JPS63121258A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPS63121258A
JPS63121258A JP61265838A JP26583886A JPS63121258A JP S63121258 A JPS63121258 A JP S63121258A JP 61265838 A JP61265838 A JP 61265838A JP 26583886 A JP26583886 A JP 26583886A JP S63121258 A JPS63121258 A JP S63121258A
Authority
JP
Japan
Prior art keywords
group
positive electrode
value
secondary battery
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61265838A
Other languages
Japanese (ja)
Other versions
JP2547992B2 (en
Inventor
Masahiko Yomo
四方 雅彦
Akira Yoshino
彰 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61265838A priority Critical patent/JP2547992B2/en
Publication of JPS63121258A publication Critical patent/JPS63121258A/en
Application granted granted Critical
Publication of JP2547992B2 publication Critical patent/JP2547992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cycling characteristic end overvoltage characteristic by using a specific compound oxide having a layer structure as a positive electrode. CONSTITUTION:A compound oxide having a layer structure and shown by Formula I is used as a positive electrode, where A is one type selected among alkaline metals; B is a transition metal; C is one type selected among a group of Al, In, and Sn; D indicates at least one type selected among a group of alkaline metals other than (a) A, transition metals other than (b) B, and second- sixth period elements of IIIb group, IVb group, Vb group, VIb group except (c) IIa group elements, (d) Al, In, Sn, carbon, nitrogen, and oxygen; and (x), (y), (z), and (w) indicate 0.05<=x<=1.10, 0.85<=y<=1.00, 0.001<=z<=0.10, 0.001<=w<=0.10 respectively. Thereby, the cycling characteristic and self-discharge characteristic are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な二次電池、更には小型、軽量二次電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel secondary battery, and more particularly to a small and lightweight secondary battery.

[従来の技術] 近年、電子機器の小型化、軽量化は目覚ま゛しく、そ武
に伴い電源となる電池に対しても小型軽量化の要望が非
常に大きい、−次電池の分野では既にリチウム電池等の
小型軽量電池が実用化されているが、これらは−次電池
であるが故に繰り返し使用できず、その用途分野は限ら
れたものであった。一方、二次電池の分野では従来より
鉛電池、ニッケルーカドミ電池が用いられてきたが両者
共、小型軽量化という点で大きな問題点を有している。
[Conventional technology] In recent years, electronic devices have become smaller and lighter at a remarkable rate, and as a result, there has been a great demand for smaller and lighter batteries that serve as power sources. Although small and lightweight batteries such as lithium batteries have been put into practical use, since these are secondary batteries, they cannot be used repeatedly, and their fields of application are limited. On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have major problems in terms of miniaturization and weight reduction.

かかる観点から、非水系二次電池が非常に注目されてき
ているが、未だ実用化に至っていない、その理由の一つ
は該二次電池に用いる正極活物質でサイクル性、自己放
電特性等の実用物性を満足するものが見出されていない
点にある。
From this point of view, non-aqueous secondary batteries have been attracting a lot of attention, but they have not yet been put into practical use.One of the reasons for this is that the positive electrode active material used in these secondary batteries has poor cycleability, self-discharge characteristics, etc. The problem is that no material has been found that satisfies practical physical properties.

一方、従来のニッケルーカドミ電池、鉛電池などと本質
的に異なる反応形式である層状化合物のインター力レー
シ璽ンを利用した新しい群の正極活物質が注目を集めて
いる。
On the other hand, a new group of cathode active materials that utilize the interreaction reaction of layered compounds, which has a fundamentally different reaction type from conventional nickel-cadmium batteries, lead-acid batteries, etc., are attracting attention.

かかる新しい正極活物質は、その充電、放電における電
気化学的反応において、複雑な化学反応を起こさないこ
とから、極めて優れた充放電サイクル性が期待されてい
る。
Such new positive electrode active materials are expected to have extremely excellent charge-discharge cycle performance because they do not cause complex chemical reactions during electrochemical reactions during charging and discharging.

例えば層状化合物のインターカレーションを利用した例
として層状構造を有するカルコゲナイド系化合物が注目
されている0例えばLiうTiS2゜LixMoS3等
のカルコゲナイド系化合物は比較的優れたサイクル性を
有しているものの、起電力が低くLi金属を負極に用い
た場合でも、実用的な放電電圧はせいぜい2v前後であ
り、非水系電池の特徴の一つである高起電力という点で
満足されるものではなかった。一方、同じく層状構造を
有するLixV2O5、LixV60+s 、 Lix
V2O5,Lixmi02等の金属酸化物系化合物は高
起電力という特徴を有する点で注目されている。しかし
ながらこれらの金属酸化物系化合物はサイクル性、利用
率、即ち実際に充放電に利用し得る割合、更には充放電
時における過電圧といった面での性能が劣り、やはり未
だ実用化に至っていない。
For example, chalcogenide compounds with a layered structure are attracting attention as an example of utilizing intercalation of layered compounds.For example, chalcogenide compounds such as Li, TiS2, LixMoS3, etc. have relatively excellent cyclability. Even when Li metal, which has a low electromotive force, is used for the negative electrode, the practical discharge voltage is around 2V at most, which is not satisfactory in terms of high electromotive force, which is one of the characteristics of non-aqueous batteries. On the other hand, LixV2O5, LixV60+s, Lix, which also have a layered structure
Metal oxide compounds such as V2O5 and Lixmi02 are attracting attention because of their high electromotive force. However, these metal oxide compounds have inferior performance in terms of cycleability, utilization rate, that is, the ratio that can actually be used for charging and discharging, and further overvoltage during charging and discharging, and have not yet been put into practical use.

特に、特開昭55−138131号で開示されているL
ixCo02 、 Li、旧02等の二次電池正極はL
i金属を負極として用いた場合4v以上の起電力を有し
、しかも理論的エネルギー密度(正極活物質当り)は1
.100WHr/kg以上という驚異的な値を有してい
るにも拘らず、実際に充放電に利用し得る割合は低く、
理論値には程遠いエネルギー密度しか得られない。
In particular, the L disclosed in JP-A No. 55-138131
The positive electrode of secondary batteries such as ixCo02, Li, and old 02 is L.
When i-metal is used as a negative electrode, it has an electromotive force of 4V or more, and the theoretical energy density (per positive electrode active material) is 1
.. Despite having an amazing value of over 100WHr/kg, the proportion that can actually be used for charging and discharging is low.
The energy density obtained is far from the theoretical value.

[発明が解決しようとする問題点] 本発明は前述の金属酸化物系正極の有する問題点を解決
し、電池性能、特にサイクル性、利用率、更には過電圧
特性に優れた新規な非水系二次電池用正極を提供する為
になされたものである。
[Problems to be Solved by the Invention] The present invention solves the problems of the metal oxide positive electrode described above, and provides a novel non-aqueous secondary battery that has excellent battery performance, particularly cycleability, utilization rate, and overvoltage characteristics. This was done to provide a positive electrode for next-generation batteries.

本発明によれば1M層状構造有し、一般式%式% [但しAはアルカリ金属から選ばれた少なくとも1種で
あり、Bは遷移金属であり、CはAI!、 In。
According to the present invention, it has a 1M layered structure and has the general formula % [where A is at least one selected from alkali metals, B is a transition metal, and C is AI! , In.

Snの群から選ばれた少なくとも1種であり、Dは(a
) A以外のアルカリ金属、(b) B以外の遷移金属
、(c)Ila族元素、 (d) Al、 In、 S
n、炭素、窒素、酸素を除<mb族、■b族、vb族、
vib族の第2〜第6周期の元素、の群から選ばれた少
なくとも1種を表わし、X * V + Z + ”は
各々0.05≦X≦1.10.  0.85≦y≦1.
00゜0.001≦2≦0.10、0.001≦W≦Q
、10、の数を表わす、] で示される複合酸化物を正極として用いることを特徴と
する非水系二次電池が提供される。
is at least one species selected from the group of Sn, and D is (a
) Alkali metal other than A, (b) Transition metal other than B, (c) Ila group element, (d) Al, In, S
n, excluding carbon, nitrogen, and oxygen <mb group, ■ b group, vb group,
Represents at least one element selected from the group of elements of the 2nd to 6th period of the VIB group, and X * V + Z + '' are each 0.05≦X≦1.10, 0.85≦y≦1 ..
00゜0.001≦2≦0.10, 0.001≦W≦Q
, 10, ] A non-aqueous secondary battery is provided that uses a composite oxide represented by the following as a positive electrode.

本発明の新規な層状複合金属酸化物は一般式AxBvC
zDw02で示されるものであって、Aはアルカリ金属
から選ばれた少なくとも一種、例えばLi、 Ha、 
Kであり、中でもLiが好ましい、Xの値は充電状態、
放電状態により変動し、その範囲は0.05≦X≦1.
lOである。即ち充電によりA@イオンのディインター
カレーションが起こり、Xの値は小さくなり、完全充電
状態においてはXの値は0.05に達する。又、放電に
よりA@イオンのインターカレーションが起こり、Xの
値は大きくなり、完全放電状態においてはXの値は1.
10に達する。
The novel layered composite metal oxide of the present invention has the general formula AxBvC
zDw02, where A is at least one selected from alkali metals, such as Li, Ha,
K, of which Li is preferable, the value of X is the state of charge,
It varies depending on the discharge state, and the range is 0.05≦X≦1.
It is lO. That is, deintercalation of A@ ions occurs due to charging, and the value of X decreases, and in a fully charged state, the value of X reaches 0.05. In addition, intercalation of A@ ions occurs due to discharge, and the value of X increases, and in a fully discharged state, the value of X becomes 1.
Reach 10.

又、Bは遷移金属を表わし、中でもXi、 Coが好ま
しい、yの値は充電、放電により変動しないが、 0.
85≦y≦1.00の範囲である。この場合、Bは遷移
金属のうち2種以上含み、かつ1合計されたX値が0.
85≦X≦1.OOの範囲を逸脱しない場合も含んでい
る。yの値が0.85未満及び1.00を越す場合には
二次電池用活物質として充分な性能、即ちサイクル性の
低下、過電圧の上昇等の現象が発生し好ましくない。
Further, B represents a transition metal, and among them, Xi and Co are preferable.The value of y does not change due to charging and discharging, but 0.
The range is 85≦y≦1.00. In this case, B contains two or more types of transition metals, and the total X value is 0.
85≦X≦1. This includes cases that do not deviate from the scope of OO. If the value of y is less than 0.85 or more than 1.00, the performance as an active material for a secondary battery is not sufficient, that is, phenomena such as a decrease in cycleability and an increase in overvoltage occur, which is not preferable.

CはAl、 In、 Snの群から選ばれた少なくとも
1種であり、中でもSnが好ましい、この場合、Cは、
Al、 In、 Snのうち2種以上含み、かつ、合計
されたX値が0.001≦2≦0.10の範囲を逸脱し
ない場合も含んでいる0本発明の新規な二次電池用活物
質において、Cの働きは極めて重要であり、サイクル性
の向上、特に深い充電、深い放電サイクルにおいて極め
て優れたサイ゛クル性を発揮する。2の値は充電、放電
により変動しないが、  0.001≦2≦1.10の
範囲、好ましくは0.005≦2≦0.075の範囲で
ある。2の値が0.001未満の場合、Cの効果が充分
発揮されず、前述の深い充電、深い放電におけるサイク
ル性が低いと共に、深い充電時における過電圧が著しく
上昇し好ましくない、又、2の値が0.lOを越す場合
には、吸湿性が余りに強くなり、扱いが困難になると共
に、二次電池用正極としての基本特性が損なわれ好まし
くない。
C is at least one selected from the group of Al, In, and Sn, with Sn being preferred; in this case, C is
The novel secondary battery use of the present invention includes two or more of Al, In, and Sn, and includes cases where the total X value does not deviate from the range of 0.001≦2≦0.10. In materials, the function of C is extremely important, and it exhibits extremely excellent cyclability, especially in deep charging and deep discharging cycles. The value of 2 does not vary with charging and discharging, but is in the range of 0.001≦2≦1.10, preferably in the range of 0.005≦2≦0.075. If the value of 2 is less than 0.001, the effect of C will not be sufficiently exhibited, the cycleability in deep charging and deep discharging as described above will be low, and the overvoltage will increase significantly during deep charging, which is undesirable. The value is 0. If it exceeds 1O, the hygroscopicity becomes too strong, making it difficult to handle, and the basic characteristics as a positive electrode for a secondary battery are impaired, which is not preferable.

Dは(a) A以外のアルカリ金属、(b) B以外の
遷移金属、(c)IIa族元素、(d) Aj’、 I
n、 Sn、炭素、窒素、酸素を除<mb族、IVb族
、vb族。
D is (a) an alkali metal other than A, (b) a transition metal other than B, (c) a group IIa element, (d) Aj', I
Excluding n, Sn, carbon, nitrogen, and oxygen <MB group, IVb group, Vb group.

vIb族の第2〜第6周期の元素、の群から選ばれた少
なくとも1種を表わし、Wの値は充電、放電により変動
しないがo、oot≦W≦0.10の範囲、好ましくは
0.001≦W≦0.005の範囲である。この場合、
Dは、上記元素群のうち2種以上含み、かつ、合計され
たW値が上述の範囲を逸脱しない場合も含んでいる。W
の値が0.001未満の場合。
Represents at least one element selected from the group of elements of the 2nd to 6th period of the vIb group, and the value of W does not change due to charging and discharging, but is in the range o, oot≦W≦0.10, preferably 0. The range is .001≦W≦0.005. in this case,
D includes cases where two or more of the above element groups are included and the total W value does not deviate from the above range. W
If the value of is less than 0.001.

Dの効果が充分発揮されず、前述の深い充電、深い放電
におけるサイクル性が低いと共に、深い充電時における
過電圧が上昇し好ましくない、又。
The effect of D is not sufficiently exhibited, the cycleability during deep charging and deep discharging described above is low, and the overvoltage during deep charging increases, which is undesirable.

Wの値が0.lOを越す場合には、上記C元素の効果を
阻害し、二次電池用正極としての基本性能が損われ好ま
しくない、      エ瞼 かかる本発明の新規な二次電池用複合酸化物を八 製造するには、A、B、C,D各々の金属の酸化物、水
酸化物、炭酸塩、硝酸塩、有機酸塩等を混合せしめた後
、空気中又は酸素雰囲気下においてeoo℃〜850℃
、好ましくは700℃〜900℃の温度範囲で焼成する
ことにより得られる。
The value of W is 0. If it exceeds 1O, the effect of the above-mentioned C element will be inhibited, and the basic performance as a positive electrode for a secondary battery will be impaired, which is undesirable. After mixing the oxides, hydroxides, carbonates, nitrates, organic acid salts, etc. of metals A, B, C, and D, the mixture is heated at eoo°C to 850°C in air or under an oxygen atmosphere.
, preferably by firing at a temperature range of 700°C to 900°C.

焼成時間は通常5〜48時間程時間光分である。The firing time is usually about 5 to 48 hours.

かかる方法により得られるAxByCzDw02は、二
次電池正極としての放電状態、即ちXの値は通常0.9
0−1.10の範囲のものが得られる。
AxByCzDw02 obtained by this method has a discharge state as a secondary battery positive electrode, that is, the value of X is usually 0.9.
A value in the range of 0-1.10 is obtained.

かくして得られるAxBvCzDw02は前述の如く充
電、放電によるデイインター力レーシ璽ン反応、及びイ
°ンターカレーション反応により、Xの値は0.05≦
X≦1.10の範囲を変動する。
The value of
Varies within the range of X≦1.10.

該反応を式で示せば、 で表わされる。(ここで!′は充電前のXの値を表わし
、X″は充電後のXの値を表わす、)前述の利用率は下
式 で定義される値である。
The reaction is represented by the following formula. (Here, !' represents the value of X before charging, and X'' represents the value of X after charging.) The above-mentioned utilization rate is a value defined by the following formula.

本発明の新規な非水系二次電池用活物質はこの利用率が
大きいことを特徴とし、即ち深い充電、放電に対し極め
て安定なサイクル性を有する。
The novel active material for nonaqueous secondary batteries of the present invention is characterized by a high utilization rate, that is, it has extremely stable cyclability against deep charging and discharging.

本発明の新規な二次電池正極用複合酸化物は、Li標準
電位に対し、3.9〜4.5vと非常に責な電位を有し
、特に非水二次電池の正極として用いた場合に特に優れ
た性能を発揮する。
The novel composite oxide for secondary battery positive electrodes of the present invention has a very negative potential of 3.9 to 4.5V compared to Li standard potential, especially when used as a positive electrode of non-aqueous secondary batteries. Demonstrates particularly excellent performance.

次に本発明の正極を用いた二次電池について述べる0本
発明の二次電池用正極を用い、電極を製造するに際し、
該正極は種々の形状で用いることができる。
Next, a secondary battery using the positive electrode of the present invention will be described. When manufacturing an electrode using the positive electrode for secondary batteries of the present invention,
The positive electrode can be used in various shapes.

即ち、フィルム状、Fam状、粉末状等任意の形状で目
的に応じ用いられるが、特に粉末状で用いる場合には、
該活物質をシート状等任意の形状に成形して用いること
ができる。
That is, it can be used in any form such as film, fam, powder, etc. depending on the purpose, but especially when used in powder form,
The active material can be formed into any shape such as a sheet and used.

成形方法としては、活物質をテフロン粉末、ポリエチレ
ン粉末等の粉末状バインダーと共に混合し圧縮成形する
方法が一般的である。
A common method for molding is to mix the active material with a powdered binder such as Teflon powder or polyethylene powder, and then compression mold the mixture.

更に好ましい方法として溶媒に溶解及び/又は分散した
有機重合体をバインダーとして電極活物質を成形する方
法が挙げられる。
A more preferable method is to form an electrode active material using an organic polymer dissolved and/or dispersed in a solvent as a binder.

従来より非水系電池は高エネルギー密度、小型軽量とい
った性能面では優れているものの、水系電池に比べ出力
特性に難点があり、広く一般に用いられるまでに至って
いない、特に出力特性が要求される二次電池の分野では
この欠点が実用化を妨げている一つの要因となっている
Although non-aqueous batteries have conventionally been superior in terms of performance such as high energy density, small size and light weight, they have disadvantages in output characteristics compared to aqueous batteries, and have not yet been widely used, especially for secondary batteries that require high output characteristics. In the field of batteries, this drawback is one of the factors preventing practical application.

非水系電池が出力特性に劣る原因は水系電解液の場合イ
オン電導度が高く、通常1o−1Ω−I Cl11−1
オーダーの値を有するのに対し、非水系の場合通常10
−2〜10−4Ω−I C11−1と低いイオン電導度
しが有していないことに起因する。
The reason why non-aqueous batteries have inferior output characteristics is that aqueous electrolytes have high ionic conductivity, usually 1o-1Ω-I Cl11-1
For non-aqueous systems it usually has a value of the order of 10
This is due to the fact that it does not have a low ionic conductivity of -2 to 10-4Ω-I C11-1.

かかる問題点を解決する一つの方法として電極面積を大
きくすること、即ち薄膜、大面積電極を用いることが考
えられる。
One possible way to solve this problem is to increase the area of the electrode, that is, to use a thin film or a large-area electrode.

前記方法は、かかるg膜、大面端電極を得るのに特に好
ましい方法である。
The above method is a particularly preferred method for obtaining such a g-film and large-sided end electrode.

かかる有機重合体をバインダーとして用いるに際しては
、該有機重合体を溶媒に溶解せしめたバインダー溶液に
電極活物質を分散せしめたものを塗工液として用いる方
法、又、該有機重合体の水乳化分散液に電極活物質を分
散せしめたものを塗工液として用いる方法、予め予備成
形された電極活物質に該有機重合体の溶液及び/又は分
散液を塗布する方法等が一例として挙げられる。用いる
バインダー量は特に限定するものではないが、通常、電
極活物質100重量部に対し0.1〜20重量部、好ま
しくは0.5〜lO重量部の範囲である。
When using such an organic polymer as a binder, there is a method in which an electrode active material is dispersed in a binder solution in which the organic polymer is dissolved in a solvent and used as a coating liquid, or a water emulsion dispersion of the organic polymer is used. Examples include a method in which a liquid in which an electrode active material is dispersed is used as a coating liquid, and a method in which a solution and/or dispersion of the organic polymer is applied to a preformed electrode active material. The amount of binder used is not particularly limited, but is usually in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the electrode active material.

ここで用いられる有機重合体は特に限定されるものでは
ないが、該有機重合体が25°C1周波数l KHzに
おける比訝電率が4.5以上の値を有する場合、特に好
ましい結果をもたらし、特に電池性能として、サイクル
性、過電圧等の面で優れた特性を有する。
The organic polymer used here is not particularly limited, but when the organic polymer has a specific electrical constant of 4.5 or more at 25° C. and a frequency of 1 KHz, particularly favorable results can be obtained. In particular, it has excellent battery performance in terms of cycleability, overvoltage, etc.

かかる条件を満たす有機重合体の一例を示せば、アクリ
ロニトリル、メタクリニトリル、フッ化ビニル、フッ化
ビニリデン、クロロプレン、塩化ビニリデン等の重合体
もしくは共重合体、ニトロセルロース、シアノエチルセ
ルロース、多硫化ゴム等が挙げられる。
Examples of organic polymers that meet these conditions include polymers or copolymers of acrylonitrile, methacrinitrile, vinyl fluoride, vinylidene fluoride, chloroprene, vinylidene chloride, nitrocellulose, cyanoethylcellulose, polysulfide rubber, etc. Can be mentioned.

かかる方法により電極を製造するに際し、前記塗工液を
基材上に塗布乾燥することにより成形される。この時要
すれば集電体材料と共に成形しても良いし、又、別法と
してアルミ箔、銅箔等の集電体を基材として用いること
もできる。
When manufacturing an electrode using this method, the coating solution is applied onto a base material and dried to form the electrode. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as aluminum foil or copper foil may be used as the base material.

本発明の活物質を用いて製造される電池電極には、前記
バインダー、導電補助剤、その他添加剤、例えば増粘剤
、分散剤、増量剤、粘着補助剤等が添加されても良いが
、少なくとも本発明の活物質が25重量%以以上型れて
いるものを言う。
The binder, conductive aid, and other additives such as thickeners, dispersants, fillers, adhesion aids, etc. may be added to the battery electrode manufactured using the active material of the present invention. It refers to a material containing at least 25% by weight or more of the active material of the present invention.

導電補助剤としては、金属粉、導電金属酸化物粉、カー
ボン等が挙げられる。特にかかる導電補助剤の添加は本
発明のAXBVCZD1102を用いる場合に顕著な効
果が見出される。
Examples of the conductive aid include metal powder, conductive metal oxide powder, and carbon. Particularly, when AXBVCZD1102 of the present invention is used, the addition of such a conductive auxiliary agent has a remarkable effect.

中でも、好ましい結果を与えるのはカーボンであり、通
常AXB、CZDw02 1’OO重量部に対し1〜3
0重量部の添加により著しい過電圧の低下効果が発現し
、優れたサイクル特性を発揮する。
Among them, carbon gives preferable results, and is usually used in an amount of 1 to 3 parts by weight of AXB, CZDw02 1'OO.
Addition of 0 parts by weight produces a significant overvoltage reduction effect and exhibits excellent cycle characteristics.

ここで云うカーボンとは、必ずしも特定されたカーボン
を意味するものではない。
The term carbon here does not necessarily mean specific carbon.

かかるカーボンとして、グラファイト、カーボンブラッ
ク等が挙げられる。特に好ましい組合わせとして、平均
粒径0.1〜10ILのカーボンと平均粒径0.01p
〜0.08!のカーボンを混合して用いた場合、特に優
れた効果を与える。
Examples of such carbon include graphite and carbon black. A particularly preferable combination is carbon with an average particle size of 0.1 to 10IL and an average particle size of 0.01p.
~0.08! Particularly excellent effects are obtained when carbon is used in combination.

負極としては特に限定されないが、Li 、 Na等の
軽金属又はその合金負極、LixFe203. Lix
Fe:+Oa 。
The negative electrode is not particularly limited, but may include a light metal such as Li or Na or an alloy thereof, LixFe203. Lix
Fe:+Oa.

L 1XWO2等の金属酸化物系負極、ポリアセチレン
、ポリ−p−フェニレン等の導電性高分子負極、気相成
長法炭素繊維、ピッチ系カーボン、ポリアクリロニトリ
ル系炭素ta維等の炭素質材料負極等が挙げられる。
Metal oxide negative electrodes such as L 1XWO2, conductive polymer negative electrodes such as polyacetylene and poly-p-phenylene, carbonaceous material negative electrodes such as vapor grown carbon fibers, pitch carbon, polyacrylonitrile carbon TA fibers, etc. Can be mentioned.

本発明の非水系二次電池を組立てる場合の基本構成要素
として、前記本発明の正極及び前記負極を用いた電極、
更にはセパレーター、非水電解液が挙げられる。セパレ
ーターとしては特に限定されないが、織布、不織布、ガ
ラス織布、合成樹脂微多孔膜等が挙げられるが、前述の
如く、薄膜、大面積電極を用いる場合には、例えば特開
昭58−59072号に開示される合成樹脂微多孔膜、
特にポリオレフィン系微多孔膜が、厚み、強度、膜抵抗
の面で好ましい。
As basic components when assembling the non-aqueous secondary battery of the present invention, an electrode using the positive electrode and the negative electrode of the present invention;
Further examples include separators and non-aqueous electrolytes. The separator is not particularly limited, but includes woven fabrics, non-woven fabrics, glass woven fabrics, synthetic resin microporous membranes, etc. As mentioned above, when using thin films and large-area electrodes, for example, A synthetic resin microporous membrane disclosed in No.
In particular, polyolefin microporous membranes are preferred in terms of thickness, strength, and membrane resistance.

非水電解液の電解質としては特に限定されないが、−例
を示せば、Li(1’Oa、 LiBFn、 LiAs
F6゜CF3SO3Li、 LiPF6. LiI、 
LiAjiCj?4. NaC1)04゜NaBFa、
 Mal、 (niu)aNLBci)On、 (n−
Bu)aN”BFa。
The electrolyte of the non-aqueous electrolyte is not particularly limited, but examples include Li(1'Oa, LiBFn, LiAs
F6゜CF3SO3Li, LiPF6. LiI,
LiAjiCj? 4. NaC1)04°NaBFa,
Mal, (niu)aNLBci)On, (n-
Bu)aN”BFa.

KPF6等が挙げられる。又、用いられる電解液の有機
溶媒としては、例えばエーテル類、ケトン類、ラクトン
類、ニトリル類、アミン類、アミド類、硫黄化合物、塩
素化炭化水素類、エステル類、カーボネート類、ニトロ
化合物、リン酸エステル系化合物、スルホラン系化合物
等を用いることができるが、これらのうちでもエアチル
類、ケトン類、ニトリル類、塩素化炭化水素類、カーボ
ネート類、スルホラン系化合物が好ましい。更に好まし
くは環状カーボネート類である。
Examples include KPF6. In addition, examples of organic solvents used in the electrolytic solution include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphorus. Acid ester compounds, sulfolane compounds, etc. can be used, and among these, aircils, ketones, nitriles, chlorinated hydrocarbons, carbonates, and sulfolane compounds are preferred. More preferred are cyclic carbonates.

これらの代表例としては、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1.2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミド
、ジメチルスルホキシド、ジメチルチオホルムアミド、
スルホラン、3−メチル−スルホラン、リン酸トリメチ
ル、リン酸トリエチルおよびこれらの混合溶媒等をあげ
ることができるが、必ずしもこれらに限定されるもので
はない。
Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2- Dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide,
Examples include sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited to these.

更に要すれば、集電体、端子、絶縁板等の部品を用いて
電池が構成される。又、電池の構造としては、特に限定
されるものではないが、正極、負極、更に要すればセパ
レーターを単層又は複層としたペーパー型電池、aM型
主電池又は正極、負極、更に要すればセパレーターをロ
ール状に巻いた円筒状電池等の形態が一例として挙げら
れる。
Furthermore, if necessary, the battery is constructed using parts such as a current collector, a terminal, and an insulating plate. The structure of the battery is not particularly limited, but may include a paper type battery with a positive electrode, a negative electrode, and if necessary a separator in a single layer or multiple layers, an aM type main battery, or a positive electrode, a negative electrode, and if necessary, a separator. For example, a cylindrical battery formed by winding a separator into a roll can be cited.

[発明の効果] 本発明の電池は小型軽量であり、特にサイクル特性、自
己放電特性に優れ、小型電子機器用、電気自動車用、電
力貯蔵用等の電源として極めて有用である。
[Effects of the Invention] The battery of the present invention is small and lightweight, has particularly excellent cycle characteristics and self-discharge characteristics, and is extremely useful as a power source for small electronic devices, electric vehicles, power storage, and the like.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明す
る。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 炭酸リチウム1.05モル、酸化コバル) 1.90モ
ル、酸化第2スズ0.084モル、酸化スカンジウム0
.002モルを混合し、850℃で5時間仮焼した後、
空気中で850℃、 12時間焼成したところ。
Example 1 Lithium carbonate 1.05 mol, cobal oxide 1.90 mol, stannic oxide 0.084 mol, scandium oxide 0
.. After mixing 002 mol and calcining at 850°C for 5 hours,
Baked in air at 850℃ for 12 hours.

Li+、osCoo、vsSno、 04ZSC11,
00202の組成を有する複合酸化物を得た。この複合
酸化物をボールミルで平均3μ層に粉砕した後、複合酸
化物1重量部に対し、ポリアクリロニトリルのジメチル
ホルムアミド溶液(濃度2vt%)1重量部と導電補助
剤としてグラファイト0.2重量部とを混合した後、1
5終■アルミ箔1 cmX 5 craの片面に75糾
麿の膜厚に塗布した。
Li+, osCoo, vsSno, 04ZSC11,
A composite oxide having a composition of 00202 was obtained. After pulverizing this composite oxide into an average layer of 3 μm using a ball mill, 1 part by weight of a dimethylformamide solution of polyacrylonitrile (concentration 2% by weight) and 0.2 part by weight of graphite as a conductive additive were added to 1 part by weight of the composite oxide. After mixing 1
5. Finish: The film was coated on one side of aluminum foil 1 cm x 5 cr to a film thickness of 75 mm.

この試験片を正極に、負極としてリチウム金属を、又電
解液として0.6M−LiC1)Oa−プロピレンカー
ボネート溶液を用い、第1図に示す電池を組み立てた。
The battery shown in FIG. 1 was assembled using this test piece as a positive electrode, lithium metal as a negative electrode, and a 0.6M LiC1)Oa-propylene carbonate solution as an electrolyte.

25+sAの定電流(電流密度5 mA/cs2)で3
0分間、充電を行った後、同じ< 25+sAの定電流
で3.8vまで放電を行った。この時の充電終止電圧及
び開放端子電圧及び過電圧は、それぞれ、4.20V 
3 at a constant current of 25+sA (current density 5 mA/cs2)
After charging for 0 minutes, discharging was performed to 3.8V at the same constant current of <25+sA. The end-of-charge voltage, open terminal voltage, and overvoltage at this time are 4.20V, respectively.
.

4.15V 、 0.05Vであった。They were 4.15V and 0.05V.

この後、同じ充電放電条件でサイクルテストを行い、各
サイクルにおける開放端子電圧及び過電圧は第1表に示
す通りそあり、殆ど変化していなかった。
Thereafter, a cycle test was conducted under the same charging and discharging conditions, and the open terminal voltage and overvoltage in each cycle were as shown in Table 1, with almost no change.

第  1  表 実施例2〜4.比較例1〜5 実施例1において、炭酸リチウム、酸化コバルト、酸化
第2スズ、酸化スカンジウムの量を第2表に示す仕込量
に変えた以外は同様の操作を行い、種々の複合酸化物を
得た。その組成比も併せて第2表に示す。
Table 1 Examples 2-4. Comparative Examples 1 to 5 The same operations as in Example 1 were carried out except that the amounts of lithium carbonate, cobalt oxide, stannic oxide, and scandium oxide were changed to the amounts shown in Table 2, and various composite oxides were prepared. Obtained. The composition ratios are also shown in Table 2.

この複合酸化物を実施例1と同様の電池を組み立て、評
価を行った。
A battery similar to that of Example 1 was assembled using this composite oxide and evaluated.

開放端子電圧、及び過電圧を第3表に示す。Table 3 shows the open terminal voltage and overvoltage.

第  3  表 実施例5〜!4 実施例1において酸化スカンジウム0.002モルの代
りに第4表に示す酸化物もしくは炭酸塩を。
Table 3 Example 5~! 4 In Example 1, 0.002 mol of scandium oxide was replaced with an oxide or carbonate shown in Table 4.

同じく第4表に示す仕込モル数で用いた以外は全く同様
の電池評価を行った。得られた複合酸化物組成及び測定
した過電圧も併せて第4表に示す。
The batteries were evaluated in exactly the same manner except that the number of charged moles shown in Table 4 was used. The obtained composite oxide composition and the measured overvoltage are also shown in Table 4.

実施例15〜17 実施例1において酸化第2スズ0.084モルの代りに
第5表に示す酸化物を、同じく第5表に示す仕込モル数
で用いた以外は全く同様の電池評価を行った。得られた
複合酸化物組成及び測定した過電圧も併せて第5表に示
す。
Examples 15 to 17 Completely similar battery evaluations were carried out in Example 1, except that instead of 0.084 mol of stannic oxide, the oxides shown in Table 5 were used in the number of moles shown in Table 5. Ta. The obtained composite oxide composition and the measured overvoltage are also shown in Table 5.

(以下余白〕 実施例18 実施例1において酸化コバルト1.90モルの代りに酸
化ニッケル1.90モルを用いた以外は同様の操作を行
い、Li+、os旧o、96sno、oasco、oo
2ozの組成を有する複合酸化物を得た。この複合酸化
物を実施例1と同様の電池を組立て、評価を行ったとこ
ろ過電圧は0.09Vであった。
(The following is a blank space) Example 18 The same operation as in Example 1 was performed except that 1.90 mol of nickel oxide was used instead of 1.90 mol of cobalt oxide, and Li+, os old o, 96sno, oasco, oo
A composite oxide having a composition of 2 oz. was obtained. When a battery similar to that of Example 1 was assembled using this composite oxide and evaluated, the overvoltage was found to be 0.09V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二次電池の構成例の断面図である。第
1図において、lは正極、2は負極、3.3′は集電棒
、4.4’はSUSネ7)、5.5′は外部電極端子、
6は電池ケース、7はセパレーター、8は電解液又は固
体電解質である。
FIG. 1 is a sectional view of a configuration example of a secondary battery of the present invention. In Fig. 1, l is the positive electrode, 2 is the negative electrode, 3.3' is the current collector rod, 4.4' is the SUS wire 7), 5.5' is the external electrode terminal,
6 is a battery case, 7 is a separator, and 8 is an electrolytic solution or solid electrolyte.

Claims (1)

【特許請求の範囲】 層状構造を有し、一般式 A_xB_yC_zD_wO_2 [但しAはアルカリ金属から選ばれた少なくとも1種で
あり、Bは遷移金属であり、CはAl、In、Snの群
から選ばれた少なくとも1種であり、Dは(a)A以外
のアルカリ金属、(b)B以外の遷移金属、(c)IIa
族元素、(d)Al、In、Sn、炭素、窒素、酸素を
除くIIIb族、IVb族、Vb族、VIb族の第2〜第6周
期の元素、の群から選ばれた少なくとも1種を表わし、
x、y、z、wは各々0.05≦x≦1.10、0.8
5≦y≦1.00、0.001≦z≦0.10、0.0
01≦w≦0.10、の数を表わす。] で示される複合酸化物を正極として用いることを特徴と
する非水系二次電池。
[Claims] It has a layered structure and has the general formula A_xB_yC_zD_wO_2 [where A is at least one selected from alkali metals, B is a transition metal, and C is selected from the group of Al, In, and Sn. and D is (a) an alkali metal other than A, (b) a transition metal other than B, (c) IIa
At least one element selected from the group of group elements, (d) elements of the 2nd to 6th period of the IIIb group, IVb group, Vb group, and VIb group excluding Al, In, Sn, carbon, nitrogen, and oxygen. Representation,
x, y, z, w are 0.05≦x≦1.10, 0.8, respectively
5≦y≦1.00, 0.001≦z≦0.10, 0.0
It represents the number 01≦w≦0.10. ] A non-aqueous secondary battery characterized by using a composite oxide represented by these as a positive electrode.
JP61265838A 1986-11-08 1986-11-08 Non-aqueous secondary battery Expired - Lifetime JP2547992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265838A JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265838A JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63121258A true JPS63121258A (en) 1988-05-25
JP2547992B2 JP2547992B2 (en) 1996-10-30

Family

ID=17422764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265838A Expired - Lifetime JP2547992B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2547992B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207325B1 (en) 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6686093B1 (en) 1999-06-14 2004-02-03 Kabushiki Kaisha Toshiba Positive electrode active material for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery therewith
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US7422824B2 (en) 2002-05-16 2008-09-09 Matsushita Electric Industrial Co., Ltd. Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7981546B2 (en) 2005-04-28 2011-07-19 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6207325B1 (en) 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6686093B1 (en) 1999-06-14 2004-02-03 Kabushiki Kaisha Toshiba Positive electrode active material for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery therewith
JP3696159B2 (en) * 1999-06-14 2005-09-14 株式会社東芝 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US6579475B2 (en) 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7422824B2 (en) 2002-05-16 2008-09-09 Matsushita Electric Industrial Co., Ltd. Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7981546B2 (en) 2005-04-28 2011-07-19 Panasonic Corporation Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2547992B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US7026075B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolytic solution
KR100276656B1 (en) Solid type secondary battery composed of thin film composite anode
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
CN105914323B (en) Electric storage element
JP2668678B2 (en) Rechargeable battery
JP2003077476A (en) Lithium ion secondary battery
JP3079382B2 (en) Non-aqueous secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPS63121258A (en) Nonaqueous secondary battery
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
JP3046055B2 (en) Non-aqueous secondary battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP2003115324A (en) Nonaqueous electrolyte battery
JPH11288718A (en) Nonaqueous solvent secondary battery
JPH1167273A (en) Lithium secondary battery
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
WO2015111585A1 (en) Lithium ion battery system
JP2002117832A (en) Lithium secondary battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3236317B2 (en) Non-aqueous battery
TW202209738A (en) Improved electrolyte for electrochemical cell
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JPH0782839B2 (en) Secondary battery negative electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term