JPH0558224B2 - - Google Patents

Info

Publication number
JPH0558224B2
JPH0558224B2 JP59212053A JP21205384A JPH0558224B2 JP H0558224 B2 JPH0558224 B2 JP H0558224B2 JP 59212053 A JP59212053 A JP 59212053A JP 21205384 A JP21205384 A JP 21205384A JP H0558224 B2 JPH0558224 B2 JP H0558224B2
Authority
JP
Japan
Prior art keywords
discharge
positive electrode
active material
discharging
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212053A
Other languages
Japanese (ja)
Other versions
JPS6191868A (en
Inventor
Tooru Matsui
Junichi Yamaura
Yoshinori Toyoguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59212053A priority Critical patent/JPS6191868A/en
Publication of JPS6191868A publication Critical patent/JPS6191868A/en
Publication of JPH0558224B2 publication Critical patent/JPH0558224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特にその正極
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery, particularly to improvements in its positive electrode.

従来の技術 現在まで、リチウム、ナトリウム等のアルカリ
金属を負極活物質材料として用い、γ−ブチロラ
クトン、テトラヒドロフラン、プロピレンカーボ
ネート、ジメトキシエタン等の溶媒中に、溶質と
して、過塩素酸リチウム、ホウ弗化リチウム、塩
化リチウム等を溶解した、いわゆる非水電解質を
用いる二次電池の開発が進められてきた。
Conventional technology Until now, alkali metals such as lithium and sodium have been used as negative electrode active materials, and lithium perchlorate and lithium borofluoride have been used as solutes in solvents such as γ-butyrolactone, tetrahydrofuran, propylene carbonate, and dimethoxyethane. Development of secondary batteries using so-called non-aqueous electrolytes in which lithium chloride and the like are dissolved has been progressing.

しかし、この種の二次電池はまだ実用化されて
いない。その理由は、充放電回数の寿命が短く、
また、充放電に際しての充放電効率が低いためで
あり、この性質劣化の原因は、主に正極及び負極
活物質の充放電における化学的又は物理的可逆性
の低下である。
However, this type of secondary battery has not yet been put into practical use. The reason is that the lifespan of charging and discharging is short.
This is also due to the low charging and discharging efficiency during charging and discharging, and the cause of this property deterioration is mainly a decrease in chemical or physical reversibility during charging and discharging of the positive electrode and negative electrode active materials.

正極活物質については、これまで、チタン、バ
ナジウム、クロム、モリブデン等の層状構造もし
くはトンネル構造を有する酸化物及びカルコゲン
化合物が知られている。これらの中で、TiS2
VSe2等のカルコゲン化合物は充放電に際しての
可逆性にすぐれる。しかし、カルコゲン化合物は
密度が小さいため、体積当たりのエネルギー密度
が小さい。一方、酸化物は密度が大きく、また酸
化数の高い金属元素を有するものは、電圧が高く
なる傾向がある。したがつて、カルコゲン化合物
より、酸化物を正極活物質として用いる方が、エ
ネルギー密度を大きくとれる点から望ましい。
As for positive electrode active materials, oxides and chalcogen compounds having a layered structure or tunnel structure, such as titanium, vanadium, chromium, and molybdenum, have been known so far. Among these, TiS 2 ,
Chalcogen compounds such as VSe 2 have excellent reversibility during charging and discharging. However, since chalcogen compounds have a low density, their energy density per volume is low. On the other hand, oxides that have a high density and a metal element with a high oxidation number tend to have a high voltage. Therefore, it is preferable to use an oxide as the positive electrode active material rather than a chalcogen compound from the viewpoint of increasing energy density.

V2O5、V6O13等のバナジウム酸化物は、上述
のような高い電圧、大きい充放電容量、すなわち
高エネルギー密度を有する正極活物質として検討
されている。また、これらは、サイクル特性にお
いても、一定の放電電圧までであれば、良好な可
逆性を示す。しかしながら、これより下の電圧ま
で放電、すなわち過放電を行なうと、これらの酸
化物は不可逆な構造に転移する。この後、再び充
電を行なつても、過放電前の充放電挙動とは全く
異なり、特に、放電曲線は平坦性のない、放電と
ともに単調に下がる、電池としては著しく不都合
なものとなる。また、充放電容量も過放電を行な
うとサイクルとともに急速に減少する。V2O5
場合、可逆性を良好な保つためには、放電電位の
下限をリチウムに対して2.4Vにする必要があり、
V6O13の場合には1.7Vである。これより下の電位
まで放電を行なうと以降の充放電挙動は大きく変
化する。
Vanadium oxides such as V 2 O 5 and V 6 O 13 are being considered as positive electrode active materials having high voltage, large charge/discharge capacity, ie, high energy density as described above. Furthermore, in terms of cycle characteristics, these also exhibit good reversibility up to a certain discharge voltage. However, upon discharge to a voltage below this, ie, overdischarge, these oxides transform into an irreversible structure. Even if the battery is charged again after this, the charging and discharging behavior is completely different from that before overdischarge, and in particular, the discharge curve is not flat and decreases monotonically as the battery discharges, which is extremely inconvenient for the battery. Furthermore, the charge/discharge capacity rapidly decreases with cycles when overdischarge is performed. In the case of V 2 O 5 , in order to maintain good reversibility, the lower limit of the discharge potential must be 2.4 V with respect to lithium.
In the case of V 6 O 13 it is 1.7V. When discharging to a potential lower than this, the subsequent charging/discharging behavior changes significantly.

発明が解決しようとする問題点 このように、バナジウム酸化物を正極活物質に
用いたリチウム二次電池は放電電圧を制御すると
いう条件下でのみ、充放電挙動を良く、また、エ
ネルギー密度を高く保つことができ、過放電を行
なうと劣化する問題点があつた。
Problems to be Solved by the Invention As described above, a lithium secondary battery using vanadium oxide as a positive electrode active material has good charge/discharge behavior and a high energy density only under the condition of controlling the discharge voltage. However, there was a problem that it deteriorated when over-discharged.

本発明は、このような従来の欠点を除去するも
のであり、高エネルギー密度で、しかも、過放電
を行なつても、充放電曲線に変化のない充放電挙
動にすぐれた、信頼性の高い非水電解質二次電池
を提供することを目的とする。
The present invention eliminates these conventional drawbacks, and provides a highly reliable battery with high energy density and excellent charging/discharging behavior with no change in the charging/discharging curve even when overdischarged. The purpose is to provide a non-aqueous electrolyte secondary battery.

問題点を解決するための手段 本発明の非水電解質二次電池は、正極活物質に
xZrO2・yV2O5(ただしy/xは1〜10)で表わ
される酸化物を用いることを特徴とする。
Means for Solving the Problems The non-aqueous electrolyte secondary battery of the present invention has a positive electrode active material.
It is characterized by using an oxide represented by xZrO 2 ·yV 2 O 5 (where y/x is 1 to 10).

作 用 上記の酸化物xZrO2・yV2O5は酸化ジルコニウ
ム(ZrO2)と五酸化バナジウム(V2O5)の混合
物を大気下、650℃以上の温度で熱処理すること
によつて得ることができる。
Effect The above oxide xZrO 2 yV 2 O 5 can be obtained by heat treating a mixture of zirconium oxide (ZrO 2 ) and vanadium pentoxide (V 2 O 5 ) at a temperature of 650°C or higher in the atmosphere. I can do it.

y/xが1より小さい場合エネルギー密度が小
さく、10より大きい場合は放電曲線は平坦性がな
くなる。
When y/x is smaller than 1, the energy density is small, and when y/x is larger than 10, the discharge curve loses its flatness.

実施例 試験極となる正極活物質は、ZrO2とV2O5とを
種々の割合で混合し、大気圧下650℃以上の温度
で焼成したものを用いた。一例といて、酸化ジル
コニウムと酸化バナジウムとのモル比1対1の混
合物を焼くとZrV2O7が生成した。試験はすべて
扁平形電池で行なつた。
Example The positive electrode active material used as the test electrode was a mixture of ZrO 2 and V 2 O 5 in various ratios and fired at a temperature of 650° C. or higher under atmospheric pressure. As an example, when a mixture of zirconium oxide and vanadium oxide in a molar ratio of 1:1 is baked, ZrV 2 O 7 is produced. All tests were conducted with flat batteries.

上記焼成物、アセチレンブラツク、及び四弗化
エチレン樹脂を重量比で100対10対15の割合で混
合した。混合物200mgをチタンエキスパンドメタ
ル集電体をスポツト溶接した電池ケース内に成形
し圧着した。極板の直径は17.5mmである。負極に
は、厚さ0.38mmの金属リチウムを用い、ニツケル
エキスパンドメタル集電体をスポツト溶接した封
口板に加圧圧着した。
The above baked product, acetylene black, and tetrafluoroethylene resin were mixed in a weight ratio of 100:10:15. 200 mg of the mixture was molded and crimped into a battery case to which a titanium expanded metal current collector was spot-welded. The diameter of the electrode plate is 17.5mm. Metal lithium with a thickness of 0.38 mm was used as the negative electrode, and it was pressure-bonded to a sealing plate to which a nickel expanded metal current collector was spot-welded.

電解液には、プロピレンカーボネートとジメト
キシエタンを等体積の割合で混合したものに1モ
ル/の割合で過塩素酸リチウムを溶解したもの
を用い、また、金属リチウム極に発生するデンド
ライトによる内部短絡を防ぐため、セパレータに
ポリプロピレン不織布を用いた。
The electrolyte used was a mixture of propylene carbonate and dimethoxyethane in equal volumes, with lithium perchlorate dissolved at a ratio of 1 mole/mole. To prevent this, a polypropylene nonwoven fabric was used as the separator.

なお、比較例として用いる電池も正極活物質を
除き上記と同様に構成した。
Note that a battery used as a comparative example was also constructed in the same manner as above except for the positive electrode active material.

このように構成した電池において、2mAの定
電流、1.2〜3.8Vの電圧の範囲で充放電を行なつ
た。
The battery constructed in this way was charged and discharged at a constant current of 2 mA and a voltage range of 1.2 to 3.8 V.

第1図、第2図及び第3図は、それぞれ正極活
物質に本発明の一例であるZrV2O7を用いた場合、
比較例であるV2O5を用いた場合、及びZrO2
V2O5との混合物(モル比1対1)を用いた場合
の第1サイクルと第2サイクルの放電曲線を示し
たものである。これより、V2O5単独およびZrO2
とV2O5の混合物では、第1サイクルと第2サイ
クルの放電挙動が著しく異なることがわかる。す
なわち、過放電を行なうと、放電曲線に平坦性は
なくなり、また、放電容量も著しく劣化してい
る。
FIG. 1, FIG. 2, and FIG. 3 respectively show the case where ZrV 2 O 7 , which is an example of the present invention, is used as the positive electrode active material.
When using V 2 O 5 as a comparative example, and with ZrO 2
The discharge curves of the first cycle and the second cycle are shown when a mixture with V 2 O 5 (molar ratio 1:1) is used. From this, V 2 O 5 alone and ZrO 2
It can be seen that for the mixture of V 2 O 5 and V 2 O 5 , the discharge behavior in the first and second cycles is significantly different. That is, when overdischarging is performed, the flatness of the discharge curve disappears, and the discharge capacity also deteriorates significantly.

これに対して、ZrV2O7は、第1サイクルに比
べて第2サイクルでは放電容量の減少がわずかに
あるものの、放電曲線の平坦性は良好であり、充
放電挙動の満足できるものである。
On the other hand, with ZrV 2 O 7 , although there is a slight decrease in discharge capacity in the second cycle compared to the first cycle, the flatness of the discharge curve is good and the charge/discharge behavior is satisfactory. .

第1図は、xZrO2・yV2O5のy/x値を変化さ
せた場合の第2サイクルにおける放電曲線を描い
たものである。これより、y/x値が1より小さ
い場合、放電曲線は平坦性があるものの、放電容
量が小さいことがわかる。一方、y/x値が10よ
り大きい場合は、第1図と同様に放電曲線は平坦
性のない、単調に下がるものとなり、電池として
は不都合になることがわかる。放電曲線の平坦性
は、特にy/xが1〜5で良好である。
FIG. 1 depicts a discharge curve in the second cycle when the y/x value of xZrO 2 ·yV 2 O 5 is changed. From this, it can be seen that when the y/x value is smaller than 1, although the discharge curve is flat, the discharge capacity is small. On the other hand, if the y/x value is greater than 10, the discharge curve will not be flat and will fall monotonically, as shown in FIG. 1, which is inconvenient for the battery. The flatness of the discharge curve is particularly good when y/x is 1 to 5.

発明の効果 以上のように、本発明によれば、高エネルギー
密度で、しかも過放電を行なつても充放電曲線に
変化のない充放電挙動のすぐれた非水電解質二次
電池が得られる。
Effects of the Invention As described above, according to the present invention, a nonaqueous electrolyte secondary battery with high energy density and excellent charge/discharge behavior with no change in the charge/discharge curve even when overdischarged can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の非水電解質二次電池
における第1サイクル及び第2サイクルの放電曲
線を示す図、第2図及び第3図は比較例における
放電曲線を示す図であり、第4図はV2O5/ZrO2
比(y/x)に対して放電曲線を描いた図であ
る。
FIG. 1 is a diagram showing the discharge curves of the first cycle and the second cycle in the non-aqueous electrolyte secondary battery of the example of the present invention, and FIGS. 2 and 3 are diagrams showing the discharge curves in the comparative example, Figure 4 shows V 2 O 5 /ZrO 2
FIG. 3 is a diagram depicting a discharge curve with respect to the ratio (y/x).

Claims (1)

【特許請求の範囲】[Claims] 1 正極と、アルカリ金属イオン導電性の非水電
解質と、アルカリ金属を活物質とする負極を構成
要素とし、前記正極の活物質が式xZrO2・yV2O5
(ただしy/xは1〜10)で表わされる酸化物で
あることを特徴とする非水電解質二次電池。
1 A positive electrode, an alkali metal ion conductive non-aqueous electrolyte, and a negative electrode having an alkali metal as an active material are the constituent elements, and the active material of the positive electrode has the formula xZrO 2 yV 2 O 5
A nonaqueous electrolyte secondary battery characterized by being an oxide represented by (where y/x is 1 to 10).
JP59212053A 1984-10-09 1984-10-09 Nonaqueous electrolyte secondary battery Granted JPS6191868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212053A JPS6191868A (en) 1984-10-09 1984-10-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212053A JPS6191868A (en) 1984-10-09 1984-10-09 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6191868A JPS6191868A (en) 1986-05-09
JPH0558224B2 true JPH0558224B2 (en) 1993-08-26

Family

ID=16616080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212053A Granted JPS6191868A (en) 1984-10-09 1984-10-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6191868A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414902B1 (en) * 1988-12-16 1994-03-09 Otsuka Kagaku Kabushiki Kaisha Totally solid secondary cell
JPH02223158A (en) * 1989-02-22 1990-09-05 Otsuka Chem Co Ltd All-solid type battery
JP2740960B2 (en) * 1989-02-22 1998-04-15 大塚化学株式会社 Lithium secondary battery
JP2759479B2 (en) * 1989-02-22 1998-05-28 大塚化学株式会社 All-solid-state lithium secondary battery

Also Published As

Publication number Publication date
JPS6191868A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
US8187752B2 (en) High energy lithium ion secondary batteries
US20080070122A1 (en) Cathode active material and lithium battery employing the same
US20070196735A1 (en) Nonaqueous electrolyte secondary battery
JPH02288068A (en) Nonaqueous electrolyte secondary battery
JPH0822841A (en) Secondary battery
US5015547A (en) Lithium secondary cell
US5422203A (en) Rapid reversible intercalation of lithium into carbon secondary battery electrodes
JP3079382B2 (en) Non-aqueous secondary battery
JP2012124026A (en) Nonaqueous electrolyte secondary battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH0558224B2 (en)
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH0554911A (en) Nonaqueous electrolytic lithium secondary battery
JP2000188095A (en) Lithium-ion secondary battery
JPH0558225B2 (en)
JP3066086B2 (en) Non-aqueous secondary battery
JP2579058B2 (en) Non-aqueous electrolyte secondary battery