JP3133316B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP3133316B2
JP3133316B2 JP02249402A JP24940290A JP3133316B2 JP 3133316 B2 JP3133316 B2 JP 3133316B2 JP 02249402 A JP02249402 A JP 02249402A JP 24940290 A JP24940290 A JP 24940290A JP 3133316 B2 JP3133316 B2 JP 3133316B2
Authority
JP
Japan
Prior art keywords
battery
lithium
negative electrode
base metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02249402A
Other languages
Japanese (ja)
Other versions
JPH04126372A (en
Inventor
育朗 中根
泰浩 藤田
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02249402A priority Critical patent/JP3133316B2/en
Publication of JPH04126372A publication Critical patent/JPH04126372A/en
Application granted granted Critical
Publication of JP3133316B2 publication Critical patent/JP3133316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、三酸化モリブデン,五酸化バナジウム,二
酸化マンガン,或いは硫化チタンなどのような再充電可
能な活物質よりなる正極と、リチウム等のアルカリ金属
或いはアルカリ土類金属を活物質とする負極と、非水電
解質とを有する二次電池に関する。
The present invention relates to a positive electrode comprising a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, manganese dioxide or titanium sulfide, and an alkali metal such as lithium. Alternatively, the present invention relates to a secondary battery including a negative electrode using an alkaline earth metal as an active material and a non-aqueous electrolyte.

従来の技術 この種電池の問題点は負極活物質であるリチウム等
が、充電の際に負極表面に樹枝状に成長し正極と接して
内部短絡を引き起こすため、充放電サイクルが極めて短
いことにある。
Conventional technology The problem with this type of battery is that the charge / discharge cycle is extremely short because lithium or the like, which is the negative electrode active material, grows dendritic on the surface of the negative electrode during charging and contacts the positive electrode, causing an internal short circuit. .

そこで、特開昭52−5423号公報等に示すように、負極
にリチウム−アルミニウム合金等のリチウム合金を用い
たものが提案されている。これはリチウム単独の場合、
放電によってリチウムがイオンとなって溶出すると負極
表面が凹凸状となり、その後の充電の際にリチウムが凸
部に集中的に電析して樹枝状に成長するのに対して、リ
チウム合金であれば、充電時にリチウムが負極の基体と
なる金属と合金を形成するように復元するため、リチウ
ムの樹枝状成長が抑制できるという利点を奏するためで
ある。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 52-5423, a negative electrode using a lithium alloy such as a lithium-aluminum alloy has been proposed. This is for lithium alone,
When lithium is ionized and eluted by discharging, the surface of the negative electrode becomes uneven, and during subsequent charging, lithium is intensively electrodeposited on the convex portion and grows in a dendritic shape, whereas if it is a lithium alloy, In addition, since lithium is restored to form an alloy with the metal serving as the base of the negative electrode during charging, there is an advantage that the dendritic growth of lithium can be suppressed.

しかしながら、上記従来より用いられているリチウム
合金は、充放電を繰り返すと負極が粉末化して、サイク
ル特性が劣化するという課題を有していた。
However, the conventional lithium alloy has a problem that the negative electrode is powdered when charge and discharge are repeated, and the cycle characteristics are deteriorated.

そこで、負極材料であるリチウム−アルミニウム合金
を、マンガン等の異種金属が添加されたアルミニウム合
金とリチウムとを反応させることによって作製するよう
な方法が提案されている。
Accordingly, a method has been proposed in which a lithium-aluminum alloy as a negative electrode material is produced by reacting lithium with an aluminum alloy to which a dissimilar metal such as manganese has been added.

発明が解決しようとする課題 このように、アルミニウム中にマンガン等の異種金属
を添加すれば、アルミニウムとリチウムとの反応が均一
化する。したがって、リチウムの局在化がある程度抑制
され、充放電による合金の粉末化が抑制される。しかし
ながら、このような方法であってもサイクル特性の向上
は不十分である。
Problems to be Solved by the Invention As described above, if a dissimilar metal such as manganese is added to aluminum, the reaction between aluminum and lithium becomes uniform. Therefore, localization of lithium is suppressed to some extent, and powdering of the alloy due to charge and discharge is suppressed. However, even with such a method, the improvement of the cycle characteristics is insufficient.

本発明はかかる現状に鑑みてなされたものであり、サ
イクル特性を飛躍的に向上させることができる二次電池
を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a secondary battery that can dramatically improve cycle characteristics.

課題を解決するための手段 本発明は上記目的を達成するために、アルカリ金属或
いはアルカリ土類金属を活物質とする負極と、正極と、
非水電解質とを有する二次電池において、前記負極は前
記アルカリ金属或いはアルカリ土類金属と基体金属との
合金から構成され、且つ上記基体金属が錫からなり、上
記基体金属の50%以上、好ましくは70%以上の結晶粒に
おける少なくとも1つの結晶軸が、同一方向に配列され
ていることを特徴とする。
Means for Solving the Problems The present invention achieves the above object, a negative electrode having an alkali metal or an alkaline earth metal as an active material, and a positive electrode,
In a secondary battery having a non-aqueous electrolyte, the negative electrode is composed of an alloy of the alkali metal or alkaline earth metal and a base metal, and the base metal is made of tin, and is preferably 50% or more of the base metal, preferably Is characterized in that at least one crystal axis in 70% or more of the crystal grains is arranged in the same direction.

作用 アルカリ金属或いはアルカリ土類金属と基体金属との
反応するサイト数は、基体金属の結晶面の違いによって
異る。したがって、基体金属の結晶軸が揃っていない従
来の電池では、アルカリ金属等と基体金属との反応時
に、極板において反応し易い部分と反応し難い部分とが
生じる。この結果、充放電の繰り返しによりリチウムが
局在化し、負極の微粉末化が生じる。
Action The number of sites where the alkali metal or alkaline earth metal reacts with the base metal depends on the crystal plane of the base metal. Therefore, in the conventional battery in which the crystal axes of the base metal are not aligned, when the alkali metal or the like reacts with the base metal, a portion that easily reacts on the electrode plate and a portion that hardly reacts occur. As a result, lithium is localized by repetition of charge and discharge, and the negative electrode is finely powdered.

これに対して、上記構成の如く基体金属の結晶軸が揃
っていれば、アルカリ金属等と基体金属との反応時に、
極板において反応し易い部分と反応し難い部分とが生じ
るのを抑制できる。この結果、充放電の繰り返しにより
リチウムが局在化せず、負極の微粉末化を十分に抑制す
ることができることになる。そして、基体金属として錫
を用いることによって、上述した効果を顕著に発揮する
ことができ、サイクル特性に優れた二次電池を提供する
ことができる。
On the other hand, if the crystal axes of the base metal are aligned as in the above configuration, at the time of reaction between the alkali metal and the like and the base metal,
It is possible to suppress the occurrence of a portion that easily reacts and a portion that does not easily react in the electrode plate. As a result, lithium is not localized due to repetition of charge / discharge, so that pulverization of the negative electrode can be sufficiently suppressed. By using tin as the base metal, the above-mentioned effects can be remarkably exhibited, and a secondary battery having excellent cycle characteristics can be provided.

実 施 例 以下、本発明の理解を助けるための参考例、本発明及
び比較例を、第1図及び第2図に基づいて説明する。
EXAMPLES Hereinafter, a reference example, the present invention, and a comparative example for assisting understanding of the present invention will be described with reference to FIGS. 1 and 2. FIG.

第1図に示すように、リチウム合金から成る負極1は
負極集電体3の内面に圧着されており、この負極集電体
3はステンレスから成る負極缶2の内底面に固着されて
いる。上記負極缶2の周端は絶縁パッキング7の内部に
固定されており、絶縁パッキング7の外周にはステンレ
スから成る正極缶5が固定されている。この正極缶5の
内底面には正極4が圧接されており、この正極4と前記
負極1との間には、ポリプロピレン不織布から成り非水
電解液が含浸されたセパレータ6が介装されている。
尚、上記非水電解液として、プロピレンカーボネートと
1,2−ジメトキシエタンとの等体積混合溶媒に、過塩素
酸リチウムを1モル/の割合で溶解したものを用いて
いる。また、電池寸法は直径25.0mm、厚み3.0mmであ
る。
As shown in FIG. 1, a negative electrode 1 made of a lithium alloy is pressed on the inner surface of a negative electrode current collector 3, and this negative electrode current collector 3 is fixed to the inner bottom surface of a negative electrode can 2 made of stainless steel. A peripheral end of the negative electrode can 2 is fixed inside the insulating packing 7, and a positive electrode can 5 made of stainless steel is fixed to the outer periphery of the insulating packing 7. A positive electrode 4 is pressed against the inner bottom surface of the positive electrode can 5, and a separator 6 made of a polypropylene nonwoven fabric and impregnated with a non-aqueous electrolyte is interposed between the positive electrode 4 and the negative electrode 1. .
Incidentally, as the non-aqueous electrolyte, propylene carbonate and
A solution obtained by dissolving lithium perchlorate at a ratio of 1 mol / in a mixed solvent of 1,2-dimethoxyethane with an equal volume is used. The battery dimensions are 25.0 mm in diameter and 3.0 mm in thickness.

ところで、上記負極1は、以下のようにして作製し
た。先ず、アルミニウムの溶湯中にアルミニウムの種結
晶を入れた後、引上げ法によりアルミニウムの単結晶を
作製する。次に、このアルミニウムの単結晶を圧延して
板状にし、基体金属板を作製した。ここで、このように
して作製したアルミニウム板をX線で分析したところ、
90%以上の結晶粒のC軸が同一方向に揃っていることが
確認された。
Incidentally, the negative electrode 1 was manufactured as follows. First, after a seed crystal of aluminum is put into a molten aluminum, a single crystal of aluminum is produced by a pulling method. Next, this aluminum single crystal was rolled into a plate shape to produce a base metal plate. Here, when the aluminum plate thus manufactured was analyzed by X-ray,
It was confirmed that the C axis of 90% or more of the crystal grains was aligned in the same direction.

次いで、上記アルミニウム板を、過塩素酸リチウムが
1mol/の割合で溶解された1,3ジオキソラン中に浸漬
し、更に対極をリチウムとして、電流密度3mA/cm2で20
時間電解を行って、リチウム−アルミニウム合金を作製
した。最後に、このリチウム−アルミニウム合金を20mm
φに打ち抜くことにより負極1を作製した。
Next, the above aluminum plate was washed with lithium perchlorate.
Immersed in 1, 3-dioxolane dissolved in 1mol / ratio, as further lithium counter electrode, a current density 3mA / cm 2 20
Electrolysis was performed for a time to produce a lithium-aluminum alloy. Finally, this lithium-aluminum alloy is
The negative electrode 1 was produced by punching out to φ.

一方、前記正極4は、活物質である二酸化マンガン80
重量部に、導電剤としてのアセチレンブラック10重量部
と、結着剤としてのフッ素樹脂粉末10重量部とを加えて
充分に混合した後、この正極合剤を加圧成型することに
より作製した。
On the other hand, the positive electrode 4 has manganese dioxide 80 as an active material.
10 parts by weight of acetylene black as a conductive agent and 10 parts by weight of a fluororesin powder as a binder were added to the parts by weight, and the mixture was sufficiently mixed.

このようにして作製した電池を参考電池とし、以下
(S1)電池と称する。
The battery fabricated in this manner is referred to as a reference battery, and is hereinafter referred to as (S 1 ) battery.

〔実施例〕〔Example〕

上記アルミニウムの単結晶の代わりに、錫の溶湯中に
錫の種結晶を入れ、引上げ法により得られた錫の単結晶
を用いる他は、上記参考例Iと同様にして電池を作製し
た。尚、このような単結晶を圧延して作製した錫板をX
線で分析したところ、90%以上の結晶粒のC軸が同一方
向に揃っていることが確認された。
A battery was fabricated in the same manner as in Reference Example I, except that a tin seed crystal was placed in a molten tin and a tin single crystal obtained by a pulling method was used instead of the aluminum single crystal. In addition, a tin plate produced by rolling such a single crystal is referred to as X.
The line analysis confirmed that the C-axis of 90% or more of the crystal grains were aligned in the same direction.

このようにして作製した本発明電池を、以下(A)電
池と称する。
The battery of the present invention thus produced is hereinafter referred to as (A) battery.

〔参考例II〕(Reference Example II)

上記アルミニウムの単結晶の代わりに、鉛の溶湯中に
鉛の種結晶を入れ、引上げ法により得られた鉛の単結晶
を用いる他は、上記参考例Iと同様にして電池を作製し
た。尚、このような単結晶を圧延して作製した鉛板をX
線で分析したところ、90%以上の結晶粒のC軸が同一方
向に揃っていることが確認された。
A battery was fabricated in the same manner as in Reference Example I, except that a lead seed crystal was put into a molten lead and a lead single crystal obtained by a pulling method was used instead of the aluminum single crystal. In addition, a lead plate produced by rolling such a single crystal is referred to as X
The line analysis confirmed that the C-axis of 90% or more of the crystal grains were aligned in the same direction.

このようにして作製した電池を参考電池とし、以下
(S2)電池と称する。
The battery fabricated in this manner is referred to as a reference battery, and is hereinafter referred to as (S 2 ) battery.

〔比較例I〕[Comparative Example I]

基体金属板として、アルミニウムの溶湯中にアルミニ
ウムの種結晶を入れず、単にアルミニウムの溶湯を冷却
してインゴットを作製し、このインゴットを圧延したア
ルミニウム板を用いる他は、上記参考例Iと同様にして
電池を作製した。
A base metal plate was prepared in the same manner as in Reference Example I above, except that an aluminum ingot was prepared by simply cooling the aluminum melt without preparing a seed crystal of aluminum in the aluminum melt and using an aluminum plate obtained by rolling the ingot. To produce a battery.

このようにして作製した電池を、以下(X1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 1 ) battery.

〔比較例II〕(Comparative Example II)

基体金属板として、錫の溶湯中に錫の種結晶を入れ
ず、単に錫の溶湯を冷却してインゴットを作製し、この
インゴットを圧延した錫板を用いる他は、上記実施例と
同様にして電池を作製した。
As a base metal plate, except that the tin seed crystal was not put into the tin melt, the tin melt was simply cooled to produce an ingot, and the rolled ingot was used, except that the tin plate was rolled. A battery was manufactured.

このようにして作製した電池を、以下(X2)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 2 ) battery.

〔比較例III〕(Comparative Example III)

基体金属板として、鉛の溶湯中に鉛の種結晶を入れ
ず、単に鉛の溶湯を冷却してインゴットを作製し、この
インゴットを圧延した鉛板を用いる他は、上記参考例II
と同様にして電池を作製した。
As a base metal plate, except that a lead seed crystal was not put into the molten lead, the molten lead was simply cooled to produce an ingot, and a lead plate obtained by rolling this ingot was used.
In the same manner as in the above, a battery was produced.

このようにして作製した電池を、以下(X3)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 3 ) battery.

〔実験〕[Experiment]

上記本発明の(A)電池、参考例の(S1)電池、
(S2)電池及び比較例の(X1)電池〜(X3)電池のサイ
クル特性を調べたので、その結果を第2図に示す。尚、
実験条件は、充電電流3mAで充電終止電圧3Vまで充電し
た後、12mAh放電するという条件であり、放電終止電圧
が2Vとになった時点で電池寿命とした。
(A) the battery of the present invention, the (S 1 ) battery of the reference example,
The cycle characteristics of the (S 2 ) battery and the (X 1 ) battery to (X 3 ) battery of the comparative example were examined, and the results are shown in FIG. still,
The experimental conditions were such that the battery was charged at a charging current of 3 mA to a charging end voltage of 3 V, and then discharged at 12 mAh. When the discharge end voltage reached 2 V, the battery life was determined.

第2図から明らかなように、本発明の(A)電池、参
考例の(S1)電池、(S2)電池はサイクル寿命が全て70
0サイクル以上であるのに対して、比較例の(X1)電池
〜(X3)電池ではサイクル寿命が全て400サイクル以下
であることが認められる。
As is apparent from FIG. 2, the cycle life of the (A) battery of the present invention, the (S 1 ) battery of the reference example, and the (S 2 ) battery were all 70.
It can be seen that the cycle life of all of the batteries (X 1 ) to (X 3 ) of Comparative Examples is 400 cycles or less, while the cycle is 0 cycles or more.

これは、以下に示す理由によるものと考えられる。 This is considered to be due to the following reason.

即ち、リチウムと基体金属との反応するサイト数は、
基体金属の結晶面の違いによって異なってくる。したが
って、基体金属の結晶軸が揃っていない比較例の(X1
電池〜(X3)電池では、リチウムと基体金属との反応時
に、極板において反応し易い部分と反応し難い部分とが
生じる。この結果、充放電の繰り返しによりリチウムが
局在化し、負極の微粉末化が生じる。これに対して、基
体金属の結晶軸が揃っている本発明の(A)電池、参考
例の(S1)電池、(S2)電池では、リチウムと基体金属
との反応時に、極板において反応し易い部分と反応し難
い部分とが生じるのを抑制できる。この結果、充放電の
繰り返しによってもリチウムが局在化せず、負極の微粉
末化を十分に抑制することができるという理由によるも
のと考えられる。
That is, the number of sites where lithium reacts with the base metal is
It depends on the crystal plane of the base metal. Therefore, (X 1 ) of the comparative example in which the crystal axes of the base metal are not aligned
In the battery to (X 3 ) battery, when the lithium reacts with the base metal, a part that is easily reacted and a part that is not easily reacted occur in the electrode plate. As a result, lithium is localized by repeated charge and discharge, and the negative electrode is finely powdered. On the other hand, in the battery (A) of the present invention in which the crystal axes of the base metal are aligned, the (S 1 ) battery and the (S 2 ) battery of the reference example, when lithium reacts with the base metal, It is possible to suppress the occurrence of a part that easily reacts and a part that does not easily react. As a result, it is considered that lithium is not localized even by repetition of charge and discharge, and the pulverization of the negative electrode can be sufficiently suppressed.

ここで、本発明の(A)電池、参考例の(S1)電池、
(S2)電池とを対比すると、錫を基体金属として用いた
(A)電池は、アルミニウムを基体金属として用いた
(S1)電池及び鉛を基体金属として用いた(S2)電池に
比べて、サイクル特性が特に優れており、800サイクル
以上を達成することができた。
Here, the (A) battery of the present invention, the (S 1 ) battery of the reference example,
In comparison with the (S 2 ) battery, the (A) battery using tin as the base metal is compared with the (S 1 ) battery using aluminum as the base metal and the (S 2 ) battery using lead as the base metal. Thus, the cycle characteristics were particularly excellent, and 800 cycles or more could be achieved.

尚、結晶軸の揃った合金の結晶粒の占める割合として
は、実験によれば、50%以上であれば良いことを確認し
ている。但し、70%以上であれば飛躍的な効果を得るこ
とができることを確認した。また、このような割合を変
える方法としては、圧延条件や熱処理条件を変えること
によって可能である。
Experiments have confirmed that the proportion of crystal grains of an alloy having a uniform crystal axis should be 50% or more. However, it has been confirmed that a remarkable effect can be obtained if it is 70% or more. Further, as a method of changing such a ratio, it is possible to change the rolling conditions and the heat treatment conditions.

〔その他の事項〕 結晶軸の方向について、本実施例ではC軸の揃った合
金について示したが、これに限定するものではなく、他
の軸が揃った合金であっても上記と同様の効果を有す
る。
[Other Matters] With respect to the direction of the crystal axis, the present embodiment shows an alloy having a uniform C axis. However, the present invention is not limited to this. Having.

上記実施例では、活物質としてリチウムを用いたが、
他のアルカリ金属或いはアルカリ土類金属であっても同
様の効果を有する。
In the above embodiment, lithium was used as the active material.
Similar effects are obtained with other alkali metals or alkaline earth metals.

負極合金の製造方法としては、上記実施例に示す方法
の他、基体金属とアルカリ金属或いはアルカリ土類金属
とを接触させて積層体とした後、この積層体を加熱して
アルカリ金属或いはアルカリ土類金属を基体金属中へ拡
散させて製造する方法等であっても良い。
As a method for producing a negative electrode alloy, in addition to the method described in the above embodiment, after a base metal is brought into contact with an alkali metal or an alkaline earth metal to form a laminate, the laminate is heated to produce an alkali metal or alkaline earth metal. A method in which a similar metal is diffused into a base metal to produce the same may be used.

本発明は固体電解質二次電池にも適用可能である。The present invention is also applicable to a solid electrolyte secondary battery.

発明の効果 以上説明したように本発明によれば、極板において反
応し易い部分と反応し難い部分とが生じるのを抑制でき
るので、負極の微粉末化が十分に抑制されることにな
る。この結果、二次電池のサイクル特性を飛躍的に向上
させることができるという効果を奏する。
Advantageous Effects of the Invention As described above, according to the present invention, it is possible to suppress the occurrence of a portion that easily reacts and a portion that does not easily react in the electrode plate, so that pulverization of the negative electrode is sufficiently suppressed. As a result, there is an effect that the cycle characteristics of the secondary battery can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は二次電池の断面図、第2図は本発明の(A1)電
池、参考例の(S1)電池、(S2)電池及び比較例の
(X1)電池〜(X3)電池のサイクル特性を示すグラフで
ある。 1……負極、4……正極、6……セパレータ。
1 is a sectional view of a secondary battery, and FIG. 2 is a (A 1 ) battery of the present invention, a (S 1 ) battery, a (S 2 ) battery of a reference example, and (X 1 ) batteries to (X 1 ) of a comparative example. 3 ) A graph showing the cycle characteristics of the battery. 1 ... a negative electrode, 4 ... a positive electrode, 6 ... a separator.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−182049(JP,A) 特開 昭62−211861(JP,A) 特開 昭63−308868(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 H01M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-182049 (JP, A) JP-A-62-211861 (JP, A) JP-A-63-308868 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 10/40 H01M 4/02 H01M 4/36-4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ金属或いはアルカリ土類金属を活
物質とする負極と、正極と、非水電解質とを有する二次
電池において、 前記負極は前記アルカリ金属或いはアルカリ土類金属と
基体金属との合金から構成され、且つ上記基体金属が錫
からなり、この基体金属の50%以上の結晶粒における少
なくとも1つの結晶軸が、同一方向に配列されているこ
とを特徴とする二次電池。
1. A secondary battery comprising a negative electrode using an alkali metal or an alkaline earth metal as an active material, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode is formed of the alkali metal or the alkaline earth metal and a base metal. A secondary battery comprising an alloy, wherein the base metal is made of tin, and at least one crystal axis of 50% or more crystal grains of the base metal is arranged in the same direction.
JP02249402A 1990-09-18 1990-09-18 Rechargeable battery Expired - Fee Related JP3133316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02249402A JP3133316B2 (en) 1990-09-18 1990-09-18 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02249402A JP3133316B2 (en) 1990-09-18 1990-09-18 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH04126372A JPH04126372A (en) 1992-04-27
JP3133316B2 true JP3133316B2 (en) 2001-02-05

Family

ID=17192453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249402A Expired - Fee Related JP3133316B2 (en) 1990-09-18 1990-09-18 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3133316B2 (en)

Also Published As

Publication number Publication date
JPH04126372A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JP4666854B2 (en) Nonaqueous electrolyte secondary battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH0646578B2 (en) Non-aqueous secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3133316B2 (en) Rechargeable battery
JP3152307B2 (en) Lithium secondary battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP4100175B2 (en) Negative electrode for lithium ion secondary battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JP3197658B2 (en) Non-aqueous secondary battery
JP2639934B2 (en) Non-aqueous secondary battery
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JP2594035B2 (en) Rechargeable battery
JPH0719595B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees