JP2639934B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2639934B2
JP2639934B2 JP62145683A JP14568387A JP2639934B2 JP 2639934 B2 JP2639934 B2 JP 2639934B2 JP 62145683 A JP62145683 A JP 62145683A JP 14568387 A JP14568387 A JP 14568387A JP 2639934 B2 JP2639934 B2 JP 2639934B2
Authority
JP
Japan
Prior art keywords
lithium
electrode plate
negative electrode
ratio
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62145683A
Other languages
Japanese (ja)
Other versions
JPS63310557A (en
Inventor
和生 寺司
俊彦 齋藤
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP62145683A priority Critical patent/JP2639934B2/en
Publication of JPS63310557A publication Critical patent/JPS63310557A/en
Application granted granted Critical
Publication of JP2639934B2 publication Critical patent/JP2639934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は三酸化モリブデン、五酸化バナジウム、チタ
ン或いはニオブの硫化物などの再充電可能な活物質より
なる正極板と、リチウムを活物質とする負極板とを備え
た非水系二次電池に関するものである。
The present invention relates to a positive electrode plate made of a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, titanium or niobium sulfide, and lithium as an active material. And a non-aqueous secondary battery provided with a negative electrode plate.

(ロ)従来の技術 この種二次電池は放電時に負極活物質であるリチウム
がイオンとなつて溶解し、充電時にその逆反応で負極上
に金属リチウムとして電析する反応であるが、電析リチ
ウムは樹枝状に成長する傾向があり最終的に正極に達し
て内部短絡を引起すという問題がある。
(B) Conventional technology In this type of secondary battery, lithium, which is a negative electrode active material, dissolves as ions at the time of discharge, and is deposited on the negative electrode as metallic lithium by a reverse reaction at the time of charge. Lithium has a problem that it tends to grow in a dendritic shape and eventually reaches the positive electrode to cause an internal short circuit.

このような不都合に対処するため、例えば特開昭52−
5423号公報に開示されているリチウム−アルミニウム合
金のようにリチウム合金を負極とすることが提案されて
いる。リチウム合金の利点は次述の如くである。即ち、
リチウム単独の場合にはリチウムがイオンとなつて溶出
すると負極表面が凹凸状となり、その後の充電の際、リ
チウムが凸部に集中的に電析して樹枝状に成長するのに
対し、リチウム−アルミニウム合金の場合には充電時に
リチウムが負極の基体となるアルミニウムと合金を形成
するように復元するためリチウムの樹枝状成長が抑制さ
れるためである。
To cope with such inconveniences, see, for example,
It has been proposed that a lithium alloy be used as a negative electrode, such as a lithium-aluminum alloy disclosed in Japanese Patent No. 5423. The advantages of the lithium alloy are as follows. That is,
In the case of lithium alone, when lithium elutes as an ion, the surface of the negative electrode becomes uneven, and during subsequent charging, lithium is intensively electrodeposited on the protrusions and grows in a dendritic manner. This is because, in the case of an aluminum alloy, lithium is restored to form an alloy with aluminum serving as a base of the negative electrode during charging, so that the dendritic growth of lithium is suppressed.

(ハ)発明が解決しようとする問題点 ところで帯状の電極板を用いて渦巻電極体を形成した
場合、電極板の巻始め部分は他の部分より曲径が小さく
崩れ易いものである。又、リチウム−アルミニウム合金
はリチウムの合金化率が大であるほど機械的強度は弱い
ものである。それ故、リチウム合金化率が一様なリチウ
ム−アルミニウム合金よりなる負極板を用いて渦巻電極
体を形成すると負極板の巻始め部分で極板の崩れが生じ
充放電サイクル特性が低下する。
(C) Problems to be Solved by the Invention When a spiral electrode body is formed by using a strip-shaped electrode plate, the winding start portion of the electrode plate has a smaller curved diameter than other portions and is easily collapsed. The mechanical strength of the lithium-aluminum alloy is lower as the alloying ratio of lithium is higher. Therefore, when a spiral electrode body is formed using a negative electrode plate made of a lithium-aluminum alloy having a uniform lithium alloying rate, the electrode plate collapses at the beginning of the winding of the negative electrode plate, and the charge / discharge cycle characteristics deteriorate.

(ニ)問題点を解決するための手段 負極板として巻始め部分におけるリチウム合金化率が
他の部分におけるそれより小であるリチウム−アルミニ
ウム合金を用いる。
(D) Means for Solving the Problems As the negative electrode plate, a lithium-aluminum alloy having a smaller lithium alloying ratio in the winding start portion than in other portions is used.

又、電極板として用いるリチウム−アルミニウム合金
は機械的強度を考慮すると、リチウム合金化率は原子比
で35モル/%以下が好ましく、巻始め部分のリチウム合
金化率は原子比で25モル/%以下が好ましい。
In consideration of mechanical strength, the lithium-aluminum alloy used as the electrode plate preferably has a lithium alloying ratio of 35 mol /% or less in atomic ratio, and a lithium alloying ratio of the winding start portion is 25 mol /% in atomic ratio. The following is preferred.

(ホ)作 用 リチウム−アルミニウム合金よりなる負極板の巻始め
部分が他の部分よりリチウム合金化率が小であるため、
巻始め部分の機械的強度は他の部分より大となる。それ
故、この負極板を用いて渦巻電極体を形成した場合、負
極板の巻始め部分の崩れが抑えられ充放電サイクル特性
の低下が抑制される。
(E) Operation Since the starting portion of the negative electrode plate made of a lithium-aluminum alloy has a smaller lithium alloying ratio than other portions,
The mechanical strength at the beginning of the winding is greater than at the other parts. Therefore, when a spiral electrode body is formed using this negative electrode plate, the collapse of the winding start portion of the negative electrode plate is suppressed, and the deterioration of the charge / discharge cycle characteristics is suppressed.

(ヘ)実 施 例 以下本発明の実施例について詳述する。(F) Examples Examples of the present invention will be described in detail below.

第1図は本発明電池の縦断面図を示し、(1)は本発
明の要旨とする負極板であつてその詳細は後述する。
(2)は正極板であつて、活物質としてTiS280重量%に
導電剤としてのアセチレンブラツク10重量%及び結着剤
としてのフツ素樹脂粉末10重量%の割合で加え混合した
正極合剤をステンレス製のパンチング板を中央にしてロ
ーラにより圧延し規定寸法に裁断したものである。
FIG. 1 shows a longitudinal sectional view of the battery of the present invention, and (1) shows a negative electrode plate as the gist of the present invention, the details of which will be described later.
(2) is a positive electrode plate, which is a positive electrode mixture obtained by adding and mixing 80% by weight of TiS 2 as an active material, 10% by weight of acetylene black as a conductive agent, and 10% by weight of fluorine resin powder as a binder. Is rolled by a roller with a stainless steel punching plate at the center and cut to a specified size.

これら正負極板(2)(1)はポリプロピレン製多孔
膜よりなるセパレータ(3)を介して巻回され、得られ
た渦巻電極体は負極端子兼用の外装缶(4)に収納され
ている。
These positive and negative electrode plates (2) and (1) are wound via a separator (3) made of a polypropylene porous film, and the obtained spiral electrode body is housed in an outer can (4) also serving as a negative electrode terminal.

(5)は正極端子兼用封口蓋、(6)は絶縁パツキン
グであり、負極板(1)はリード片(7)を介して外装
缶(4)に、又正極板(2)はリード片(8)を介して
封口蓋(5)に夫々電気接続されている。
(5) is a positive electrode terminal / sealing lid, (6) is an insulating packing, the negative electrode plate (1) is connected to an outer can (4) via a lead piece (7), and the positive electrode plate (2) is a lead piece ( 8) are electrically connected to the sealing lid (5) through the respective lids.

次に負極の作成方法について詳述する。 Next, a method for forming the negative electrode will be described in detail.

1) 電解法 アルミニウム板をプロピレンカーボネートと1、2ジ
メトキシエタンとの混合溶媒に過塩素酸リチウムを1モ
ル/溶解した電解液中に浸漬し、対極にリチウム板を
用い電流密度0.5mA/cm2で電解還元してリチウム−アル
ミニウム合金板を作成する。
1) Electrolysis method An aluminum plate was immersed in an electrolytic solution obtained by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,2 dimethoxyethane at a mole ratio of 1 mol / l, and a current density of 0.5 mA / cm 2 was obtained using a lithium plate as a counter electrode. To make a lithium-aluminum alloy plate.

この際、負極板の巻始め部分(巻始め端から全長の略
1/8〜1/7の部分に相当するアルミニウム板の部分に例え
ば絶縁部材を貼付するなどして巻始め部分のリチウム合
金化率を変化させた。
At this time, the winding start portion of the negative electrode plate (the length of the entire length from the winding start end)
For example, an insulating member was attached to a portion of the aluminum plate corresponding to the portion of 1/8 to 1/7 to change the lithium alloying ratio of the winding start portion.

第2図及び第3図はこの電解法によつて得たリチウム
−アルミニウム合金板を負極板として用いた電池の充放
電サイクル数と負極板の巻始め部分のリチウム合金化率
との関係を示し、第2図は極板全体のリチウム合金化率
が原子比で30モル/%の場合、又第3図は35モル/%の
場合である。
FIGS. 2 and 3 show the relationship between the number of charge / discharge cycles of a battery using a lithium-aluminum alloy plate obtained by this electrolytic method as a negative electrode plate and the lithium alloying ratio at the beginning of winding of the negative electrode plate. FIG. 2 shows the case where the lithium alloying ratio of the entire electrode plate is 30 mol /% in atomic ratio, and FIG. 3 shows the case where the ratio is 35 mol /%.

2) 接触法 アルミニウム板の両面に夫々リチウム板を圧着し、そ
の後電解法で用いたものと同一組成の電解液中に浸漬し
てリチウム−アルミニウム合金板を作成する。
2) Contact method A lithium plate is pressed on both sides of an aluminum plate, and then immersed in an electrolytic solution having the same composition as that used in the electrolytic method to prepare a lithium-aluminum alloy plate.

この際、負極板の巻始め部分に相当する部分のリチウ
ム圧延板の厚みを種々調整して巻始め部分のリチウム合
金化率を変化させた。
At this time, the thickness of the lithium rolled plate corresponding to the winding start portion of the negative electrode plate was variously adjusted to change the lithium alloying ratio of the winding start portion.

第4図及び第5図はこの接触法によつて得たリチウム
−アルミニウム合金板を負極板として用いた電池の充放
電サイクル数と負極板の巻始め部分のリチウム合金化率
との関係を示し、第4図は極板全体のリチウム合金化率
が原子比で30モル/%の場合、又第5図は35モル/%の
場合である。
FIGS. 4 and 5 show the relationship between the number of charge / discharge cycles of a battery using a lithium-aluminum alloy plate obtained by this contact method as a negative electrode plate and the lithium alloying ratio at the beginning of winding of the negative electrode plate. FIG. 4 shows the case where the lithium alloying ratio of the entire electrode plate is 30 mol /% in atomic ratio, and FIG. 5 shows the case where the lithium alloying ratio is 35 mol /%.

尚、電池の充放電条件はいずれも充電電流50mAで充電
終止電圧4.0V、放電電流50mAで放電終止電圧1.5Vとし
た。
The charge and discharge conditions of the battery were all a charge end voltage of 4.0 V at a charge current of 50 mA and a discharge end voltage of 1.5 V at a discharge current of 50 mA.

第2図乃至第5図から明白なるように、負極板の巻始
め部分のリチウム合金化率を他の部分より小とすること
により負極板の巻始め部分の崩れが抑えられ、充放電サ
イクル特性の低下が抑制されることがわかる。
As is clear from FIGS. 2 to 5, collapse of the winding start portion of the negative electrode plate is suppressed by making the lithium alloying ratio of the winding start portion of the negative electrode plate smaller than that of the other portions, and the charge / discharge cycle characteristics are reduced. It can be seen that the decrease in the value is suppressed.

特に負極板のリチウム合金化率が原子比で35モル/%
以下で、且巻始め部分のリチウム合金化率が原子比で25
モル/%以下が好ましい。
In particular, the lithium alloying ratio of the negative electrode plate is 35 mol /% in atomic ratio.
In the following, the lithium alloying ratio at the beginning of the winding is 25% in atomic ratio.
It is preferably at most mol /%.

尚、負極板の巻始め部分におけるリチウム合金化率は
一定値である必要はなく他の部分より小である範囲内に
おいて変化しても良い。
Incidentally, the lithium alloying ratio in the winding start portion of the negative electrode plate does not need to be a constant value, and may change within a range smaller than other portions.

(ト)発明の効果 上述した如く、再充電可能な活物質よりなる正極板
と、リチウム−アルミニウム合金よりなる負極板とをセ
パレータを介して巻回した渦巻電極体を備える非水系二
次電池において、負極板として巻始め部分におけるリチ
ウム合金化率が他の部分におけるそれより小であるリチ
ウム−アルミニウム合金を用いることにより、この種電
池の充放電サイクル特性を改善しうるものでありその工
業的価値は極めて大である。
(G) Effects of the Invention As described above, a non-aqueous secondary battery including a spiral electrode body in which a positive electrode plate made of a rechargeable active material and a negative electrode plate made of a lithium-aluminum alloy are wound via a separator. By using a lithium-aluminum alloy having a smaller lithium alloying ratio at the start of winding as a negative electrode plate than at other portions, the charge / discharge cycle characteristics of this type of battery can be improved, and its industrial value is high. Is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の縦断面図、第2図及び第3図は電
解法によつて得たリチウム−アルミニウム合金を負極板
とする電池のサイクル数と負極板の巻始め部分における
Li合金化率との関係を示す図、第4図及び第5図は接触
法によつて得たリチウム−アルミニウム合金を負極板と
する電池のサイクル数と負極板の巻始め部分におけるLi
合金化率との関係を示す図である。 (1)……負極板、(2)……正極板、(3)……セパ
レータ、(4)……外装缶、(5)……封口蓋、(6)
……絶縁パツキング、(7)(8)……リード片。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIGS. 2 and 3 show the number of cycles of a battery using a lithium-aluminum alloy obtained by an electrolytic method as a negative electrode plate and the number of windings of the negative electrode plate.
FIGS. 4 and 5 show the relationship between the lithium alloying rate and the number of cycles of a battery using a lithium-aluminum alloy obtained by a contact method as a negative electrode plate and the Li at the beginning of winding of the negative electrode plate.
It is a figure which shows the relationship with an alloying rate. (1) Negative electrode plate, (2) Positive electrode plate, (3) Separator, (4) Outer can, (5) Sealing lid, (6)
... Insulating packing, (7) (8) ... Lead pieces.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】再充電可能な活物質よりなる正極板と、リ
チウム−アルミニウム合金よりなる負極板とをセパレー
タを介して巻回した渦巻電極体を備えるものであつて、
前記負極板は巻始め部分におけるリチウム合金化率が他
の部分におけるそれより小であることを特徴とする非水
系二次電池。
1. A spiral electrode body comprising a positive electrode plate made of a rechargeable active material and a negative electrode plate made of a lithium-aluminum alloy wound around a separator.
The non-aqueous secondary battery according to claim 1, wherein the negative electrode plate has a lower lithium alloying ratio at a winding start portion than at other portions.
【請求項2】前記負極板のリチウム合金化率が原子比で
35モル/%以下であり、且負極板の巻始め部分における
リチウム合金化率が原子比で25モル/%以下であること
を特徴とする特許請求の範囲第項記載の非水系二次電
池。
2. The method according to claim 1, wherein the negative electrode plate has a lithium alloying ratio in an atomic ratio.
3. The non-aqueous secondary battery according to claim 1, wherein the lithium alloying ratio at the beginning of winding of the negative electrode plate is 25 mol /% or less in atomic ratio.
JP62145683A 1987-06-11 1987-06-11 Non-aqueous secondary battery Expired - Fee Related JP2639934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145683A JP2639934B2 (en) 1987-06-11 1987-06-11 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145683A JP2639934B2 (en) 1987-06-11 1987-06-11 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63310557A JPS63310557A (en) 1988-12-19
JP2639934B2 true JP2639934B2 (en) 1997-08-13

Family

ID=15390674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145683A Expired - Fee Related JP2639934B2 (en) 1987-06-11 1987-06-11 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2639934B2 (en)

Also Published As

Publication number Publication date
JPS63310557A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JPS6223433B2 (en)
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH0646578B2 (en) Non-aqueous secondary battery
JP2639934B2 (en) Non-aqueous secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS638588B2 (en)
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JPH0795454B2 (en) Non-aqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2940706B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2542812B2 (en) Non-aqueous electrolyte secondary battery
JP2594035B2 (en) Rechargeable battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPH0630256B2 (en) Non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JPH0539580Y2 (en)
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JP2744061B2 (en) Non-aqueous electrolyte secondary battery
JPH0719595B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees