JPH04363862A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04363862A
JPH04363862A JP3136904A JP13690491A JPH04363862A JP H04363862 A JPH04363862 A JP H04363862A JP 3136904 A JP3136904 A JP 3136904A JP 13690491 A JP13690491 A JP 13690491A JP H04363862 A JPH04363862 A JP H04363862A
Authority
JP
Japan
Prior art keywords
positive electrode
vanadium
secondary battery
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3136904A
Other languages
Japanese (ja)
Other versions
JP2819201B2 (en
Inventor
Nobuharu Koshiba
信晴 小柴
Toshihiko Ikehata
敏彦 池畠
Kiyoto Watanabe
清人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3136904A priority Critical patent/JP2819201B2/en
Publication of JPH04363862A publication Critical patent/JPH04363862A/en
Application granted granted Critical
Publication of JP2819201B2 publication Critical patent/JP2819201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge utilizing ratio of a positive electrode in a lithium secondary battery using a vanadium oxide as the main body of the positive electrode, lithium as the main body of a negative electrode, and an organic electrolyte. CONSTITUTION:Vanadium carbide is added to a positive electrode 5. Thus, the electric contact between vanadium oxide particles mainly forming the positive electrode is improved, the discharge utilizing ratio of the positive electrode of a lithium secondary battery is improved, and the charge/discharge cycle life of the battery is increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、移動用直流電源やメモ
リーバックアップ用電源などに使用される充放電可能な
リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable and dischargeable lithium secondary battery used as a mobile DC power source, a memory backup power source, and the like.

【0002】0002

【従来の技術】従来より、充放電が可能なリチウム二次
電池として、正極に五酸化バナジウム、負極に金属リチ
ウムまたはリチウム合金、電解液にリチウム塩を溶解し
た有機溶媒を用いた電池系があって、これは3ボルトの
高い端子電圧をもっており、エネルギー密度もニッケル
・カドミウム電池の1.5〜2倍もあって、有望な電池
として知られている。
[Prior Art] Conventionally, there have been battery systems that use vanadium pentoxide as a positive electrode, metallic lithium or a lithium alloy as a negative electrode, and an organic solvent in which a lithium salt is dissolved in an electrolyte as a rechargeable lithium secondary battery. This battery has a high terminal voltage of 3 volts and an energy density of 1.5 to 2 times that of a nickel-cadmium battery, making it a promising battery.

【0003】0003

【発明が解決しようとする課題】従来の前記する五酸化
バナジウム系電池は、その正極が一般的には五酸化バナ
ジウムを90%前後含有し、カーボンブラックと、結着
剤が夫々数%で構成されていて、五酸化バナジウムは、
1電子反応で(化1)式に示すようにV2 O5 1モ
ル当り、1ファラデー(26.8アンペア・時)の電気
容量を有している。
[Problems to be Solved by the Invention] In the conventional vanadium pentoxide-based batteries mentioned above, the positive electrode generally contains around 90% vanadium pentoxide, and is composed of carbon black and a binder each in several percentages. Vanadium pentoxide is
It is a one-electron reaction and has a capacitance of 1 faraday (26.8 ampere-hour) per 1 mole of V2O5 as shown in formula (1).

【0004】0004

【化1】[Chemical formula 1]

【0005】しかしながら、実際には前記の正極をもつ
電池を放電してみると、反応利用率は高くなく、とくに
高負荷電流で放電したときの放電容量は、70%前後に
低下してしまうもので、この放電時の正極の反応効率が
低いということが問題であった。
However, when a battery with the above-mentioned positive electrode is actually discharged, the reaction utilization rate is not high, and the discharge capacity drops to around 70% especially when discharged at a high load current. However, the problem was that the reaction efficiency of the positive electrode during discharge was low.

【0006】[0006]

【課題を解決するための手段】本発明は、前記の課題を
解決するために、正極を構成する合剤として、五酸化バ
ナジウムまたは八酸化バナジウムまたはこれら両者の混
合物などのバナジウム酸化物を主体とし、これに炭化バ
ナジウムを添加したものを使用したものである。炭化バ
ナジウムの添加量は、広い範囲で有効であるが、正極合
剤の5〜20重量%がとくに効果的である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses vanadium oxide, such as vanadium pentoxide, vanadium octoxide, or a mixture of both, as the main ingredient for the positive electrode. , to which vanadium carbide was added. The amount of vanadium carbide added is effective within a wide range, but 5 to 20% by weight of the positive electrode mixture is particularly effective.

【0007】[0007]

【作用】本発明のリチウム二次電池では、五酸化バナジ
ウムや八酸化バナジウムなどのバナジウム酸化物を主体
とする正極に炭化バナジウムを混入したことにより、放
電時において正極の反応効率が大きく向上している。
[Function] In the lithium secondary battery of the present invention, by mixing vanadium carbide into the positive electrode, which is mainly made of vanadium oxide such as vanadium pentoxide or vanadium octoxide, the reaction efficiency of the positive electrode is greatly improved during discharge. There is.

【0008】これは、炭化バナジウムが半導体的な性質
を有しているために正極を主体となって構成しているバ
ナジウム酸化物の粉末粒子間の電気的接触を良好にする
と同時に、バナジウム酸化物粒子が電解液により、よく
濡れるようになるからである。さらに炭化バナジウムは
、その中にリチウムイオンが出入りし、電池反応活物質
として作用していると考えられる。
Since vanadium carbide has semiconducting properties, it improves electrical contact between vanadium oxide powder particles that mainly constitute the positive electrode, and at the same time, vanadium oxide This is because the particles become well wetted by the electrolyte. Furthermore, vanadium carbide is thought to function as a battery reaction active material, with lithium ions moving in and out of the vanadium carbide.

【0009】また、バナジウム酸化物例えば五酸化バナ
ジウムでは3.5ボルトの高電位を有するが、炭化バナ
ジウムは、このような高電位に対して安定であり、分解
したとしても、バナジウムと炭素に分解するのみであっ
て正極の主体であるバナジウム酸化物に対して悪影響を
及ぼすことは考えられないものである。
In addition, vanadium oxide, such as vanadium pentoxide, has a high potential of 3.5 volts, but vanadium carbide is stable against such high potentials, and even if it decomposes, it will not decompose into vanadium and carbon. However, it is unlikely that it would have any adverse effect on vanadium oxide, which is the main component of the positive electrode.

【0010】0010

【実施例】以下、本発明の一実施例を図面を参照しなが
ら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1において、1は正極端子を兼ねたケー
スで、負極端子を兼ねた封口板2によって封口されてい
る。3は前記ケース1と封口板2とを絶縁しケース1を
密封するポリプロピレン製ガスケット、4はポリプロピ
レン製の微孔膜でできたセパレータで、正極5と負極6
との間に介在し、かつ電解液を含浸したものである。本
実施例における正極5は、炭化バナジウムの添加量の効
果を明らかにするために、五酸化バナジウムを一定量の
204mg(理論電気容量約30ミリアンペア・時)と
し、これに炭化バナジウム粉末の添加量を夫々、0、1
、2、5、10、20、30、40重量%とし、導電材
であるカーボンブラックを5重量%、結着剤であるフッ
素樹脂を5重量%の重量比となるように混合して混練し
たものを直径15mmの大きさのペレットに成形したも
ので、これらを高温真空乾燥によって脱水処理して、正
極として電池を夫々構成したものである。前記の負極6
は、リチウムが5重量%のリチウム・アルミニウム合金
であり、厚さを0.3mm、直径を15mmとしたもの
である。そして集電用のネット7が内部に入っている。 なお、電解液は、プロピレンカーボネートと、1、2ジ
メトキシエタンを1:1で混合した溶媒に過塩素酸リチ
ウムを1モル/リットル溶解したものを用いた。電池の
大きさは、直径20mm、厚さ2.5mmとした。
In FIG. 1, a case 1 also serves as a positive terminal, and is sealed by a sealing plate 2 that also serves as a negative terminal. 3 is a polypropylene gasket that insulates the case 1 and the sealing plate 2 and seals the case 1; 4 is a separator made of a polypropylene microporous membrane;
and is impregnated with an electrolyte. In order to clarify the effect of the amount of vanadium carbide added, the positive electrode 5 in this example was made using a constant amount of vanadium pentoxide of 204 mg (theoretical electric capacity of about 30 milliampere-hours), and an amount of vanadium carbide powder added thereto. are respectively 0 and 1
, 2, 5, 10, 20, 30, and 40% by weight, carbon black as a conductive material was mixed and kneaded at a weight ratio of 5% by weight, and fluororesin as a binder was 5% by weight. The pellets were molded into pellets with a diameter of 15 mm, and these were dehydrated by high-temperature vacuum drying to form batteries as positive electrodes. The negative electrode 6
is a lithium-aluminum alloy containing 5% by weight of lithium, and has a thickness of 0.3 mm and a diameter of 15 mm. A current collecting net 7 is included inside. The electrolytic solution used was one in which 1 mol/liter of lithium perchlorate was dissolved in a solvent containing a 1:1 mixture of propylene carbonate and 1,2-dimethoxyethane. The size of the battery was 20 mm in diameter and 2.5 mm in thickness.

【0012】正極を主体となって構成する五酸化バナジ
ウムに炭化バナジウムの添加量が0から40重量%まで
の前記8種類の電池を用い、定電流1ミリアンペアで1
0時間の充放電を20回行ったのち、3.5ボルトの定
電圧、100オームの保護抵抗で10時間満充電後、3
ミリアンペアおよび、10ミリアンペアの定電流で放電
し、2.5ボルトに至るまでの電気容量を測定し、充電
電気容量に対する放電利用率を測定した。その結果を図
2、図3に示す。
Using the above-mentioned eight types of batteries in which the amount of vanadium carbide added to vanadium pentoxide, which mainly constitutes the positive electrode, is from 0 to 40% by weight, a constant current of 1 milliampere was used.
After charging and discharging for 0 hours 20 times, after fully charging for 10 hours with a constant voltage of 3.5 volts and a protective resistance of 100 ohms, 3
The battery was discharged at a constant current of 10 milliamperes and 10 milliamperes, and the electric capacity up to 2.5 volts was measured, and the discharge utilization rate with respect to the charging electric capacity was measured. The results are shown in FIGS. 2 and 3.

【0013】図2、図3から明らかなように、炭化バナ
ジウムが五酸化バナジウムを主体とする正極に僅かでも
含有すると放電利用率は上昇する。
As is clear from FIGS. 2 and 3, if even a small amount of vanadium carbide is contained in the positive electrode mainly composed of vanadium pentoxide, the discharge utilization rate increases.

【0014】そして、とくに、10ミリアンペア放電の
正極の放電利用率では約5重量%の炭化バナジウムの添
加量から添加効果が大となり、20重量%でほぼ飽和状
態となる。実際の電池では、大きさが制限されているの
で、炭化バナジウムの添加量は、最小の体積、重量であ
ることが望ましい。したがって、炭化バナジウムの最適
添加量は5〜20重量%である。
[0014] Particularly, in terms of the discharge utilization rate of the positive electrode for 10 milliampere discharge, the effect of adding vanadium carbide becomes great starting from an amount of about 5% by weight, and becomes almost saturated at 20% by weight. Since the size of an actual battery is limited, it is desirable that the amount of vanadium carbide added be the minimum volume and weight. Therefore, the optimum amount of vanadium carbide added is 5 to 20% by weight.

【0015】なお、炭化バナジウム添加の効果は、正極
を主となって構成するバナジウム酸化物が五酸化バナジ
ウム(V2 O5 )の場合に限られるものでなく、勿
論アモルファス状の五酸化バナジウムであっても、八酸
化バナジウム(V3 O8 )、または五酸化バナジウ
ムと八酸化バナジウムとの混合物であっても同様の効果
が得られた。
[0015] The effect of adding vanadium carbide is not limited to the case where the vanadium oxide that mainly constitutes the positive electrode is vanadium pentoxide (V2O5). Similar effects were also obtained using vanadium octoxide (V3O8) or a mixture of vanadium pentoxide and vanadium octoxide.

【0016】[0016]

【発明の効果】以上の実施例の説明から明らかなように
、本発明によれば炭化バナジウムの添加によって、バナ
ジウム酸化物を主体とする正極の放電利用率、とくに高
負荷放電特性を向上させるものであり、従来より充放電
サイクル寿命の優れたリチウム二次電池を実現するもの
である。
[Effects of the Invention] As is clear from the description of the above embodiments, according to the present invention, the addition of vanadium carbide improves the discharge utilization rate, especially the high-load discharge characteristics, of a positive electrode mainly composed of vanadium oxide. This realizes a lithium secondary battery with a superior charge/discharge cycle life compared to conventional lithium secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例におけるコイン形のリチウム
二次電池の断面図
[Fig. 1] A cross-sectional view of a coin-shaped lithium secondary battery in an embodiment of the present invention.

【図2】炭化バナジウムの含有率による正極の3ミリア
ンペア放電利用率の変化を示した図
[Figure 2] Diagram showing changes in the 3 milliampere discharge utilization rate of the positive electrode depending on the content of vanadium carbide

【図3】炭化バナジウムの含有率による正極の10ミリ
アンペア放電利用率の変化を示した図
[Figure 3] Diagram showing changes in the 10 mA discharge utilization rate of the positive electrode depending on the vanadium carbide content

【符号の説明】[Explanation of symbols]

1  ケース 2  封口板 4  セパレータ 5  正極 6  負極 1 case 2 Sealing plate 4 Separator 5 Positive electrode 6 Negative electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  バナジウム酸化物を主体とする正極と
、リチウムを主体とする負極と、リチウム塩を溶解した
有機溶媒を主体とする電解液を有する再充電可能なリチ
ウム二次電池であって、前記正極は炭化バナジウムを含
有したリチウム二次電池。
1. A rechargeable lithium secondary battery comprising a positive electrode mainly composed of vanadium oxide, a negative electrode mainly composed of lithium, and an electrolyte mainly composed of an organic solvent in which lithium salt is dissolved, The positive electrode is a lithium secondary battery containing vanadium carbide.
【請求項2】  炭化バナジウムの含有量が、正極に対
し、5〜20重量%である請求項1記載のリチウム二次
電池。
2. The lithium secondary battery according to claim 1, wherein the content of vanadium carbide is 5 to 20% by weight based on the positive electrode.
JP3136904A 1991-06-10 1991-06-10 Lithium secondary battery Expired - Fee Related JP2819201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136904A JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136904A JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04363862A true JPH04363862A (en) 1992-12-16
JP2819201B2 JP2819201B2 (en) 1998-10-30

Family

ID=15186291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136904A Expired - Fee Related JP2819201B2 (en) 1991-06-10 1991-06-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2819201B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103094A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Non-aqueous secondary battery
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
JP2008103094A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2819201B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
JPH0562712A (en) Non-aqueous electrolyte secondary cell
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2819201B2 (en) Lithium secondary battery
JPH0426075A (en) Organicelectrolyte battery
JPH04190557A (en) Lithium secondary battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JP2014197511A (en) Nonaqueous electrolyte secondary battery
JP3198774B2 (en) Lithium secondary battery
JP2957690B2 (en) Non-aqueous electrolyte battery
JPH02239572A (en) Polyaniline battery
JPH0558224B2 (en)
JPH0249364A (en) Lithium accumulator
JPH04355068A (en) Lithium secondary battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery
JPH0424829B2 (en)
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH05258771A (en) Lithium secondary battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees