JP3079382B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3079382B2
JP3079382B2 JP02125558A JP12555890A JP3079382B2 JP 3079382 B2 JP3079382 B2 JP 3079382B2 JP 02125558 A JP02125558 A JP 02125558A JP 12555890 A JP12555890 A JP 12555890A JP 3079382 B2 JP3079382 B2 JP 3079382B2
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02125558A
Other languages
Japanese (ja)
Other versions
JPH0422066A (en
Inventor
英美子 八木
吉野  彰
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP02125558A priority Critical patent/JP3079382B2/en
Publication of JPH0422066A publication Critical patent/JPH0422066A/en
Application granted granted Critical
Publication of JP3079382B2 publication Critical patent/JP3079382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な二次電池に関し、特に過放電特性に優
れた二次電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a novel secondary battery, and more particularly to a secondary battery having excellent overdischarge characteristics.

[従来の技術] 従来より非水系二次電池は水溶液系電池に比べ高電
圧,高エネルギー密度であり自己放電に優れるなど大い
に期待されている。特に特開昭55−13613号公報、特開
昭62−90863号公報、特開昭63−299056号公報等で開示
されているリチウムと遷移金属、更に要すれば非遷移金
属等からなる複合酸化物を正極活物質とする非水系二次
電池は3V以上の高起電力が得られ極めてエネルギー密度
が高く次世代の高性能二次電池として大いに期待されて
いる。更にかかる複合酸化物を正極として用いた場合の
特徴としてリチウム複合酸化物そのものが既にリチウム
をイオンとして含有しており、負極活物質として必ずし
も金属リチウムを用いなくても電池系を形成し得るとい
う特徴をも有しており、安全性の面でも優れた電池とし
ても期待されている。
[Prior Art] Conventionally, non-aqueous secondary batteries are expected to have higher voltage, higher energy density and better self-discharge than aqueous battery batteries. In particular, a composite oxide composed of lithium and a transition metal, and if necessary, a non-transition metal and the like disclosed in JP-A-55-13613, JP-A-62-90863, JP-A-63-299056 and the like. A non-aqueous secondary battery using a material as a positive electrode active material has a high electromotive force of 3 V or more, has an extremely high energy density, and is highly expected as a next-generation high-performance secondary battery. Further, as a feature when such a composite oxide is used as a positive electrode, a lithium composite oxide itself already contains lithium as an ion, and a battery system can be formed without necessarily using metal lithium as a negative electrode active material. It is also expected to be an excellent battery in terms of safety.

[発明が解決しようとする課題] このようにリチウムと遷移金属,更に要すれば非遷移
金属との複合酸化物を正極に用いた電池はすぐれた特性
を有する可能性のある二次電池と言える。
[Problems to be Solved by the Invention] As described above, a battery using a composite oxide of lithium and a transition metal, and if necessary, a non-transition metal as a positive electrode can be said to be a secondary battery that may have excellent characteristics. .

通常、在来水溶液系二次電池であるニッケルカドミウ
ム電池あるいは鉛蓄電池の場合は過放電をしても殆んど
問題はない。
Normally, in the case of a nickel cadmium battery or a lead storage battery which is a conventional aqueous secondary battery, there is almost no problem even if overdischarge is performed.

一方、非水系二次電池の場合、0Vまで過放電するとい
くら充電しても、もとの状態にはもどらない。この理由
としては次のように考えられる。
On the other hand, in the case of a non-aqueous secondary battery, no matter how much the battery is charged when overdischarged to 0 V, it does not return to the original state. The reason is considered as follows.

電圧が0Vとなるまで放電するということは、正極の容
量もしくは負極の容量のいずれかが先に尽き、相手の放
電電位まで、電位が引き下げられ、あるいは引き上げら
れて、電池全体としての電圧が0Vになるというものであ
る。まず正極の容量が先に尽きる場合を考えると、放電
が終了した時点では、正極の電位は、負極の電位まで引
き下げられることになる。一般に非水系二次電池の正極
活物質として使用される無機化合物はある電位以下、殆
んどはリチウムに対して1V程度であるが、その電位以下
になると結晶構造に変化を来たし、再び充電しても、も
とにもどらなくなる。
Discharging until the voltage becomes 0 V means that either the capacity of the positive electrode or the capacity of the negative electrode runs out first, the potential is lowered or raised to the discharge potential of the other party, and the voltage of the entire battery is 0 V It is to become. First, considering the case where the capacity of the positive electrode is exhausted first, the potential of the positive electrode is reduced to the potential of the negative electrode when the discharge ends. In general, the inorganic compound used as a positive electrode active material of a non-aqueous secondary battery has a potential lower than a certain level, and is almost 1 V with respect to lithium. But it will not return.

次に負極の容量が先に尽きた場合を考えると負極の電
位は正極の放電電位に引き上げられることになる。この
場合用いる正極の種類によって異なるがリチウムに対し
3V以上、場合によっては4V近くまで引き上げられること
になる。この場合負極活物質の劣化はもちろんのこと負
極集電体,缶材,リードタブ材等の材料が電気化学的に
溶解することになる。特に前述の一般式LixMyNzO2で表
わされるリチウム複合酸化物を正極として用いた場合そ
の放電電位が高いが故にこの影響を著しく受ける。更に
は該リチウム複合酸化物を正極として用いた電池系は前
述の如くその組立時においてリチウムイオンを含有した
状態,即ち放電状態で組立てることができ、その初充電
により負極にリチウム金属を析出させ負極活物質とする
ことができ、或いは他の組合せとしてその初充電により
導電性高分子,炭素質材料等の陽イオンをインタカレー
トし得る物質を用いることも可能であり、これが大きな
利点となっている。従って特にリチウム複合酸化物を正
極として用いた場合には、正極及び負極活物質の各々の
初充電時における電流効率の値の差が正極及び負極各々
の充電容量を決めることとなる。一般にリチウム複合酸
化物は初充電時においてもその電流効率は100%近い値
を示し、負極の電流効率の値よりも大きいのが常であ
る。このことは該電池系は負極容量律速の充放電サイク
ルを繰り返すこととなる。この事実は又、前記の過放電
状態,即ち電池電圧が0Vになった時には負極の電位が正
極の放電電位にまで引き上げられることを意味する。即
ち前記ケースの後者、即ち負極の容量が先に尽きるケー
スにより電池性能の劣化をきたすこととなる。
Next, considering the case where the capacity of the negative electrode is exhausted first, the potential of the negative electrode is raised to the discharge potential of the positive electrode. In this case, it depends on the type of positive electrode
It will be raised to more than 3V, and in some cases up to near 4V. In this case, not only the negative electrode active material is deteriorated, but also the materials such as the negative electrode current collector, the can material, and the lead tab material are electrochemically dissolved. In particular, when the lithium composite oxide represented by the above-mentioned general formula LixMyNzO 2 is used as a positive electrode, since the discharge potential is high, the influence is significantly affected. Further, as described above, a battery system using the lithium composite oxide as a positive electrode can be assembled in a state containing lithium ions at the time of its assembly, that is, in a discharge state. It can be used as an active material, or as another combination, it is possible to use a material capable of intercalating cations such as a conductive polymer or a carbonaceous material by the first charge thereof, which is a great advantage. I have. Therefore, particularly when a lithium composite oxide is used as the positive electrode, the difference in the current efficiency between the positive electrode and the negative electrode active material at the time of the first charge determines the charge capacity of each of the positive electrode and the negative electrode. In general, the current efficiency of the lithium composite oxide shows almost 100% even at the time of the first charge, and is usually larger than the current efficiency of the negative electrode. This means that the battery system repeats the charge-discharge cycle of the negative electrode capacity-limited. This fact also means that when the battery is overdischarged, that is, when the battery voltage becomes 0 V, the potential of the negative electrode is raised to the discharge potential of the positive electrode. That is, the latter case, that is, the case where the capacity of the negative electrode runs out first, causes deterioration of the battery performance.

従って、このリチウム複合酸化物を正極活物質を用い
た電池も他の非水系二次電池と同様に過放電状態では使
用できないこととなり、電池使用の際の大きな制約とな
る。
Therefore, a battery using this lithium composite oxide as a positive electrode active material cannot be used in an overdischarged state like other non-aqueous secondary batteries, and this is a great limitation when using the battery.

本発明はこのリチウム複合酸化物を正極活物質として
用いた電池の過放電特性の改良を目的とするものであ
る。
An object of the present invention is to improve overdischarge characteristics of a battery using the lithium composite oxide as a positive electrode active material.

[課題を解決するための手段] 上記問題点を解決する為に本発明は、LixMyNzO2(M
は遷移金属の少なくとも一種を表わし、Nは非遷移金属
の少なくとも一種を表わし、x,y,zは各々0.05≦x≦1.1
0,0.85≦y≦1.00,0≦z≦0.10の数であり、yの値は二
種以上の遷移金属を用いる場合にはその合計値を示すも
のである。)を正極主活物質とし、リチウム・銅複合酸
化物を正極副活物質とし、リチウムイオンをインターカ
レートし得る物質を負極とする非水系二次電池を提供せ
んとするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides LixMyNzO 2 (M
Represents at least one transition metal, N represents at least one non-transition metal, and x, y, and z each represent 0.05 ≦ x ≦ 1.1.
It is a number of 0, 0.85 ≦ y ≦ 1.00, 0 ≦ z ≦ 0.10, and the value of y indicates the total value when two or more transition metals are used. ) Is used as a positive electrode main active material, a lithium / copper composite oxide is used as a positive electrode auxiliary active material, and a material capable of intercalating lithium ions is provided as a negative electrode.

[作 用] 前述の如く電池を0Vまで過放電した場合、正極,負極
いずれかの容量が先に尽きることになるが、リチウム複
合酸化物を正極活物質として用いた場合には前記の理由
により何も対策を施さなければ負極の容量が先に尽きる
ことになり、前記の問題を起こすことになる。
[Operation] When the battery is overdischarged to 0 V as described above, the capacity of either the positive electrode or the negative electrode is exhausted first. If no countermeasures are taken, the capacity of the negative electrode will be exhausted first, causing the above-mentioned problem.

このことは前記の如く初充電時におけるリチウム複合
酸化物の正極アノード反応によるリチウムイオン放出量
と該リチウムイオンの負極カソード反応による、導電性
高分子、炭素質材料とのインターカレーション化合物形
成量とのアンバランスから生じるものである。
This means that the amount of lithium ions released by the positive-electrode anode reaction of the lithium composite oxide and the amount of the intercalation compound formed with the conductive polymer and the carbonaceous material by the negative-electrode cathode reaction of the lithium ions at the time of the first charge as described above. Arising from the imbalance of

かかるアンバランスを解消する為には初充電時にリチ
ウム複合酸化物以外の副活物質からもリチウムイオンを
放出させることが考えられる。
In order to eliminate such imbalance, it is conceivable to release lithium ions from the secondary active material other than the lithium composite oxide at the time of the first charge.

かかる副活物質に要求される特性としては、副活物質
自体がリチウムイオンを放出した場合に放電電位を有さ
ないか、又は放電電位を有していてもリチウムに対して
3V以下、好ましくは2.7V以下の電位を有するものが好ま
しい。
As a characteristic required for such a sub-active material, the sub-active material itself does not have a discharge potential when releasing lithium ions, or has a discharge potential even if it has a discharge potential.
Those having a potential of 3 V or less, preferably 2.7 V or less are preferable.

本発明者らは、種々の物質について鋭意検討の結果、
かかる正極副活物質としてリチウム・銅複合酸化物が極
めて有用であり、極めて顕著な効果をもたらすことを見
出した。
The present inventors have conducted intensive studies on various substances,
It has been found that lithium / copper composite oxide is extremely useful as such a positive electrode sub-active material, and brings about a very remarkable effect.

本発明で正極主活物質として用いる一般式LixMyNzO2
で示されるリチウム複合酸化物において、Mは遷移金属
の少くとも一種を表わし、Nは非遷移金属の少くとも一
種を表わす。Mは特に限定されるものではないがその一
例を示せば、Co,Ni,Fe,Mn,V,Mo等が挙げられ、同じくN
も特に限定されるものではないがAl,In,Sn等が挙げられ
る。その具体的な例をLiイオンを含有した状態、即ち放
電状態での化学式で示せばLiCoO2,LiNiO2,LiCo0.97Sn
0.03O2,LiCo0.96Al0.05O2,LiCo0.98In0.06O2,LiCo0.75N
i0.23O2,LiCo0.85Fe0.10O2,LiCo0.80Ni0.17Sn0.02O2,Li
Co0.85Fe0.10Sn0.05O2,LiCo0.85Mn0.15O2,LiCo0.85
0.11O2,LiCo0.83Mo0.15O2等が挙げられる。
General formula LixMyNzO 2 used as a positive electrode main active material in the present invention
In the lithium composite oxide represented by, M represents at least one kind of transition metal, and N represents at least one kind of non-transition metal. M is not particularly limited, but examples thereof include Co, Ni, Fe, Mn, V, Mo and the like.
Is not particularly limited, but Al, In, Sn and the like can be mentioned. If a specific example is shown by a chemical formula in a state containing Li ions, that is, in a discharge state, LiCoO 2 , LiNiO 2 , LiCo 0.97 Sn
0.03 O 2 , LiCo 0.96 Al 0.05 O 2 , LiCo 0.98 In 0.06 O 2 , LiCo 0.75 N
i 0.23 O 2 , LiCo 0.85 Fe 0.10 O 2 , LiCo 0.80 Ni 0.17 Sn 0.02 O 2 , Li
Co 0.85 Fe 0.10 Sn 0.05 O 2 , LiCo 0.85 Mn 0.15 O 2 , LiCo 0.85 V
0.11 O 2 , LiCo 0.83 Mo 0.15 O 2 and the like.

又、xの値は充電状態、放電状態により変動し、その
範囲は0.05≦x≦1.10である。即ち充電によりリチウム
イオンのディンターカレーションが起こり、xの値は小
さくなり、完全充電状態においてはxの値は0.05に達す
る。又、放電によりリチウムイオンのインターカレーシ
ョンが起こりxの値は大きくなり、完全放電状態におい
てはxの値は1.10に達する。
The value of x varies depending on the state of charge and the state of discharge, and the range is 0.05 ≦ x ≦ 1.10. That is, lithium ion dintercalation occurs due to charging, and the value of x becomes small, and in a fully charged state, the value of x reaches 0.05. Further, intercalation of lithium ions occurs due to the discharge, and the value of x increases. In a completely discharged state, the value of x reaches 1.10.

又、yの値は二種以上の遷移金属を用いる場合にはそ
の合計値を示すものであり、yの値は充電、放電により
変動せず、0.85≦y≦1.00の範囲である。yの値が0.85
未満及び1.00を越す場合にはサイクル性の低下、過電圧
の上昇等の現象が発生し二次電池用活物質として充分な
性能が得られず好ましくない。
When two or more transition metals are used, the value of y indicates the total value. The value of y does not fluctuate due to charging and discharging, and is in the range of 0.85 ≦ y ≦ 1.00. The value of y is 0.85
If it is less than 1.00 or more than 1.00, phenomena such as a decrease in cyclability and an increase in overvoltage occur, so that sufficient performance as an active material for a secondary battery cannot be obtained, which is not preferable.

又、zの値は0≦z≦0.10の範囲であり、zの値が0.
10を越す場合には二次電池用活物質としての基本特性が
損われ好ましくない。
The value of z is in the range of 0 ≦ z ≦ 0.10, and the value of z is 0.
If it exceeds 10, the basic characteristics as an active material for a secondary battery are impaired, which is not preferable.

かかるLixMyNzO2は特開昭62−90863号公報等にあるよ
うな公知の方法により得ることができる。すなわち、L
i,M,N各々の金属の酸化物,水酸化物,炭酸塩,硝酸
塩,有機酸塩等を混合せしめた後、空気中又は酸素雰囲
気下において600〜950℃,好ましくは700〜900℃の温度
範囲で焼成することにより得られる。
Such LixMyNzO 2 can be obtained by a known method as described in JP-A-62-90863. That is, L
After mixing the oxides, hydroxides, carbonates, nitrates, organic acid salts, etc. of each metal of i, M and N, the mixture is heated to 600 to 950 ° C., preferably 700 to 900 ° C. in air or oxygen atmosphere. It is obtained by firing in a temperature range.

本発明で言うリチウム・銅複合酸化物とは、主構成成
分としてリチウム及び銅からなる複合酸化物であり、本
質的な構造を変化させない範囲において他元素を添加し
ても良い。
The lithium-copper composite oxide referred to in the present invention is a composite oxide composed of lithium and copper as main components, and other elements may be added as long as the essential structure is not changed.

リチウム・銅複合酸化物の具体例を一例として示せ
ば、LiCuO,Li2CuO2,Li3CuO3等が挙げられ、かかる複合
酸化物は炭酸リチウム,水酸化リチウム,酸化リチウム
等のリチウム化合物と炭酸銅、酸化銅、水酸化銅等の銅
化合物等を混合し空気中、酸素雰囲気中等任意の条件下
で450℃〜1,200℃,好ましくは600℃〜1,000℃の温度範
囲で焼成することにより得ることができる。
LiCuO, Li 2 CuO 2 , Li 3 CuO 3 and the like can be cited as specific examples of lithium-copper composite oxides. Such composite oxides include lithium compounds such as lithium carbonate, lithium hydroxide and lithium oxide. Obtained by mixing a copper compound such as copper carbonate, copper oxide, copper hydroxide and the like, and calcining the mixture in a temperature range of 450 ° C. to 1,200 ° C., preferably 600 ° C. to 1,000 ° C. under any conditions such as air or oxygen atmosphere. be able to.

ここで主活物質であるLixMyNzO2と該リチウム・銅複
合酸化物の配合比率は特に制限されないが、過放電特
性、放電容量を考慮すれば、LixMyNzO2100重量部に対し
リチウム・銅複合酸化物は1重量部以上,40重量部以下
であることが好ましい。更に好ましくは5重量部以上,2
5重量部以下,より好ましくは5重量部以上,20重量部以
下である。
Here, the compounding ratio of LixMyNzO 2 as the main active material and the lithium-copper composite oxide is not particularly limited, but considering over-discharge characteristics and discharge capacity, the lithium-copper composite oxide is 100 parts by weight of LixMyNzO 2 . Is preferably not less than 1 part by weight and not more than 40 parts by weight. More preferably, 5 parts by weight or more, 2
5 parts by weight or less, more preferably 5 parts by weight or more and 20 parts by weight or less.

かかるリチウム・銅複合酸化物の作用機構については
未だ明確ではないが、この化合物そのものは初充電時に
おいて優れたリチウムイオン放出能力を有している。Li
2CuO2の例で具体的に示せば の反応が電気化学的に起こっており、そのリチウムイオ
ン放出量は条件により異なるが例えばリチウムに対して
4.2Vの電位での充電によりwの値は0.8〜1.2の値に達す
る。特徴的なことはかかる初充電された、即ちディンタ
ーカレーションされたリチウム・銅複合酸化物は放電能
力,放電電位を殆んど有していない。即ち初充電時にリ
チウムイオンの供給源としてのみ働いているものと推察
される。
Although the action mechanism of the lithium / copper composite oxide is not yet clear, the compound itself has an excellent lithium ion releasing ability at the time of the first charge. Li
2 CuO 2 Is electrochemically occurring, and the amount of lithium ions released varies depending on conditions.
By charging at a potential of 4.2 V, the value of w reaches a value of 0.8 to 1.2. Characteristically, such initially charged, that is, intercalated, lithium-copper composite oxide has almost no discharge capability and discharge potential. That is, it is presumed that it works only as a lithium ion supply source at the time of the first charge.

かかる特性に基き、本発明の組成に基く正極主活物質
及び正極副活物質を用いた場合、前記の理由により、過
放電時、即ち電池電圧が0Vになった場合にも、負極電位
は条件により異なるが1.5V〜3.5Vの範囲に保持されてお
り、過放電特性が著しく改善される。
Based on such characteristics, when the positive electrode main active material and the positive electrode sub-active material based on the composition of the present invention are used, for the above-described reason, at the time of overdischarge, that is, even when the battery voltage becomes 0 V, the negative electrode potential is conditioned. , But is maintained in the range of 1.5 V to 3.5 V, and the overdischarge characteristics are significantly improved.

本発明で用いられる負極活物質は特に限定されるもの
ではないが、ポリアセチレン,ポリ−p−フェニレン等
の導電性高分子負極,ピッチ系カーボン,気相成長法炭
素繊維等の炭素質材料等が挙げられる。
The negative electrode active material used in the present invention is not particularly limited. Examples of the negative electrode active material include conductive polymer negative electrodes such as polyacetylene and poly-p-phenylene, pitch-based carbon, and carbonaceous materials such as vapor-grown carbon fiber. No.

前記の如く炭素質材料等のリチウムイオンをインター
カレートし得る物質を負極に用いた場合に優れた効果が
発揮される。
As described above, excellent effects are exhibited when a substance capable of intercalating lithium ions such as a carbonaceous material is used for the negative electrode.

本発明の非水系二次電池を組立てる場合の基本構成要
素として、前記本発明の活物質を用いた電極、更にはセ
パレーター、非水電解液が挙げられる。セパレーターと
しては特に限定されないが、織布,不織布,ガラス織
布,合成樹脂微多孔膜等が挙げられるが、前述の如く、
薄膜、大面積電極を用いる場合には、例えば特開昭58−
59072号に開示される合成樹脂微多孔膜、特にポリオレ
フィン系微多孔膜が、厚み、強度、膜抵抗の面で好まし
い。
Basic components for assembling the non-aqueous secondary battery of the present invention include an electrode using the active material of the present invention, a separator, and a non-aqueous electrolyte. The separator is not particularly limited, and examples thereof include a woven fabric, a nonwoven fabric, a glass woven fabric, and a synthetic resin microporous membrane.
When a thin film and large area electrode are used, for example,
The microporous synthetic resin membrane disclosed in Japanese Patent No. 59072, particularly a polyolefin-based microporous membrane, is preferred in terms of thickness, strength, and membrane resistance.

非水電解液の電解質としては特に限定されないが、一
例を示せば、LiClO4,LiBF4,LiAsF6,CF3SO3Li,LiPF6,Li
I,LiAlCl4,NaClO4,NaBF4,NaI,(n−Bu)4N ClO4,(n
−Bu)4N BF4,KPF6等が挙げられる。又、用いられる電
解液の有機溶媒としては、例えばエーテル類、ケトン
類、ラクトン類、ニトリル類、アミン類、アミド類、硫
黄化合物、塩素化炭化水素類、エステル類、カーボネー
ト類、ニトロ化合物、リン酸エステル系化合物、スルホ
ラン系化合物等を用いることができるが、これらのうち
でもエーテル類、ケトン類、ニトリル類、塩素化炭化水
素類、カーボネート類、スルホラン系化合物が好まし
い。更に好ましくは環状カーボネート類である。
 The electrolyte of the non-aqueous electrolyte is not particularly limited.
For example, LiClOFour, LiBFFour, LiAsF6, CFThreeSOThreeLi, LiPF6, Li
I, LiAlClFour, NaClOFour, NaBFFour, NaI, (n-Bu)FourN ClOFour, (N
−Bu)FourN BFFour, KPF6And the like. In addition,
Examples of the organic solvent for the dissolution include ethers, ketones
, Lactones, nitriles, amines, amides, sulfur
Yellow compounds, chlorinated hydrocarbons, esters, carbonate
G, nitro compounds, phosphate compounds, sulfo
Run compounds can be used.
But ethers, ketones, nitriles, chlorinated hydrocarbons
Elements, carbonates and sulfolane compounds are preferred.
No. More preferred are cyclic carbonates.

これらの代表例としては、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1,2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルムアミ
ド、スルホラン、3−メチル−スルホラン、リン酸トリ
メチル、リン酸トリエチルおよびこれらの混合溶媒等を
あげることができるが、必ずしもこれらに限定されるも
のではない。
Representative examples of these include tetrahydrofuran, 2-
Methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyrolactone, dimethoxyethane, methylphor Mate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, trimethyl phosphate, and a mixed solvent of these can be given, but not necessarily. It is not limited to these.

更に要すれば、集電体、端子、絶縁板等の部品を用い
て電池が構成される。又、電池の構造としては、特に限
定されるものではないが、正極、負極、更に要すればセ
パレーターを単層又は複層としたペーパー型電池、積層
型電池、又は正極、負極、更に要すればセパレーターを
ロール状に巻いた円筒状電池等の形態が一例として挙げ
られる。
If necessary, a battery is configured using components such as a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single or multiple layers of separators, a laminated type battery, or a positive electrode, a negative electrode, For example, a form of a cylindrical battery or the like in which a separator is wound in a roll shape is given as an example.

[発明の効果] 本発明の電池は従来の非水系電池の欠点であった過放
電特性が飛躍的に改良され、小型電子機器用、電気自動
車用等民生用、産業用の電源として極めて有用である。
[Effect of the Invention] The battery of the present invention has a remarkably improved overdischarge characteristic, which is a drawback of the conventional nonaqueous battery, and is extremely useful as a power source for consumer use such as small electronic devices, electric vehicles, and industrial use. is there.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

リチウム・銅複合酸化物の製造例 炭酸リチウムと酸化第2銅を2:1のモル比で混合した
後、空気中で940℃にて18時間焼成することによりLi2Cu
O2を得た。
Production Example of Lithium-Copper Composite Oxide After mixing lithium carbonate and cupric oxide at a molar ratio of 2: 1, the mixture was calcined in air at 940 ° C. for 18 hours to produce Li 2 Cu.
To give the O 2.

このLi2CuO2をボールミルにて平均粒径15μに粉砕し
て以下の実施例,比較例に用いた。
This Li 2 CuO 2 was pulverized with a ball mill to an average particle size of 15 μm and used in the following Examples and Comparative Examples.

実施例1 LiCoO2を正極活物質とし、Li2CuO2を正極副活物質と
し、グラファイトおよびアセチレンブラックを導電剤と
し、フッ素ゴムを結着剤とし、各々LiCoO2:Li2CuO2:グ
ラファイト:アセチレンブラック:フッ素ゴム=100:1
2:7.5:2.5:2の重量比で混合したものをジメチルアミド
ペーストとして、Al箔に塗布乾燥したシートを正電極と
し、ニードルコークス粉末を負極活物質とし、フッ素ゴ
ムを結着剤とし、ニードルコークス:フッ素ゴム=95:5
の重量比で混合したものをジメチルホルムアミドペース
トとしてNi箔に塗布乾燥したシートを負電極とし、Li金
属を参照極とし、第1図に示す電池を製造した。
Example 1 LiCoO 2 was used as a positive electrode active material, Li 2 CuO 2 was used as a positive electrode sub-active material, graphite and acetylene black were used as conductive agents, and fluororubber was used as a binder. LiCoO 2 : Li 2 CuO 2 : graphite: Acetylene black: fluoro rubber = 100: 1
A mixture mixed at a weight ratio of 2: 7.5: 2.5: 2 as a dimethylamide paste, a sheet coated and dried on an Al foil as a positive electrode, needle coke powder as a negative electrode active material, a fluoro rubber as a binder, a needle Coke: Fluorine rubber = 95: 5
The mixture shown in FIG. 1 was prepared as a dimethylformamide paste and applied to a Ni foil, and the dried sheet was used as a negative electrode and a Li metal was used as a reference electrode to produce a battery shown in FIG.

なお、セパレーター3としてポリプロピレン不織布を
使用し、電解液としてプロピレンカーボネートとブチロ
ラクトンの混合溶媒(体積比=1:1)にホウフッ化リチ
ウムを1.0Mの濃度に調整した液を用いた。
In addition, a polypropylene nonwoven fabric was used as the separator 3, and a liquid prepared by adjusting lithium borofluoride to a concentration of 1.0 M in a mixed solvent (volume ratio = 1: 1) of propylene carbonate and butyrolactone was used as an electrolytic solution.

この電池を定電圧4.2Vで5時間充電した後、1.0mA/cm
2の定電流で終止電圧2.7V条件で放電した。この充放電
サイクルを5回繰り返した後、過放電放置試験を行っ
た。すなわち、5Ωの抵抗を介して正負端子を短絡状態
にて1週間放置した。その後上記条件での充放電サイク
ルを5回繰り返した。この時の放電容量の変化を第2図
に、過放電時の電圧変化を第3図に示す。第3図から明
らかなようにセル電圧が0Vになった時点で負極電位は2.
2Vを示していた。第2図から明らかなようにこの過放電
テストによる容量の低下は全く見られていない。
After charging this battery at a constant voltage of 4.2 V for 5 hours, 1.0 mA / cm
The battery was discharged at a constant current of 2 and a cutoff voltage of 2.7 V. After repeating this charge / discharge cycle five times, an overdischarge standing test was performed. That is, the positive and negative terminals were left short-circuited for one week via a 5Ω resistor. Thereafter, the charge / discharge cycle under the above conditions was repeated five times. FIG. 2 shows a change in discharge capacity at this time, and FIG. 3 shows a voltage change during overdischarge. As is clear from FIG. 3, when the cell voltage becomes 0 V, the negative electrode potential becomes 2.
Showed 2V. As is apparent from FIG. 2, no reduction in capacity due to this overdischarge test was observed.

比較例1 LiCoO2を正極主活物質とし、グラファイトおよびアセ
チレンブラックを導電剤とし、フッ素ゴムを結着剤と
し、各々LiCoO2:グラファイト:アセチレンブラック:
フッ素ゴム=100:7.5:2.5:2の重量比で混合したものを
ジメチルホルムアミドペーストとしてAl箔に塗布乾燥し
たシートを正電極とした他は実施例1と同じ電池を製造
し、同様の評価を行った。結果を第1表、第4図,第5
図に示す。
Comparative Example 1 LiCoO 2 was used as a positive electrode main active material, graphite and acetylene black were used as conductive agents, and fluororubber was used as a binder. LiCoO 2 : graphite: acetylene black:
A battery was manufactured in the same manner as in Example 1 except that a sheet obtained by applying a mixture of fluororubber at a weight ratio of 100: 7.5: 2.5: 2 to an Al foil as a dimethylformamide paste was used as a positive electrode, and the same evaluation was performed. went. The results are shown in Table 1, FIG. 4, and FIG.
Shown in the figure.

第5図から明らかなように、過放電時セル電圧が0Vに
なった時点で負極電位は3.9Vまで上昇していた。又、第
4図から明らかなようにこの過放電テストにより容量は
大幅に低下していた。
As is clear from FIG. 5, when the cell voltage at the time of overdischarge became 0 V, the negative electrode potential had increased to 3.9 V. In addition, as apparent from FIG. 4, the capacity was significantly reduced by this overdischarge test.

実施例2〜11 実施例1においてLiCoO2とLi2CuO2の配合比を第1表
に示す通りに変えた以外は全く同様の操作を行った。結
果を併せて第1表に示す。
Examples 2 to 11 The same operation as in Example 1 was performed except that the mixing ratio of LiCoO 2 and Li 2 CuO 2 was changed as shown in Table 1. The results are shown in Table 1.

実施例12 実施例1においてLiCoO2の代りにLiCo0.97Sn0.33O2
用いた以外は全く同じ操作を行った。
Example 12 The same operation as in Example 1 was carried out except that LiCo 0.97 Sn 0.33 O 2 was used instead of LiCoO 2 .

実施例13 実施例1においてLiCoO2の代りにLiCo0.7Ni0.3O2を用
いた以外は全く同じ操作を行った。
Example 13 The same operation as in Example 1 was performed except that LiCo 0.7 Ni 0.3 O 2 was used instead of LiCoO 2 .

結果を第2表に示す。 The results are shown in Table 2.

実施例14 負極としてポリアセチレン負極を用いた他は実施例1
と全く同じ操作を行った。ポリアセチレン負極の調製法
は以下のとおりである。
Example 14 Example 1 was repeated except that a polyacetylene negative electrode was used as the negative electrode.
Performed exactly the same operation as. The method for preparing the polyacetylene negative electrode is as follows.

N2雰囲気下、内容積800mlのガラス容器にトルエン50m
lをとり、テトラブトキシチタン6ml、トリエチルアルミ
ニウム10mlを加えて触媒を調製した。容器を−78℃に冷
却後、系内を排気し、容器壁面に触媒液を塗布し、アセ
チレンガスを導入した。直ちに壁面に膜状ポリアセチレ
ンが生成し、15分放置後系内を排気した。トルエンで洗
浄後0.5N−HCl−MeOHで5回洗浄した後、乾燥し取り出
した。
Under N 2 atmosphere, toluene 50m in a glass container with an internal volume of 800ml
Then, 6 ml of tetrabutoxytitanium and 10 ml of triethylaluminum were added to prepare a catalyst. After cooling the vessel to −78 ° C., the system was evacuated, a catalyst liquid was applied to the vessel wall, and acetylene gas was introduced. Immediately, a film-like polyacetylene was formed on the wall surface, and the system was evacuated after standing for 15 minutes. After washing with toluene and washing with 0.5N-HCl-MeOH five times, the product was dried and taken out.

この膜状ポリアセチレンを250℃で5秒間熱処理した
後用いた。
This film-like polyacetylene was used after heat treatment at 250 ° C. for 5 seconds.

結果を第3表に示す。 The results are shown in Table 3.

比較例2 負極としてポリアセチレン負極を用いた他は比較例1
と全く同じ操作を行った。
Comparative Example 2 Comparative Example 1 except that a polyacetylene negative electrode was used as the negative electrode.
Performed exactly the same operation as.

結果を第3表に示す。 The results are shown in Table 3.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例,比較例で用いた電池の構造図
を示す。 図の中で各々 1……正極,2……負極,3,3′……集電棒, 4,4′……SUSネット,5,5′……外部電極端子 6……参照極,7……電池ケース,8……セパレーター 9……電解液 を示す。 第2図及び第4図は本発明の実施例,比較例での過放電
評価前後の容量変化を示す。第3図及び第5図は過放電
評価中の電位変化を示す。aはセル電圧,bは正極電位,c
は負極電位を示す。
FIG. 1 is a structural view of a battery used in Examples and Comparative Examples of the present invention. In the figure, 1 ... Positive electrode, 2 ... Negative electrode, 3,3 '... Current collecting rod, 4,4' ... SUS net, 5,5 '... External electrode terminal 6 ... Reference electrode, 7 ... ... Battery case, 8 ... Separator 9 ... Electrolyte FIG. 2 and FIG. 4 show the change in capacity before and after overdischarge evaluation in Examples and Comparative Examples of the present invention. FIG. 3 and FIG. 5 show potential changes during the overdischarge evaluation. a is the cell voltage, b is the positive electrode potential, c
Indicates a negative electrode potential.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−90863(JP,A) 特開 昭63−314778(JP,A) 特開 昭62−172662(JP,A) 特開 平1−163969(JP,A) 特開 平1−161668(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 10/40 H01M 4/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-90863 (JP, A) JP-A-63-314778 (JP, A) JP-A-62-172662 (JP, A) JP-A-1- 163969 (JP, A) JP-A-1-161668 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 10/40 H01M 4/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LixMyNzO2(Mは遷移金属の少なくとも一
種を表わし、Nは非遷移金属の少なくとも一種を表わ
し、x,y,zは各々0.05≦x≦1.10,0.85≦y≦1.00,0≦z
≦0.10の数であり、yの値は二種以上の遷移金属を用い
る場合にはその合計値を示すものである。)を正極主活
物質とし、リチウム・銅複合酸化物を正極副活物質と
し、リチウムイオンをインターカレートし得る物質を負
極とする非水系二次電池。
(1) LixMyNzO 2 (M represents at least one transition metal, N represents at least one non-transition metal, and x, y, and z each represent 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00, 0 ≦ z
≤0.10, and the value of y indicates the total value of two or more transition metals when used. ) Is used as a positive electrode main active material, a lithium-copper composite oxide is used as a positive electrode auxiliary active material, and a material capable of intercalating lithium ions is used as a negative electrode.
JP02125558A 1990-05-17 1990-05-17 Non-aqueous secondary battery Expired - Lifetime JP3079382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02125558A JP3079382B2 (en) 1990-05-17 1990-05-17 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02125558A JP3079382B2 (en) 1990-05-17 1990-05-17 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH0422066A JPH0422066A (en) 1992-01-27
JP3079382B2 true JP3079382B2 (en) 2000-08-21

Family

ID=14913172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02125558A Expired - Lifetime JP3079382B2 (en) 1990-05-17 1990-05-17 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3079382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
CA2162456C (en) * 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
JP3897387B2 (en) 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション Method for producing positive electrode active material for lithium secondary battery
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
EP1202363A1 (en) * 1999-06-14 2002-05-02 Kabushiki Kaisha Toshiba Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
JP4834901B2 (en) * 1999-08-27 2011-12-14 三菱化学株式会社 Positive electrode material for lithium secondary battery
JP4524881B2 (en) * 2000-08-14 2010-08-18 ソニー株式会社 Nonaqueous electrolyte secondary battery
EP1864344B1 (en) * 2005-04-01 2018-05-02 Lg Chem, Ltd. Lithium secondary battery comprising electrode additive
JP5259268B2 (en) * 2008-06-25 2013-08-07 三星エスディアイ株式会社 Nonaqueous electrolyte secondary battery
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
JP5508646B2 (en) 2011-05-27 2014-06-04 トヨタ自動車株式会社 Solid secondary battery system and method for producing regenerated solid secondary battery
JP5664460B2 (en) * 2011-06-07 2015-02-04 トヨタ自動車株式会社 Solid secondary battery system
WO2015140992A1 (en) * 2014-03-20 2015-09-24 株式会社 東芝 Nonaqueous-electrolyte secondary-battery positive electrode, nonaqueous-electrolyte secondary battery, and battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Also Published As

Publication number Publication date
JPH0422066A (en) 1992-01-27

Similar Documents

Publication Publication Date Title
KR101117623B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the positive electrode
JP5972513B2 (en) Cathode and lithium battery using the same
US11876223B2 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
JP2797390B2 (en) Non-aqueous electrolyte secondary battery
JP5184846B2 (en) Nonaqueous electrolyte battery and battery pack
EP2863457A1 (en) Lithium secondary battery comprising multilayered active material layer
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20110281165A1 (en) Non-aqueous electrolyte secondary battery
KR20110042259A (en) High energy lithium ion secondary batteries
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
KR20020020698A (en) Non-aqueous electrolyte secondary cell and device using the same
KR20120017671A (en) Cathode, preparation method thereof, and lithium battery containing the same
KR20130125236A (en) Composite cathode active material, and cathode and lithium battery containing the material
JP3079382B2 (en) Non-aqueous secondary battery
US7919208B2 (en) Anode active material and battery
JP3046055B2 (en) Non-aqueous secondary battery
EP3451437B1 (en) Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP5177211B2 (en) Negative electrode active material, negative electrode and battery
JP2547992B2 (en) Non-aqueous secondary battery
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JP5082221B2 (en) Negative electrode for secondary battery and secondary battery
JP3236317B2 (en) Non-aqueous battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term