JP2547992B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2547992B2
JP2547992B2 JP61265838A JP26583886A JP2547992B2 JP 2547992 B2 JP2547992 B2 JP 2547992B2 JP 61265838 A JP61265838 A JP 61265838A JP 26583886 A JP26583886 A JP 26583886A JP 2547992 B2 JP2547992 B2 JP 2547992B2
Authority
JP
Japan
Prior art keywords
group
secondary battery
positive electrode
value
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265838A
Other languages
Japanese (ja)
Other versions
JPS63121258A (en
Inventor
雅彦 四方
吉野  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61265838A priority Critical patent/JP2547992B2/en
Publication of JPS63121258A publication Critical patent/JPS63121258A/en
Application granted granted Critical
Publication of JP2547992B2 publication Critical patent/JP2547992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な二次電池、更には小型、軽量二次電池
に関する。
Description: TECHNICAL FIELD The present invention relates to a novel secondary battery, and more particularly, to a small and lightweight secondary battery.

[従来の技術] 近年、電子機器の小型化、軽量化は目覚ましく、それ
に伴い電源となる電池に対しても小型軽量化の要望が非
常に大きい。一次電池の分野では既にリチウム電池等の
小型軽量電池が実用化されているが、これらは一次電池
であるが故に繰り返し使用できず、その用途分野は限ら
れたものであった。一方、二次電池の分野では従来より
鉛電池、ニッケル−カドミ電池が用いられてきたが両者
共、小型軽量化という点で大きな問題点を有している。
かかる観点から、非水系二次電池が非常に注目されてき
ているが、未だ実用化に至っていない。その理由の一つ
は該二次電池に用いる正極活物質でサイクル性、自己放
電特性等の実用物性を満足するものが見出されていない
点にある。
[Related Art] In recent years, electronic devices have been remarkably reduced in size and weight, and accordingly, there has been a great demand for smaller and lighter batteries that serve as power sources. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use, but since they are primary batteries, they cannot be repeatedly used, and their fields of use have been limited. On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have significant problems in terms of size and weight reduction.
From this viewpoint, non-aqueous secondary batteries have received a great deal of attention, but they have not yet been put to practical use. One of the reasons is that no positive electrode active material used for the secondary battery has been found to satisfy practical physical properties such as cycle characteristics and self-discharge characteristics.

一方、従来のニッケル−カドミ電池、鉛電池などと本
質的に異なる反応形式である層状化合物のインターカレ
ーションを利用した新しい群の正極活物質が注目を集め
ている。
Meanwhile, a new group of positive electrode active materials utilizing intercalation of a layered compound, which is a reaction type that is essentially different from that of conventional nickel-cadmium batteries, lead batteries, etc., has been attracting attention.

かかる新しい正極活物質は、その充電、放電における
電気化学的反応において、複雑な化学反応を起こさない
ことから、極めて優れた充放電サイクル性が期待されて
いる。
Such a new positive electrode active material does not cause a complicated chemical reaction in the electrochemical reaction during its charging and discharging, and therefore is expected to have an extremely excellent charge / discharge cycle property.

例えば層状化合物のインターカレーションを利用した
例として層状構造を有するカルコゲナイト系化合物が注
目されている。例えばLixTiS2,LixMoS3等のカルコゲナ
イト系化合物は比較的優れたサイクル性を有しているも
のの、起電力が低くLi金属を負極に用いた場合でも、実
用的な放電電圧はせいぜい2V前後であり、非水系電池の
特徴の一つである高起電力という点で満足されるもので
はなかった。一方、同じく層状構造を有するLixV2O5,Li
xV6O13,LixCoO2,LixNiO2等の金属酸化物系化合物は高起
電力という特徴を有する点で注目されちる。しかしなが
らこれらの金属酸化物系化合物はサイクル性、利用率、
即ち実際に充放電に利用し得る割合、更には充放電時に
おける過電圧といった面での性能が劣り、やはり未だ実
用化に至っていない。
For example, as an example utilizing intercalation of a layered compound, a chalcogenite compound having a layered structure has attracted attention. For example, although chalcogenite compounds such as Li x TiS 2 and Li x MoS 3 have relatively excellent cycle characteristics, the practical electromotive voltage is at most even when the electromotive force is low and Li metal is used for the negative electrode. It was around 2V and was not satisfactory in terms of high electromotive force, which is one of the features of non-aqueous batteries. On the other hand, Li x V 2 O 5 , Li, which also has a layered structure,
Metal oxide-based compounds such as x V 6 O 13 , Li x CoO 2 , and Li x NiO 2 have attracted attention because they have the feature of high electromotive force. However, these metal oxide compounds have a high cycle property, a high utilization rate,
In other words, the performance in terms of the ratio that can actually be used for charging and discharging and the overvoltage during charging and discharging is inferior, and it has not yet been put to practical use.

特に、特開昭55−136131号で開示されているLixCoO2,
LixNiO2等の二次電池正極はLi金属を負極として用いた
場合4V以上の起電力を有し、しかも理論的エネルギー密
度(正極活物質当り)は1,100WHr/kg以上という驚異的
な値を有しているにも拘らず、実際に充放電に利用し得
る割合は低く、理論値には程遠いエネルギー密度しか得
られない。
In particular, Li x CoO 2 , disclosed in JP-A-55-136131,
The secondary battery positive electrode such as Li x NiO 2 has an electromotive force of 4 V or more when Li metal is used as the negative electrode, and the theoretical energy density (per positive electrode active material) is 1,100 WHr / kg, which is an amazing value. However, the ratio that can actually be used for charge and discharge is low, and only an energy density far from the theoretical value can be obtained.

[発明が解決しようとする問題点] 本発明は前述の金属酸化物系正極の有する問題点を解
決し、電池性能、特にサイクル性、利用率、更には過電
圧特性に優れた新規な非水系二次電池用正極を提供する
為になされたものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the metal oxide-based positive electrode and provides a novel non-aqueous secondary battery excellent in battery performance, particularly cycleability, utilization rate, and overvoltage characteristics. The purpose is to provide a positive electrode for a secondary battery.

本発明によれば、層状構造を有し、一般式 AxByCzDwO2 [但しAはアルカリ金属から選ばれた少なくとも1種で
あり、Bは遷移金属であり、CはAl,In,Snの群から選ば
れた少なくとも1種であり、Dは(a)〜(d)の群か
ら選ばれた少なくとも1種を表わし、x,y,z,wは各々 0.05≦x≦1.10、0.85≦y≦1.00、 0.001≦z≦0.10、0.001≦w≦0.10、 の数を表わす。
According to the present invention has a layered structure, the general formula A x B y C z D w O 2 [ where A is at least one selected from alkali metal, B is a transition metal, C is Al , In, Sn at least one selected from the group, D represents at least one selected from the groups (a) to (d), and x, y, z, w are each 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00, 0.001 ≦ z ≦ 0.10, 0.001 ≦ w ≦ 0.10.

(a)A以外のアルカリ金属、 (b)B以外の遷移金属、 (c)II a族元素、 (d)III b族(Al,Inを除く),IV b族(炭素,Snを除
く),V b族(窒素を除く)、VI b族(酸素を除く)の第
2〜第6周期の元素] で示される複合酸化物を正極として用いることを特徴と
する非水系二次電池が提供される。
(A) Alkali metal other than A, (b) Transition metal other than B, (c) Group IIa element, (d) Group IIIb (excluding Al and In), Group IVb (excluding carbon and Sn) , Vb group (excluding nitrogen), VIb group (excluding oxygen) elements of the second to sixth periods] is used as a positive electrode, and a non-aqueous secondary battery is provided. To be done.

本発明の新規な層状複合金属酸化物は一般式AxByCzDw
O2で示されるものであって、Aはアルカリ金属から選ば
れた少なくとも1種、例えばLi,Na,Kであり、中でもLi
が好ましい。xの値は充電状態、放電状態により変動
し、その範囲は0.05≦x≦1.10である。即ち充電により
イオンのディインターカレーションが起こり、xの
値は小さくなり、完全充電状態においてはxの値は0.05
に達する。又、放電によりA イオンのインターカレー
ションが起こり、xの値は大きくなり、完全放電状態に
おいてはxの値は1.10に達する。
 The novel layered composite metal oxide of the present invention has the general formula AxByCzDw
O2And A is selected from alkali metals
At least one selected from, for example, Li, Na, K, among which Li
Is preferred. The value of x varies depending on the charging status and discharging status
However, the range is 0.05 ≦ x ≦ 1.10. That is, by charging
A Ion deintercalation occurs,
The value becomes small, and the value of x is 0.05 in the fully charged state.
Reach Also, due to discharge, A Aeon's intercurry
Occurs, the value of x increases, and the state of full discharge is reached.
The value of x reaches 1.10.

又、Bは遷移金属を表わし、中でもNi,Coが好まし
い。yの値は充電、放電により変動しないが、0.85≦y
≦1.00の範囲である。この場合、Bは遷移金属のうち2
種以上含み、かつ、合計されたy値が0.85≦y≦1.00の
範囲を逸脱しない場合も含んでいる。yの値が0.85未満
及び1.00を越す場合には二次電池用活物質として充分な
性能、即ちサイクル性の低下、過電圧の上昇等の現象が
発生し好ましくない。
B represents a transition metal, and Ni and Co are preferable among them. The value of y does not change due to charging and discharging, but 0.85 ≦ y
It is in the range of ≦ 1.00. In this case, B is 2 of the transition metals
It also includes the case where the number of types is more than one and the total y value does not deviate from the range of 0.85 ≦ y ≦ 1.00. When the value of y is less than 0.85 or exceeds 1.00, sufficient performance as an active material for a secondary battery, that is, a phenomenon such as deterioration of cycleability and increase of overvoltage occurs, which is not preferable.

CはAl,In,Snの群から選ばれた少なくとも1種であ
り、中でもSnが好ましい。この場合、Cは、Al,In,Snの
うち2種以上含み、かつ、合計されたz値が0.001≦z
≦0.10の範囲を逸脱しない場合も含んでいる。本発明の
新規な二次電池用活物質において、Cの働きは極めて重
要であり、サイクル性の向上、特に深い充電、深い放電
サイクルにおいて極めて優れたサイクル性を発揮する。
zの値は充電、放電により変動しないが、0.001≦z≦
0.10の範囲、好ましくは0.005≦z≦0.075の範囲であ
る。zの値が0.001未満の場合、Cの効果が充分発揮さ
れず、前述の深い充電、深い放電におけるサイクル性が
低いと共に、深い充電時における過電圧が著しく上昇し
好ましくない。又、zの値が0.10を越す場合には、吸湿
性が余りに強くなり、扱いが困難になると共に、二次電
池用正極としての基本特性が損なわれ好ましくない。
C is at least one selected from the group consisting of Al, In and Sn, and Sn is particularly preferable. In this case, C contains two or more of Al, In, and Sn, and the total z value is 0.001 ≦ z.
It also includes the case where it does not deviate from the range of ≤0.10. In the novel active material for a secondary battery of the present invention, the function of C is extremely important and exhibits an excellent cycle property, particularly in deep charge and deep discharge cycles.
The value of z does not change due to charging and discharging, but 0.001 ≦ z ≦
The range is 0.10, preferably 0.005 ≦ z ≦ 0.075. When the value of z is less than 0.001, the effect of C is not sufficiently exhibited, the cycleability in deep charging and deep discharging described above is low, and the overvoltage during deep charging remarkably increases, which is not preferable. On the other hand, when the value of z exceeds 0.10, the hygroscopicity becomes too strong, the handling becomes difficult, and the basic characteristics of the positive electrode for a secondary battery are impaired, which is not preferable.

Dは(a)A以外のアルカリ金属、(b)B以外の遷
移金属、(c)II a族元素、(d)III b族(Al,Inを除
く),IV b族(炭素,Snを除く),V b族(窒素を除く)、
VI b族(酸素を除く)の第2〜第6周期の元素の群から
選ばれた少なくとも1種を表わし、wの値は充電、放電
により変動しないが0.001≦w≦0.10の範囲、好ましく
は0.001≦w≦0.005の範囲である。この場合、Dは、上
記元素群のうち2種以上含み、かつ、合計されたw値が
上述の範囲を逸脱しない場合も含んでいる。wの値が0.
001未満の場合、Dの効果が充分発揮されず、前述の深
い充電、深い放電におけるサイクル性が低いと共に、深
い充電時における過電圧が上昇し好ましくない。又、w
の値が0.10を越す場合には、上記C元素の効果を阻害
し、二次電池用正極としての基本性能が損われ好ましく
ない。
D is (a) an alkali metal other than A, (b) a transition metal other than B, (c) a group IIa element, (d) a group IIIb (excluding Al and In), a group IVb (carbon, Sn Group), V b group (excluding nitrogen),
It represents at least one element selected from the group of elements of the VI b group (excluding oxygen) of the 2nd to 6th periods, and the value of w does not fluctuate due to charging or discharging, but is in the range of 0.001 ≦ w ≦ 0.10, preferably The range is 0.001 ≦ w ≦ 0.005. In this case, D includes a case where two or more kinds of the above element groups are included and the total w value does not deviate from the above range. The value of w is 0.
When it is less than 001, the effect of D is not sufficiently exerted, the cycleability in deep charging and deep discharging described above is low, and the overvoltage during deep charging increases, which is not preferable. Also w
If the value exceeds 0.10, the effect of the C element is hindered, and the basic performance as the positive electrode for a secondary battery is impaired, which is not preferable.

かかる本発明の新規な二次電池正極用複合酸化物を製
造するには、A,B,C,D各々の金属の酸化物、水酸化物、
炭酸塩、硝酸塩、有機酸塩等の混合せしめた後、空気中
又は酸素雰囲気下において600℃〜950℃、好ましくは70
0℃〜900℃の温度範囲で焼成することにより得られる。
In order to produce such a novel secondary battery positive electrode composite oxide of the present invention, A, B, C, D each metal oxide, hydroxide,
After mixing carbonates, nitrates, organic acid salts, etc., in air or in an oxygen atmosphere, 600 ° C to 950 ° C, preferably 70
It is obtained by firing in a temperature range of 0 ° C to 900 ° C.

焼成時間は通常5〜48時間程度で充分である。かかる
本発明により得られるAxByCzDwO2は、二次電池正極とし
ての放電状態、即ちxの値は通常0.90〜1.10の範囲のも
のが得られる。
A firing time of about 5 to 48 hours is usually sufficient. According the present invention obtained A x B y C z D w O 2 , the discharge state of the secondary battery positive electrode, i.e. the value of x is obtained in the range of usually 0.90 to 1.10.

かくして得られるAxByCzDwO2は前述の如く充電、放電
によるディインターカレーション反応、及びインターカ
レーション反応により、xの値は0.05≦x≦1.10の範囲
を変動する。
Thus A x B y C z D w O 2 resulting charged as described above, de-intercalation reaction by the discharge, and the intercalation reaction, the value of x varies the range of 0.05 ≦ x ≦ 1.10.

該反応を式で示せば、 で表わされる。(ここでx′は充電前のxの値を表わ
し、x″は充電後のxの値を表わす)。
If the reaction is represented by a formula, Is represented by (Here, x ′ represents the value of x before charging, and x ″ represents the value of x after charging).

前述の利用率は下式 で定義される値である。The above utilization factor is It is a value defined by.

本発明の新規な非水系二次電池用活物質はこの利用率
が大きいことを特徴とし、即ち深い充電、放電に対し極
めて安定なサイクル性を有する。
The novel active material for a non-aqueous secondary battery of the present invention is characterized in that this utilization rate is large, that is, it has an extremely stable cycle property against deep charge and discharge.

本発明の新規な二次電池正極用複合酸化物は、Li標準
電位に対し、3.9〜4.5Vと非常に貴な電位を有し、特に
非水二次電池の正極として用いた場合に特に優れた性能
を発揮する。
The novel composite oxide for a secondary battery positive electrode of the present invention has a very noble potential of 3.9 to 4.5 V with respect to the Li standard potential, and is particularly excellent when used as a positive electrode of a non-aqueous secondary battery. It exhibits excellent performance.

次に本発明の正極を用いた二次電池について述べる。
本発明の二次電池用正極を用い、電極を製造するに際
し、該正極は種々の形状で用いることができる。
Next, a secondary battery using the positive electrode of the present invention will be described.
When manufacturing an electrode using the positive electrode for a secondary battery of the present invention, the positive electrode can be used in various shapes.

即ち、フィルム状、繊維状、粉末状等任意の形状で目
的に応じ用いられるが、特に粉末状で用いる場合には、
該活物質をシート状等任意の形状に成形して用いること
ができる。
That is, it may be used in any shape such as a film, a fiber, and a powder, depending on the purpose.
The active material can be molded into an arbitrary shape such as a sheet and used.

成形方法としては、活物質をテフロン粉末、ポリエチ
レン粉末等の粉末状バインダーと共に混合し圧縮成形す
る方法が一般的である。
As a molding method, a method is generally used in which the active material is mixed with a powdery binder such as Teflon powder or polyethylene powder and compression molded.

更に好ましい方法として溶媒に溶解及び/又は分散し
た有機重合体をバインダーとして電極活物質を成形する
方法が挙げられる。
A more preferable method is a method of forming an electrode active material using an organic polymer dissolved and / or dispersed in a solvent as a binder.

従来より非水系電池は高エネルギー密度、小型軽量と
いった性能面では優れているものの、水系電池に比べ出
力特性に難点があり、広く一般に用いられるまでに至っ
ていない。特に出力特性が要求される二次電池の分野で
はこの欠点が実用化を妨げている一つの要因となってい
る。
Conventionally, non-aqueous batteries have been excellent in performance such as high energy density and small size and light weight, but have disadvantages in output characteristics as compared with water-based batteries, and have not been widely used. In particular, in the field of secondary batteries that require output characteristics, this drawback is one of the factors hindering practical use.

非水系電池が出力特性に劣る原因は水系電解液の場合
イオン電導度が高く、通常10-1Ω-1cm-1オーダーの値を
有するのに対し、非水系の場合通常10-2〜10-4Ω-1cm-1
と低いイオン電導度しか有していないことに起因する。
The cause of poor output characteristics of non-aqueous batteries is high ionic conductivity in the case of aqueous electrolytes, which usually has a value of the order of 10 -1 Ω -1 cm -1 , whereas that of non-aqueous batteries is usually 10 -2 to 10 -4 Ω -1 cm -1
And has a low ionic conductivity.

かかる問題点を解決する一つの方法として電極面積を
大きくすること、即ち薄膜、大面積電極を用いることが
考えられる。
One method of solving such a problem is to increase the electrode area, that is, to use a thin film or a large-area electrode.

前記方法は、かかる薄膜、大面積電極を得るのに特に
好ましい方法である。
The above method is a particularly preferable method for obtaining such a thin film and a large-area electrode.

かかる有機重合体をバインダーとして用いるに際して
は、該有機重合体を溶媒に溶解せしめたバインダー溶液
に電極活物質を分散せしめたものを塗工液として用いる
方法、又、該有機重合体の水乳化分散液に電極活物質を
分散せしめたものを塗工液として用いる方法、予め予備
成形された電極活物質に該有機重合体の溶液及び/又は
分散液を塗布する方法等が一例として挙げられる。用い
るバインダー量は特に限定するものではないが、通常、
電極活物質100重量部に対し0.1〜20重量部、好ましくは
0.5〜10重量部の範囲である。
When using such an organic polymer as a binder, a method of using as a coating solution a dispersion of an electrode active material in a binder solution prepared by dissolving the organic polymer in a solvent, or water-emulsion dispersion of the organic polymer Examples include a method of using a liquid in which an electrode active material is dispersed as a coating liquid, a method of applying a solution and / or a dispersion of the organic polymer to a preformed electrode active material, and the like. The amount of binder used is not particularly limited, but usually,
0.1 to 20 parts by weight, preferably 100 parts by weight of the electrode active material, preferably
It is in the range of 0.5 to 10 parts by weight.

ここで用いられる有機重合体は特に限定されるもので
はないが、該有機重合体が25℃、周波数1KHzにおける比
誘電率が4.5以上の値を有する場合、特に好ましい結果
をもたらし、特に電池性能として、サイクル性、過電圧
等の面で優れた特性を有する。
The organic polymer used here is not particularly limited, but when the organic polymer has a relative dielectric constant at 25 ° C. and a frequency of 1 KHz of 4.5 or more, particularly preferable results are obtained, particularly as battery performance. It has excellent characteristics in terms of cycleability and overvoltage.

かかる条件を満たす有機重合体の一例を示せば、アク
リロニトリル、メタクリニトリル、フッ化ビニル、フッ
化ビニリデン、クロロプレン、塩化ビニリデン等の重合
体もしくは共重合体、ニトロセルロース、シアノエチル
セルロース、多硫化ゴム等が挙げられる。
Examples of organic polymers satisfying such conditions include polymers or copolymers of acrylonitrile, methacrylonitrile, vinyl fluoride, vinylidene fluoride, chloroprene, vinylidene chloride, nitrocellulose, cyanoethyl cellulose, polysulfide rubber and the like. Can be mentioned.

かかる方法により電極を製造するに際し、前記塗工液
を基材上に塗布乾燥することにより成形される。この時
要すれば集電体材料と共に成形しても良いし、又、別法
としてアルミ箔、銅箔等の集電体を基材として用いるこ
ともできる。
In producing an electrode by such a method, the electrode is formed by applying and drying the coating liquid on a substrate. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as an aluminum foil or a copper foil may be used as the base material.

本発明の活物質を用いて製造される電池電極には、前
記バインダー、導電補助剤、その他添加剤、例えば増粘
剤、分散剤、増量剤、粘着補助剤等が添加されても良い
が、少なくとも本発明の活物質が25重量%以上含まれて
いるものを言う。
The battery electrode manufactured using the active material of the present invention, the binder, a conductive auxiliary, and other additives, for example, a thickener, a dispersant, a bulking agent, an adhesive auxiliary may be added, A material containing at least 25% by weight of the active material of the present invention.

導電補助剤としては、金属粉、導電金属酸化物粉、カ
ーボン等が挙げられる。特にかかる導電補助剤の添加は
本発明のAxByCzDwO2を用いる場合に顕著な効果が見出さ
れる。
Examples of the conductive auxiliary agent include metal powder, conductive metal oxide powder, carbon and the like. The addition of particular according auxiliary conductive agent is found A x B y C z D remarkable effect when using the w O 2 of the present invention.

中でも、好ましい結果を与えるのはカーボンであり、
通常AxByCzDwO2 100重量部に対し1〜30重量部の添加
により著しい過電圧の低下効果が発現し、優れたサイク
ル特性を発揮する。
Among them, it is carbon that gives favorable results,
Normal A x B y C z D w O significant overvoltage reduction effect of the addition of 1 to 30 parts by weight to 2 100 parts by weight is expressed and exhibits excellent cycle characteristics.

ここで云うカーボンとは、必ずしも特定されたカーボ
ンを意味するものではない。
The carbon mentioned here does not always mean the specified carbon.

かかるカーボンとして、グラファイト、カーボンブラ
ック等が挙げられる。特に好ましい組合わせとして、平
均粒径0.1〜10μのカーボンと平均粒径0.01μ〜0.08μ
のカーボンを混合して用いた場合、特に優れた効果を与
える。
Examples of such carbon include graphite and carbon black. As a particularly preferable combination, carbon having an average particle diameter of 0.1 to 10 μ and average particle diameter of 0.01 μ to 0.08 μ
When the above carbons are mixed and used, a particularly excellent effect is given.

負極としては特に限定されないが、Li,Na等の軽金属
又はその合金負極、LixFe2O3,LixFe3O4,LixWO2等の金属
酸化物系負極、ポリアセチレン、ポリ−p−フェニレン
等の導電性高分子負極、気相成長法炭素繊維、ピッチ系
カーボン、ポリアクリロニトリル系炭素繊維等の炭素質
材料負極等が挙げられる。
The negative electrode is not particularly limited, but is a light metal such as Li or Na or an alloy negative electrode thereof, a metal oxide negative electrode such as Li x Fe 2 O 3 , Li x Fe 3 O 4 , or Li x WO 2 , polyacetylene, poly-p. -A conductive polymer negative electrode such as phenylene, a vapor growth carbon fiber, a carbonaceous material negative electrode such as pitch-based carbon, polyacrylonitrile-based carbon fiber, and the like.

本発明の非水系二次電池を組立てる場合の基本構成要
素として、前記本発明の正極及び前記負極を用いた電
極、更にはセパレーター、非水電解液が挙げられる。セ
パレーターとしては特に限定されないが、織布、不織
布、ガラス織布、合成樹脂微多孔膜等が挙げられるが、
前述の如く、薄膜、大面積電極を用いる場合には、例え
ば特開昭58−59072号に開示される合成樹脂微多孔膜、
特にポリオレフィン系微多孔膜が、厚み、強度、膜抵抗
の面で好ましい。
The basic components for assembling the non-aqueous secondary battery of the present invention include an electrode using the positive electrode and the negative electrode of the present invention, a separator, and a non-aqueous electrolytic solution. The separator is not particularly limited, and examples thereof include woven cloth, non-woven cloth, glass woven cloth, synthetic resin microporous membrane, and the like.
As described above, when using a thin film, a large area electrode, for example, a synthetic resin microporous film disclosed in JP-A-58-59072,
In particular, a polyolefin microporous film is preferable in terms of thickness, strength and film resistance.

非水電解液の電解質としては特に限定されないが、一
例を示せば、LiClO4,LiBF4,LiAsF6,CF3SO3Li,LiPF6,Li
I,LiAlCl4,NaClO4,NaBF4,NaI,(n−Bu)4N ClO4,(n
−Bu)4N BF4,KPF6等が挙げられる。又、用いられる電
解液の有機溶媒としては、例えばエーテル類、ケトン
類、ラクトン類、ニトリル類、アミン類、アミド類、硫
黄化合物、塩素化炭化水素類、エステル類、カーボネー
ト類、ニトロ化合物、リン酸エステル系化合物、スルホ
ラン系化合物等を用いることができるが、これらのうち
でもエーテル類、ケトン類、ニトリル類、塩素化炭化水
素類、カーボネート類、スルホラン系化合物が好まし
い。更に好ましくは環状カーボネート類である。
 The electrolyte of the non-aqueous electrolyte is not particularly limited.
For example, LiClOFour, LiBFFour, LiAsF6, CF3SO3Li, LiPF6, Li
I, LiAlClFour, NaClOFour, NaBFFour, NaI, (n-Bu)FourN ClOFour, (N
-Bu)FourN BFFour, KPF6Etc. In addition,
Examples of the organic solvent for the dissolution include ethers, ketones
, Lactones, nitriles, amines, amides, sulfur
Yellow compounds, chlorinated hydrocarbons, esters, carbon dioxide
G, nitro compounds, phosphate compounds, sulfo
Run compounds can be used.
But ethers, ketones, nitriles, chlorinated hydrocarbons
Preferred are elementary compounds, carbonates, and sulfolane compounds.
Yes. More preferred are cyclic carbonates.

これらの代表例としては、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1,2−ジクロロエタ
ン、γ−ブチルラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルムアミ
ド、スルホラン、3−メチル−スルホラン、リン酸トリ
メチル、リン酸トリエチルおよびこれらの混合溶媒等を
あげることができるが、必ずしもこれらに限定されるも
のではない。
Representative examples of these include tetrahydrofuran, 2-
Methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyl lactone, dimethoxyethane, methyl Formate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate and a mixed solvent thereof can be mentioned. It is not necessarily limited to these.

更に要すれば、集電体、端子、絶縁板等の部品を用い
て電池が構成される。又、電池の構造としては、特に限
定されるものではないが、正極、負極、更に要すればセ
パレーターを単層又は複層としたペーパー型電池、積層
型電池、又は正極、負極、更に要すればセパレーターを
ロール状に巻いた円筒状電池等の形態が一例として挙げ
られる。
If necessary, a battery is configured using components such as a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single or multiple layers of separators, a laminated type battery, or a positive electrode, a negative electrode, For example, a form of a cylindrical battery or the like in which a separator is wound in a roll shape is given as an example.

[発明の効果] 本発明の電池は小型軽量であり、特にサイクル特性、
自己放電特性に優れ、小型電子機器用、電気自動車用、
電力貯蔵用等の電源として極めて有用である。
[Effect of the Invention] The battery of the present invention is small and lightweight, and has particularly good cycle characteristics and
Excellent self-discharge characteristics, for small electronic devices, electric vehicles,
It is extremely useful as a power source for power storage and the like.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 炭酸リチウム1.05モル、酸化コバルト1.90モル、酸化
第2スズ0.084モル、酸化スカンジウム0.002モルを混合
し、650℃で5時間仮焼した後、空気中で850℃,12時間
焼成したところ、Li1.03Co0.95Sn0.042Sc0.002O2の組成
を有する複合酸化物を得た。この複合酸化物をボールミ
ルで平均3μmに粉砕した後、複合酸化物1重量部に対
し、ポリアクリロニトリルのジメチルホルムアミド溶液
(濃度2wt%)1重量部と導電補助剤としてグラファイ
ト0.2重量部とを混合した後、15μmアルミ箔1cm×5cm
の片面に75μmの膜厚に塗布した。
Example 1 1.05 mol of lithium carbonate, 1.90 mol of cobalt oxide, 0.084 mol of stannic oxide, and 0.002 mol of scandium oxide were mixed, calcined at 650 ° C. for 5 hours, and then calcined in air at 850 ° C. for 12 hours. A composite oxide having a composition of Li 1.03 Co 0.95 Sn 0.042 Sc 0.002 O 2 was obtained. This composite oxide was pulverized with a ball mill to an average of 3 μm, and then 1 part by weight of the composite oxide was mixed with 1 part by weight of a dimethylformamide solution of polyacrylonitrile (concentration: 2 wt%) and 0.2 part by weight of graphite as a conduction aid. Afterwards, 15μm aluminum foil 1cm × 5cm
Was coated on one side to a film thickness of 75 μm.

この試験片を正極に、負極としてリチウム金属を、又
電解液として0.6M−LiClO4−プロピレンカーボネート溶
液を用い、第1図に示す電池の組み立てた。
This test piece was used as a positive electrode, lithium metal was used as a negative electrode, and a 0.6M-LiClO 4 -propylene carbonate solution was used as an electrolytic solution to assemble the battery shown in FIG. 1.

25mAの定電流(電流密度5mA/cm2)で30分間、充電を
行った後、同じく25mAの定電流で3.8Vまで放電を行っ
た。この時の充電終止電圧及び開放端子電圧及び過電圧
は、それぞれ、4.20V,4.15V,0.05Vであった。
After charging with a constant current of 25 mA (current density 5 mA / cm 2 ) for 30 minutes, the battery was discharged with a constant current of 25 mA to 3.8 V. The end-of-charge voltage, the open-circuit terminal voltage, and the overvoltage at this time were 4.20V, 4.15V, and 0.05V, respectively.

この後、同じ充電放電条件でサイクルテストを行い、
各サイクルにおける開放端子電圧及び過電圧は第1表に
示す通りであり、殆ど変化していなかった。
After this, cycle test under the same charge and discharge conditions,
The open-circuit terminal voltage and the overvoltage in each cycle are as shown in Table 1 and hardly changed.

実施例2〜4,比較例1〜5 実施例1において、炭酸リチウム、酸化コバルト、酸
化第2スズ、酸化スカンジウムの量を第2表に示す仕込
量に変えた以外は同様の操作を行い、種々の複合酸化物
を得た。その組成比も併せて第2表に示す。
Examples 2 to 4 and Comparative Examples 1 to 5 The same operation as in Example 1 was carried out except that the amounts of lithium carbonate, cobalt oxide, stannic oxide, and scandium oxide were changed to the amounts shown in Table 2. Various complex oxides were obtained. The composition ratio is also shown in Table 2.

この複合酸化物を実施例1と同様の電池を組み立て、
評価を行った。
This composite oxide was assembled into a battery similar to that of Example 1,
An evaluation was made.

開放端子電圧、及び過電圧を第3表に示す。 Table 3 shows the open circuit voltage and overvoltage.

実施例5〜14 実施例1において酸化スカンジウム0.002モルの代り
に第4表に示す酸化物もしくは炭酸塩を、同じく第4表
に示す仕込モル数で用いた以外は全く同様の電池評価を
行った。得られた複合酸化物組成及び測定した過電圧も
併せて第4表に示す。
Examples 5 to 14 The same battery evaluations were carried out as in Example 1 except that 0.002 mol of scandium oxide was replaced by the oxide or carbonate shown in Table 4 in the same mol number as shown in Table 4. . The composition of the obtained composite oxide and the measured overvoltage are also shown in Table 4.

実施例15〜17 実施例1において酸化第2スズ0.084モルの代りに第
5表に示す酸化物を、同じく第5表に示す仕込モル数で
用いた以外は全く同様の電池評価を行った。得られた複
合酸化物組成及び測定した過電圧も併せて第5表に示
す。
Examples 15 to 17 The same battery evaluations as in Example 1 were carried out except that the oxide shown in Table 5 was used instead of 0.084 mol of stannic oxide in the same mole number as shown in Table 5. The composition of the obtained composite oxide and the measured overvoltage are also shown in Table 5.

実施例18 実施例1において酸化コバルト1.90モルの代りに酸化
ニッケル1.90モルを用いた以外は同様の操作を行い、Li
1.05Ni0.96Sn0.04Sc0.002O2の組成を有する複合酸化物
を得た。この複合酸化物を実施例1と同様の電池を組立
て、評価を行ったところ過電圧は0.09Vであった。
Example 18 The same operation as in Example 1 was carried out except that 1.90 mol of nickel oxide was used instead of 1.90 mol of cobalt oxide.
A composite oxide having a composition of 1.05 Ni 0.96 Sn 0.04 Sc 0.002 O 2 was obtained. When a battery similar to that of Example 1 was assembled from this composite oxide and evaluated, the overvoltage was 0.09V.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の二次電池の構成例の断面図である。第
1図において、1は正極、2は負極、3,3′は集電棒、
4,4′はSUSネット、5,5′は外部電極端子、6は電池ケ
ース、7はセパレーター、8は電解液又は固体電解質で
ある。
FIG. 1 is a sectional view of a configuration example of a secondary battery of the present invention. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3, 3 ′ are current collector rods,
4,4 'is a SUS net, 5,5' is an external electrode terminal, 6 is a battery case, 7 is a separator, and 8 is an electrolytic solution or a solid electrolyte.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】層状構造を有し、一般式 AxByCzDwO2 [但しAはアルカリ金属から選ばれた少なくとも1種で
あり、Bは遷移金属であり、CはAl,In,Snの群から選ば
れた少なくとも1種であり、Dは(a)〜(d)の群か
ら選ばれた少なくとも1種を表わし、x,y,z,wは各々 0.05≦x≦1.10、0.85≦y≦1.00、 0.001≦z≦0.10、0.001≦w≦0.10、 の数を表わす。 (a)A以外のアルカリ金属、 (b)B以外の遷移金属、 (c)II a族元素、 (d)III b族(Al,Inを除く),IV b族(炭素,Snを除
く),V b族(窒素を除く)、VI b族(酸素を除く)の第
2〜第6周期の元素] で示される複合酸化物を正極として用いることを特徴と
する非水系二次電池。
1. A has a layered structure, the general formula A x B y C z D w O 2 [ where A is at least one selected from alkali metal, B is a transition metal, C is Al, It is at least one selected from the group of In and Sn, D represents at least one selected from the group of (a) to (d), and x, y, z, and w are each 0.05 ≦ x ≦ 1.10. , 0.85 ≦ y ≦ 1.00, 0.001 ≦ z ≦ 0.10, 0.001 ≦ w ≦ 0.10. (A) Alkali metal other than A, (b) Transition metal other than B, (c) Group IIa element, (d) Group IIIb (excluding Al and In), Group IVb (excluding carbon and Sn) , Vb group (excluding nitrogen), VIb group (excluding oxygen) elements of the 2nd to 6th periods] is used as a positive electrode, a non-aqueous secondary battery.
JP61265838A 1986-11-08 1986-11-08 Non-aqueous secondary battery Expired - Lifetime JP2547992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265838A JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265838A JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63121258A JPS63121258A (en) 1988-05-25
JP2547992B2 true JP2547992B2 (en) 1996-10-30

Family

ID=17422764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265838A Expired - Lifetime JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2547992B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Interlayer compound and method for producing the same
US6207325B1 (en) 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
WO2000030977A1 (en) 1998-11-20 2000-06-02 Fmc Corporation Multiple doped lithium manganese oxide compounds and methods of preparing same
EP1202363A1 (en) * 1999-06-14 2002-05-02 Kabushiki Kaisha Toshiba Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
DE60002505T2 (en) 1999-12-10 2004-03-25 Fmc Corp. LITHIUM COBALTOXIDES AND PRODUCTION METHOD
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US7422824B2 (en) 2002-05-16 2008-09-09 Matsushita Electric Industrial Co., Ltd. Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same
JP4781004B2 (en) 2005-04-28 2011-09-28 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Also Published As

Publication number Publication date
JPS63121258A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
JP4159954B2 (en) Non-aqueous electrolyte battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR100469163B1 (en) Anode-activating materials and non-aqueous electrolyte secondary cells
US20100159334A1 (en) Lithium secondary battery
KR20080105045A (en) Lithium rechargeable battery using ionic liquid
KR20140094959A (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2668678B2 (en) Rechargeable battery
JP2547992B2 (en) Non-aqueous secondary battery
JPH05121066A (en) Negative electrode for nonaqueous battery
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
JP3079382B2 (en) Non-aqueous secondary battery
JP3046055B2 (en) Non-aqueous secondary battery
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
KR101646994B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
KR100824931B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
JPH11288718A (en) Nonaqueous solvent secondary battery
JP3236317B2 (en) Non-aqueous battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP6503768B2 (en) Lithium ion secondary battery
JP5758731B2 (en) Nonaqueous electrolyte secondary battery
JP3577744B2 (en) Lithium secondary battery positive electrode material and method for producing lithium nickelate
JPH09161838A (en) Battery
JPH0567467A (en) Nonaqueous secondary battery
KR102458644B1 (en) Positive electrode active material and electrode containing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term