向上さ
せようとするものである。
C. Problems to be Solved by the Invention The present invention is intended to improve charge / discharge cycle characteristics of a non-aqueous secondary battery by using manganese oxide having excellent reversibility as a positive electrode active material.

ニ、課題を解決するための手段 本発明は、430℃よりも低い融点を有するリチウム塩
と、二酸化マンガン(MnO2)の混合物をリチウム塩の融
点以上で且つ430℃以下の温度で焼成したものを正極活
物質とする事を要旨とする非水系二次電池用正極の製造
法にある。
D. Means for Solving the Problems The present invention relates to a mixture of a lithium salt having a melting point lower than 430 ° C. and manganese dioxide (MnO 2 ) fired at a temperature not lower than the melting point of the lithium salt and not higher than 430 ° C. The present invention relates to a method for producing a positive electrode for a non-aqueous secondary battery, which comprises using as a positive electrode active material.

ホ、作用 リチウム塩とMnO2の混合物を焼成するとLi2MnO3を含
有したMnO2或いはCuKα線において2θ=31.5゜に新し
いピークを有しγ−βMnO2とは異なる結晶構造のマンガ
ン酸化物が生成する。
E. Action When a mixture of a lithium salt and MnO 2 is fired, a manganese oxide having a new peak at 2θ = 31.5 ° in MnO 2 or CuKα ray containing Li 2 MnO 3 and having a different crystal structure from γ-βMnO 2 is obtained. Generate.

上記二種のマンガン酸化物はγ−βMnO2に比して可逆
性が優れるものである。
The above two types of manganese oxides are excellent in reversibility as compared with γ-βMnO 2 .

而して、これらのマンガン酸化物を作成するに際し
て、リチウム塩の融点以下の温度で焼成した場合には固
相−固相間の反応となる。ここで、MnO2は粒子内に細孔
が多量に存在しており、固相−固相間の反応ではその細
孔中にまで反応が進まず、反応がMnO2粒子の表面に留ま
り内部まで改質されない。このため深い深度の充放電を
行った場合には、内部の結晶構造が崩壊し、早期に劣化
するという欠点がある。
Thus, when producing these manganese oxides, firing at a temperature lower than the melting point of the lithium salt results in a solid-solid reaction. Here, MnO 2 has a large amount of pores in the particles, and in the solid-solid reaction, the reaction does not proceed into the pores, the reaction stays on the surface of the MnO 2 particles and reaches the inside. Not modified. For this reason, when charging / discharging at a deep depth is performed, there is a disadvantage that the internal crystal structure is collapsed and deteriorates early.

これに対して、リチウム塩の融点以上で焼成した場合
には、液相−固相間の反応となり、MnO2の細孔中にまで
反応が進行する。このため充放電サイクル特性において
深い深度の充放電においても優れた特性が得られること
になる。
On the other hand, when calcination is performed at a temperature equal to or higher than the melting point of the lithium salt, a reaction between the liquid phase and the solid phase occurs, and the reaction proceeds to the pores of MnO 2 . Therefore, excellent charge / discharge cycle characteristics can be obtained even in charge / discharge at a deep depth.

尚、リチウム塩とMnO2の混合物を430℃より高温で焼
成した場合には、Mn2O3が生成し、電池特性が低下する
事から、用いるリチウム塩は融点が430℃よりも低い事
が必要である。斯る点から、好ましいリチウム塩として
は硝酸リチウム(融点:261℃)、過塩素酸リチウム(融
点:236℃)、テトラヒドロホウ酸リチウム(融点:275
℃)或いはリチウムアミド(融点:390℃)が挙げられ
る。
When a mixture of lithium salt and MnO 2 is fired at a temperature higher than 430 ° C., Mn 2 O 3 is generated and battery characteristics are deteriorated, and thus the lithium salt used may have a melting point lower than 430 ° C. is necessary. From this point, preferred lithium salts include lithium nitrate (melting point: 261 ° C.), lithium perchlorate (melting point: 236 ° C.), and lithium tetrahydroborate (melting point: 275 ° C.).
° C) or lithium amide (melting point: 390 ° C).

へ、実施例 以下本発明の実施例について詳述する。Examples of the present invention will be described in detail below.

平均粒径30μm以下の化学二酸化マンガン80gと硝酸
リチウム(融点:261℃)27g(Mn:Li=7:3のモル比)を
混合した後、空気中において375℃で20時間焼成する。
After mixing 80 g of chemical manganese dioxide having an average particle diameter of 30 μm or less and 27 g of lithium nitrate (melting point: 261 ° C.) (Mn: Li = 7: 3 molar ratio), the mixture is fired in air at 375 ° C. for 20 hours.

このようにして得られた活物質粉末と、導電剤として
のアセチレンブラック及び結着剤としてのフッ素樹脂粉
末を重量比で90:6:4の比率で混合して正極合剤とし、こ
の正極合剤を2トン/cm2で直径20mmに加圧成型したのち
250℃で熱処理して正極とする。
The active material powder thus obtained, acetylene black as a conductive agent and fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4 to form a positive electrode mixture. After press molding the agent to a diameter of 20 mm at 2 ton / cm 2
Heat treated at 250 ° C to form a positive electrode.

負極は所定厚みのリチウム板を直径20mmに打ち抜いた
ものである。
The negative electrode is obtained by punching a lithium plate having a predetermined thickness to a diameter of 20 mm.

第1図は上記せる正負極を用いて組立てた扁平形非水
電解液二次電池の半断面図を示し、(1)(2)はステ
ンレス製の正負極缶であってこれらはポリプロピレン製
の絶縁パッキング(3)により隔離されている。(4)
は本発明の要旨とする正極であって、正極缶(1)の内
底面に固着せる正極集電体(5)に圧接されている。
(6)は負極であって、負極缶(2)の内底面に固着せ
る負極集電体(7)に圧着されている。(8)はポリプ
ロピレン製微孔性薄膜よりなるセパレータであり、又電
解液としてプロピレンカーボネートとジメトキシエタン
との混合溶媒に過塩素酸リチウムを1モル/溶解した
ものを用いた。電池寸法は直径24.0mm、厚み3.0mmであ
った。この本発明電池を(A)とする。
FIG. 1 shows a half cross-sectional view of a flat nonaqueous electrolyte secondary battery assembled using the above-mentioned positive and negative electrodes. Insulated by insulating packing (3). (4)
A positive electrode is a gist of the present invention, and is pressed against a positive electrode current collector (5) fixed to the inner bottom surface of the positive electrode can (1).
Reference numeral (6) denotes a negative electrode, which is crimped to a negative electrode current collector (7) fixed to the inner bottom surface of the negative electrode can (2). (8) is a separator made of a polypropylene microporous thin film, and used as an electrolytic solution was 1 mol / dissolved lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane. The battery dimensions were 24.0 mm in diameter and 3.0 mm in thickness. This battery of the present invention is referred to as (A).

比較例1 実施例と同じMnO2 80gと水酸化リチウム(融点:445
℃)10g(Mn:Li=7:3のモル比)を混合した後、375℃で
20時間焼成したものを正極活物質とする事を除いて実施
例と同様の比較電池(B1)を作成した。
Comparative Example 1 80 g of MnO 2 and lithium hydroxide (melting point: 445)
℃) after mixing 10g (Mn: Li = 7: 3 molar ratio)
A comparative battery (B1) was produced in the same manner as in the example, except that the material fired for 20 hours was used as the positive electrode active material.

比較例2 実施例と同様の重量比でMnO2と硝酸リチウム(融点:2
61℃)を混合した後230℃で焼成したものを正極活物質
とする事を除いて実施例と同様の比較電池(B2)を作成
した。
Comparative Example 2 MnO 2 and lithium nitrate (melting point: 2
(61 ° C.) and then baked at 230 ° C. to produce a comparative battery (B2) similar to that of the example except that the positive electrode active material was used.

比較例3 実施例と同じMnO2 80gと水酸化リチウム(融点:445
℃)10g(Mn:Li=7:3のモル比)を混合した後、230℃で
焼成したものを正極活物質とする事を除いて実施例と同
様の比較電池(B3)を作成した。
Comparative Example 3 80 g of MnO 2 and lithium hydroxide (melting point: 445)
C.) 10 g (Mn: Li = 7: 3 molar ratio) was mixed, and then baked at 230 ° C. to produce a comparative battery (B3) similar to the example except that the positive electrode active material was used.

比較例4 実施例と同じMnO2を375℃で20時間焼成したものを正
極活物質とする事を除いて実施例と同様の比較電池(B
4)を作成した。
Comparative Example 4 A comparative battery (B) similar to the example except that the same MnO 2 as in the example was calcined at 375 ° C. for 20 hours to form a positive electrode active material.
4) created.

第2図はこれら電池の充放電サイクル特性図を示す。
尚、充放電条件は電流3mAで8時間放電し、電流3mAで充
電し充電終止電圧4、0Vとした。
FIG. 2 shows a charge / discharge cycle characteristic diagram of these batteries.
The charge and discharge conditions were as follows: discharge at a current of 3 mA for 8 hours; charge at a current of 3 mA;

第2図より、本発明電池(A)は比較電池(B1)、
(B2)、(B3)、(B4)に比べてサイクル特性が向上し
ているのがわかる。
From FIG. 2, the battery of the present invention (A) is a comparative battery (B1),
It can be seen that the cycle characteristics are improved as compared with (B2), (B3) and (B4).

リチウム塩の融点より高温で焼成したものを活物質と
した電池(B1)、(B2)、(B3)はγ−βMnO2を活物質
とした電池(B4)よりは特性が向上しているが改質が粒
子表面のみであり電池劣化が早い。これに対して本発明
電池(A)は、リチウム塩とMnO2の反応がMnO2細孔中に
まで広がっているため深い充放電深度でのサイクル特性
が向上している。また(B1)(B2)(B3)の比較から、
LiNO3を用いた場合でも融点以上で焼成する事が必要で
ある事がわかる。
Batteries (B1), (B2), and (B3) using the active material fired at a temperature higher than the melting point of the lithium salt have improved characteristics compared to the battery (B4) using γ-βMnO 2 as the active material. The modification is only on the particle surface, and the battery deteriorates quickly. On the other hand, in the battery (A) of the present invention, since the reaction between the lithium salt and MnO 2 spreads into the MnO 2 pores, the cycle characteristics at a deep charge / discharge depth are improved. Also, from the comparison of (B1) (B2) (B3),
It can be seen that even when LiNO 3 is used, it is necessary to fire at a temperature higher than the melting point.

尚、本実施例のように430℃よりも低い融点を有する
リチウム塩とMnO2の混合物をリチウム塩の融点以上430
℃以下の温度で焼成したものを正極活物質として用いる
場合、MnO2とリチウム塩の混合比率はモル比でMn≒Li=
90:10〜30:70の範囲が好ましい。
Note that, as in this example, a mixture of a lithium salt having a melting point lower than 430 ° C. and MnO 2
When the material fired at a temperature of not more than ℃ is used as the positive electrode active material, the mixing ratio of MnO 2 and lithium salt is Mn ≒ Li =
A range from 90:10 to 30:70 is preferred.

本実施例では430℃よりも低い融点を有するリチウム
塩として硝酸リチウムを例に挙げたが、この他にLiClO4
(融点:236℃)、Li〔BH4〕(融点275℃)或いはLiNH2
(融点:390℃)等を用いても同様の効果が得られる。
In this example, lithium nitrate was used as an example of a lithium salt having a melting point lower than 430 ° C., but LiClO 4
(Melting point: 236 ° C), Li [BH 4 ] (melting point: 275 ° C) or LiNH 2
(Melting point: 390 ° C.), the same effect can be obtained.

ト、発明の効果 上述した如く、リチウム或いはリチウム合金を活物質
とする負極を有する非水系二次電池において、正極活物
質として430℃よりも低い融点を有するリチウム塩とMnO
2の混合物を、リチウム塩の融点以上で且つ430℃以下の
温度で焼成したものを用いる事により充放電サイクル特
性を改善させる事ができるものであり、この種電池の実
用化に資するところ極めて大である。
As described above, in a non-aqueous secondary battery having a negative electrode using lithium or a lithium alloy as an active material, a lithium salt having a melting point lower than 430 ° C. and MnO
The charge / discharge cycle characteristics can be improved by using a mixture obtained by calcining the mixture of No. 2 at a temperature not lower than the melting point of the lithium salt and not higher than 430 ° C., which is extremely large in contributing to the practical use of this type of battery. It is.

尚、本発明を説明するに際して、非水電解液二次電池
を例にとり説明したが、固体電解質二次電池にも適用す
ることができる。
In the description of the present invention, a non-aqueous electrolyte secondary battery has been described as an example, but the present invention can also be applied to a solid electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明法により得た正極を用いた電池の半断面
図、第2図は電池の充放電サイクル特性図である。 (1)……正極缶、(2)……負極缶、(3)……絶縁
パッキング、(4)……正極、(6)……負極、(8)
……セパレータ、(A)……本発明電池、(B1)(B2)
(B3)(B4)……比較電池。
FIG. 1 is a half sectional view of a battery using a positive electrode obtained by the method of the present invention, and FIG. 2 is a charge / discharge cycle characteristic diagram of the battery. (1) Positive electrode can, (2) Negative electrode can, (3) Insulating packing, (4) Positive electrode, (6) Negative electrode, (8)
... Separator, (A) ... Battery of the present invention, (B1) (B2)
(B3) (B4) ...... Comparative battery.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/50 H01M 4/58 H01M 4/02 H01M 10/40Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/50 H01M 4/58 H01M 4/02 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】融点が430℃以下のリチウム塩と、二酸化
マンガンとを混合し、この混合物を前記リチウム塩の融
点以上で且つ430℃以下の温度で焼成して得たマンガン
酸化物を活物質として用いることを特徴とする非水系二
次電池用正極の製造法。
1. A manganese oxide obtained by mixing a lithium salt having a melting point of 430 ° C. or less and manganese dioxide and firing the mixture at a temperature of not less than the melting point of the lithium salt and 430 ° C. or less. A method for producing a positive electrode for a non-aqueous secondary battery, wherein the method is used as a positive electrode.
【請求項2】リチウム塩が硝酸リチウム、過塩素酸リチ
ウム、テトラヒドロホウ酸リチウム或いはリチウムアミ
ドである請求項記載の非水系二次電池用正極の製造
法。
2. The method for producing a positive electrode for a non-aqueous secondary battery according to claim 1, wherein the lithium salt is lithium nitrate, lithium perchlorate, lithium tetrahydroborate or lithium amide.
JP63101131A 1988-04-22 1988-04-22 Manufacturing method of positive electrode for non-aqueous secondary battery Expired - Fee Related JP2815862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101131A JP2815862B2 (en) 1988-04-22 1988-04-22 Manufacturing method of positive electrode for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101131A JP2815862B2 (en) 1988-04-22 1988-04-22 Manufacturing method of positive electrode for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH01272051A JPH01272051A (en) 1989-10-31
JP2815862B2 true JP2815862B2 (en) 1998-10-27

Family

ID=14292523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101131A Expired - Fee Related JP2815862B2 (en) 1988-04-22 1988-04-22 Manufacturing method of positive electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2815862B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897217B2 (en) * 1988-07-27 1999-05-31 ソニー株式会社 Organic electrolyte secondary battery
US6190800B1 (en) 1998-05-11 2001-02-20 The Gillette Company Lithiated manganese dioxide
JP5452850B2 (en) * 2007-07-13 2014-03-26 チェイル インダストリーズ インコーポレイテッド Surface protection sheet for optical members
JP5769353B2 (en) * 2007-07-13 2015-08-26 チェイル インダストリーズ インコーポレイテッド Adhesive composition and optical member
JP5552685B2 (en) * 2010-10-07 2014-07-16 株式会社豊田自動織機 Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258940A (en) * 1985-05-10 1986-11-17 Yanmar Diesel Engine Co Ltd Electronic controller for engine welder

Also Published As

Publication number Publication date
JPH01272051A (en) 1989-10-31

Similar Documents

Publication Publication Date Title
JP2578646B2 (en) Non-aqueous secondary battery
JP3244314B2 (en) Non-aqueous battery
JPH0746608B2 (en) Non-aqueous secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP2815862B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPH07114125B2 (en) Non-aqueous secondary battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP2627318B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JP2957589B2 (en) Non-aqueous secondary battery
JP2627304B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPH05101827A (en) Non-aqueous secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JPH0355770A (en) Lithium secondary battery
JPH0139191B2 (en)
JP2698180B2 (en) Non-aqueous secondary battery
JP3021478B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees