JP2819201B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2819201B2
JP2819201B2 JP3136904A JP13690491A JP2819201B2 JP 2819201 B2 JP2819201 B2 JP 2819201B2 JP 3136904 A JP3136904 A JP 3136904A JP 13690491 A JP13690491 A JP 13690491A JP 2819201 B2 JP2819201 B2 JP 2819201B2
Authority
JP
Japan
Prior art keywords
vanadium
positive electrode
secondary battery
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3136904A
Other languages
Japanese (ja)
Other versions
JPH04363862A (en
Inventor
信晴 小柴
敏彦 池畠
清人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3136904A priority Critical patent/JP2819201B2/en
Publication of JPH04363862A publication Critical patent/JPH04363862A/en
Application granted granted Critical
Publication of JP2819201B2 publication Critical patent/JP2819201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、移動用直流電源やメモ
リーバックアップ用電源などに使用される充放電可能な
リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chargeable / dischargeable lithium secondary battery used for a mobile DC power supply or a memory backup power supply.

【0002】[0002]

【従来の技術】従来より、充放電が可能なリチウム二次
電池として、正極に五酸化バナジウム、負極に金属リチ
ウムまたはリチウム合金、電解液にリチウム塩を溶解し
た有機溶媒を用いた電池系があって、これは3ボルトの
高い端子電圧をもっており、エネルギー密度もニッケル
・カドミウム電池の1.5〜2倍もあって、有望な電池
として知られている。
2. Description of the Related Art Conventionally, as a rechargeable lithium secondary battery, there has been a battery system using vanadium pentoxide for a positive electrode, metallic lithium or a lithium alloy for a negative electrode, and an organic solvent in which a lithium salt is dissolved in an electrolytic solution. It has a high terminal voltage of 3 volts, has an energy density 1.5 to 2 times that of nickel-cadmium batteries, and is known as a promising battery.

【0003】[0003]

【発明が解決しようとする課題】従来の前記する五酸化
バナジウム系電池は、その正極が一般的には五酸化バナ
ジウムを90%前後含有し、カーボンブラックと、結着
剤が夫々数%で構成されていて、五酸化バナジウムは、
1電子反応で(化1)式に示すようにV2 5 1モル当
り、1ファラデー(26.8アンペア・時)の電気容量
を有している。
The above-mentioned conventional vanadium pentoxide battery generally has a positive electrode containing about 90% of vanadium pentoxide, carbon black and a binder of several percent each. Vanadium pentoxide is
As shown in the chemical formula (1), a one-electron reaction has an electric capacity of 1 Faraday (26.8 ampere-hour) per mole of V 2 O 5 .

【0004】[0004]

【化1】 Embedded image

【0005】しかしながら、実際には前記の正極をもつ
電池を放電してみると、反応利用率は高くなく、とくに
高負荷電流で放電したときの放電容量は、70%前後に
低下してしまうもので、この放電時の正極の反応効率が
低いということが問題であった。
However, when a battery having the above-mentioned positive electrode is actually discharged, the reaction utilization rate is not high, and the discharge capacity particularly when discharged at a high load current is reduced to about 70%. Thus, there was a problem that the reaction efficiency of the positive electrode during this discharge was low.

【0006】[0006]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、正極を構成する合剤として、五酸化バ
ナジウムまたは八酸化バナジウムまたはこれら両者の混
合物などのバナジウム酸化物を主体とし、これに炭化バ
ナジウムを添加したものを使用したものである。炭化バ
ナジウムの添加量は、広い範囲で有効であるが、正極合
剤の5〜20重量%がとくに効果的である。
In order to solve the above-mentioned problems, the present invention mainly uses a vanadium oxide such as vanadium pentoxide or vanadium octoxide or a mixture of both as a mixture constituting a positive electrode. And vanadium carbide added thereto. The addition amount of vanadium carbide is effective in a wide range, but 5 to 20% by weight of the positive electrode mixture is particularly effective.

【0007】[0007]

【作用】本発明のリチウム二次電池では、五酸化バナジ
ウムや八酸化バナジウムなどのバナジウム酸化物を主体
とする正極に炭化バナジウムを混入したことにより、放
電時において正極の反応効率が大きく向上している。
According to the lithium secondary battery of the present invention, by mixing vanadium carbide into a cathode mainly composed of vanadium oxide such as vanadium pentoxide or vanadium octoxide, the reaction efficiency of the cathode during discharge is greatly improved. I have.

【0008】これは、炭化バナジウムが半導体的な性質
を有しているために正極を主体となって構成しているバ
ナジウム酸化物の粉末粒子間の電気的接触を良好にする
と同時に、バナジウム酸化物粒子が電解液により、よく
濡れるようになるからである。さらに炭化バナジウム
は、その中にリチウムイオンが出入りし、電池反応活物
質として作用していると考えられる。
This is because vanadium carbide has semiconducting properties, so that electrical contact between powder particles of vanadium oxide mainly composed of a positive electrode is improved, and at the same time, vanadium oxide is improved. This is because the particles become well wetted by the electrolytic solution. Further, it is considered that vanadium carbide allows lithium ions to enter and exit, and acts as a battery reaction active material.

【0009】また、バナジウム酸化物例えば五酸化バナ
ジウムでは3.5ボルトの高電位を有するが、炭化バナ
ジウムは、このような高電位に対して安定であり、分解
したとしても、バナジウムと炭素に分解するのみであっ
て正極の主体であるバナジウム酸化物に対して悪影響を
及ぼすことは考えられないものである。
Further, vanadium oxide, for example, vanadium pentoxide has a high potential of 3.5 volts. Vanadium carbide is stable against such a high potential, and even if it is decomposed, it is decomposed into vanadium and carbon. It does not seem to adversely affect the vanadium oxide which is the main component of the positive electrode.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1において、1は正極端子を兼ねたケー
スで、負極端子を兼ねた封口板2によって封口されてい
る。3は前記ケース1と封口板2とを絶縁しケース1を
密封するポリプロピレン製ガスケット、4はポリプロピ
レン製の微孔膜でできたセパレータで、正極5と負極6
との間に介在し、かつ電解液を含浸したものである。本
実施例における正極5は、炭化バナジウムの添加量の効
果を明らかにするために、五酸化バナジウムを一定量の
204mg(理論電気容量約30ミリアンペア・時)と
し、これに炭化バナジウム粉末の添加量を夫々、0、
1、2、5、10、20、30、40重量%とし、導電
材であるカーボンブラックを5重量%、結着剤であるフ
ッ素樹脂を5重量%の重量比となるように混合して混練
したものを直径15mmの大きさのペレットに成形したも
ので、これらを高温真空乾燥によって脱水処理して、正
極として電池を夫々構成したものである。前記の負極6
は、リチウムが5重量%のリチウム・アルミニウム合金
であり、厚さを0.3mm、直径を15mmとしたものであ
る。そして集電用のネット7が内部に入っている。な
お、電解液は、プロピレンカーボネートと、1、2ジメ
トキシエタンを1:1で混合した溶媒に過塩素酸リチウ
ムを1モル/リットル溶解したものを用いた。電池の大
きさは、直径20mm、厚さ2.5mmとした。
In FIG. 1, reference numeral 1 denotes a case also serving as a positive electrode terminal, which is sealed by a sealing plate 2 also serving as a negative electrode terminal. Reference numeral 3 denotes a polypropylene gasket that insulates the case 1 from the sealing plate 2 and seals the case 1, and 4 denotes a separator made of a polypropylene microporous membrane.
And impregnated with an electrolytic solution. In order to clarify the effect of the added amount of vanadium carbide, the positive electrode 5 in this example was made to have a fixed amount of vanadium pentoxide of 204 mg (theoretical electric capacity of about 30 mA · h), and the added amount of vanadium carbide powder. To 0,
1, 2, 5, 10, 20, 30, and 40% by weight, carbon black as a conductive material is mixed at 5% by weight, and fluorocarbon resin as a binder is mixed at a weight ratio of 5% by weight and kneaded. These were formed into pellets having a size of 15 mm in diameter, and these were dehydrated by high-temperature vacuum drying to form respective batteries as positive electrodes. The negative electrode 6
Is a lithium aluminum alloy containing 5% by weight of lithium, having a thickness of 0.3 mm and a diameter of 15 mm. And a net 7 for current collection is inside. The electrolyte used was a solution in which lithium perchlorate was dissolved at 1 mol / L in a solvent in which propylene carbonate and 1,2 dimethoxyethane were mixed at a ratio of 1: 1. The size of the battery was 20 mm in diameter and 2.5 mm in thickness.

【0012】正極を主体となって構成する五酸化バナジ
ウムに炭化バナジウムの添加量が0から40重量%まで
の前記8種類の電池を用い、定電流1ミリアンペアで1
0時間の充放電を20回行ったのち、3.5ボルトの定
電圧、100オームの保護抵抗で10時間満充電後、3
ミリアンペアおよび、10ミリアンペアの定電流で放電
し、2.5ボルトに至るまでの電気容量を測定し、充電
電気容量に対する放電利用率を測定した。その結果を図
2、図3に示す。
Using the above eight types of batteries in which the amount of vanadium carbide added to vanadium pentoxide mainly composed of the positive electrode is 0 to 40% by weight, the constant current is 1 mA and the current is 1 mA.
After 20 times of charging / discharging for 0 hours, the battery is fully charged for 10 hours with a constant voltage of 3.5 volts and a protection resistance of 100 ohms, and then charged for 3 hours.
Discharge was performed at a constant current of 10 mA and at a current of 10 mA, and the electric capacity up to 2.5 V was measured, and the discharge utilization rate with respect to the charged electric capacity was measured. The results are shown in FIGS.

【0013】図2、図3から明らかなように、炭化バナ
ジウムが五酸化バナジウムを主体とする正極に僅かでも
含有すると放電利用率は上昇する。
As is apparent from FIGS. 2 and 3, when even a small amount of vanadium carbide is contained in the positive electrode mainly composed of vanadium pentoxide, the discharge utilization increases.

【0014】そして、とくに、10ミリアンペア放電の
正極の放電利用率では約5重量%の炭化バナジウムの添
加量から添加効果が大となり、20重量%でほぼ飽和状
態となる。実際の電池では、大きさが制限されているの
で、炭化バナジウムの添加量は、最小の体積、重量であ
ることが望ましい。したがって、炭化バナジウムの最適
添加量は5〜20重量%である。
In particular, in the discharge utilization rate of the positive electrode of 10 mA discharge, the effect of adding vanadium carbide is increased from about 5% by weight of vanadium carbide, and becomes almost saturated at 20% by weight. Since the size of an actual battery is limited, it is desirable that the amount of vanadium carbide added is a minimum volume and weight. Therefore, the optimum addition amount of vanadium carbide is 5 to 20% by weight.

【0015】なお、炭化バナジウム添加の効果は、正極
を主となって構成するバナジウム酸化物が五酸化バナジ
ウム(V2 5 )の場合に限られるものでなく、勿論ア
モルファス状の五酸化バナジウムであっても、八酸化バ
ナジウム(V3 8 )、または五酸化バナジウムと八酸
化バナジウムとの混合物であっても同様の効果が得られ
た。
The effect of the addition of vanadium carbide is not limited to the case where the vanadium oxide mainly constituting the positive electrode is vanadium pentoxide (V 2 O 5 ). The same effect was obtained with vanadium pentoxide (V 3 O 8 ) or a mixture of vanadium pentoxide and vanadium pentoxide.

【0016】[0016]

【発明の効果】以上の実施例の説明から明らかなよう
に、本発明によれば炭化バナジウムの添加によって、バ
ナジウム酸化物を主体とする正極の放電利用率、とくに
高負荷放電特性を向上させるものであり、従来より充放
電サイクル寿命の優れたリチウム二次電池を実現するも
のである。
As is apparent from the above description of the embodiments, according to the present invention, the addition of vanadium carbide improves the discharge utilization rate of a positive electrode mainly composed of vanadium oxide, particularly, a high-load discharge characteristic. Thus, a lithium secondary battery having a superior charge / discharge cycle life is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるコイン形のリチウム
二次電池の断面図
FIG. 1 is a sectional view of a coin-shaped lithium secondary battery according to an embodiment of the present invention.

【図2】炭化バナジウムの含有率による正極の3ミリア
ンペア放電利用率の変化を示した図
FIG. 2 is a diagram showing a change in a 3 mA discharge utilization rate of a positive electrode depending on a content of vanadium carbide.

【図3】炭化バナジウムの含有率による正極の10ミリ
アンペア放電利用率の変化を示した図
FIG. 3 is a diagram showing a change in the utilization rate of 10 mA discharge of a positive electrode depending on the content of vanadium carbide.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 4 セパレータ 5 正極 6 負極 DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 4 Separator 5 Positive electrode 6 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/62 H01M 4/48 H01M 4/58 H01M 4/02 H01M 10/40──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/62 H01M 4/48 H01M 4/58 H01M 4/02 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バナジウム酸化物を主体とする正極と、
リチウムを主体とする負極と、リチウム塩を溶解した有
機溶媒を主体とする電解液を有する再充電可能なリチウ
ム二次電池であって、前記正極は炭化バナジウムを含有
したリチウム二次電池。
1. A positive electrode mainly composed of vanadium oxide;
A rechargeable lithium secondary battery comprising a negative electrode mainly composed of lithium and an electrolyte mainly composed of an organic solvent in which a lithium salt is dissolved, wherein the positive electrode contains vanadium carbide.
【請求項2】 炭化バナジウムの含有量が、正極に対
し、5〜20重量%である請求項1記載のリチウム二次
電池。
2. The lithium secondary battery according to claim 1, wherein the content of vanadium carbide is 5 to 20% by weight based on the positive electrode.
JP3136904A 1991-06-10 1991-06-10 Lithium secondary battery Expired - Fee Related JP2819201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136904A JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136904A JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04363862A JPH04363862A (en) 1992-12-16
JP2819201B2 true JP2819201B2 (en) 1998-10-30

Family

ID=15186291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136904A Expired - Fee Related JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2819201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317407B2 (en) * 2006-10-17 2013-10-16 三星エスディアイ株式会社 Non-aqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same

Also Published As

Publication number Publication date
JPH04363862A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
US3883368A (en) Alkaline aluminum-air/zinc-manganese dioxide hybrid battery
Shaolin et al. A rechargeable Zn/ZnCl2, NH4Cl/polyaniline/carbon dry battery
US5015547A (en) Lithium secondary cell
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP3223051B2 (en) Lithium secondary battery
JPH06203829A (en) Nonaqueous electrolyte secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP2819201B2 (en) Lithium secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP3403858B2 (en) Organic electrolyte battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH04190557A (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3198774B2 (en) Lithium secondary battery
JP2523997B2 (en) Non-aqueous electrolyte secondary battery
JP2957690B2 (en) Non-aqueous electrolyte battery
Kumar et al. Construction, Working, and Applications of Different Zn‐Based Batteries
JPH04355068A (en) Lithium secondary battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
US3672997A (en) Sealed metallic oxide-indium secondary battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees