JP5259268B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5259268B2
JP5259268B2 JP2008165237A JP2008165237A JP5259268B2 JP 5259268 B2 JP5259268 B2 JP 5259268B2 JP 2008165237 A JP2008165237 A JP 2008165237A JP 2008165237 A JP2008165237 A JP 2008165237A JP 5259268 B2 JP5259268 B2 JP 5259268B2
Authority
JP
Japan
Prior art keywords
lithium
compound
layered compound
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008165237A
Other languages
Japanese (ja)
Other versions
JP2010009799A (en
Inventor
英明 前田
哲生 戸北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2008165237A priority Critical patent/JP5259268B2/en
Priority to KR1020090045592A priority patent/KR101256059B1/en
Priority to CN200910149493A priority patent/CN101615692A/en
Priority to EP09251650A priority patent/EP2139059A1/en
Priority to US12/492,070 priority patent/US20090325072A1/en
Publication of JP2010009799A publication Critical patent/JP2010009799A/en
Application granted granted Critical
Publication of JP5259268B2 publication Critical patent/JP5259268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、高容量であるとともに、サイクル特性に優れた非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics.

近時、携帯電話やノート型パソコン等に用いられる電池としてより一層高容量のものが求められており、このような高容量、高エネルギー密度の観点から、リチウムイオン二次電池の正極及び負極の活物質として様々な材料が検討されている。これらの電極に用いられる一般的な活物質としては、正極活物質としてコバルト酸リチウム等の層状構造を有するリチウム遷移金属複合酸化物、負極活物質として黒鉛系炭素材料、酸化ケイ素系複合材料、シリコン、錫合金、リチウムバナジウム酸化物等が挙げられ、このような正極活物質と負極活物質との間をリチウムイオンが移動することにより充放電が行われる。   Recently, a battery having higher capacity has been demanded as a battery used in a mobile phone, a notebook computer, etc. From the viewpoint of such high capacity and high energy density, the positive electrode and the negative electrode of a lithium ion secondary battery are required. Various materials have been studied as active materials. As a general active material used for these electrodes, a lithium transition metal composite oxide having a layered structure such as lithium cobaltate as a positive electrode active material, a graphite-based carbon material, a silicon oxide-based composite material, silicon as a negative electrode active material , Tin alloy, lithium vanadium oxide, and the like, and charging and discharging are performed as lithium ions move between the positive electrode active material and the negative electrode active material.

このような系においては、正極活物質が構造上もっている効率(脱離したリチウムイオンのうち再度挿入することが可能な量)と、負極活物質が構造上もっている効率(挿入したリチウムイオンのうち再度脱離させることが可能な量)では、負極活物質の効率の方が低く、電池のサイクル特性は負極活物質から再度脱離可能なリチウムイオン量に依存している。しかし、負極活物質の効率を上げる(より多くのリチウムイオンを脱離させる)ために、負極の放電深度を最大限に使用すると、次第に負極が劣化して、サイクル特性が劣化してしまう。一方、可逆領域だけで負極を作動させると、充放電に関与するリチウムイオンの移動量が減少してしまい、やはりサイクル特性が充分ではないという問題がある。   In such a system, the positive electrode active material has a structural efficiency (the amount of lithium ions that can be reinserted), and the negative electrode active material has a structural efficiency (of inserted lithium ions). Of these, the efficiency of the negative electrode active material is lower, and the cycle characteristics of the battery depend on the amount of lithium ions that can be desorbed again from the negative electrode active material. However, when the maximum discharge depth of the negative electrode is used in order to increase the efficiency of the negative electrode active material (desorb more lithium ions), the negative electrode gradually deteriorates and the cycle characteristics deteriorate. On the other hand, when the negative electrode is operated only in the reversible region, there is a problem that the amount of movement of lithium ions involved in charge / discharge decreases, and the cycle characteristics are not sufficient.

このような問題を改善するために、負極活物質に予めリチウムイオンをドープするという方法があるが(特許文献1)、負極活物質へのドープ可能なリチウムイオン量は限定されているうえ、負極活物質への均一なドープは困難であり、更に、ドープしたリチウムイオンが再脱離した後の負極活物質の層間拡大に伴う抵抗上昇、リチウムメタルの不安定性(大気中不安定、発火、電極の柔軟性の低さ等)といった問題もある。
特開2005−294028
In order to improve such a problem, there is a method of doping lithium ions into the negative electrode active material in advance (Patent Document 1), but the amount of lithium ions that can be doped into the negative electrode active material is limited, and the negative electrode Uniform doping of the active material is difficult, and further, the resistance increases with the expansion of the interlayer of the negative electrode active material after the re-desorption of the doped lithium ions, the instability of lithium metal (instability in the atmosphere, ignition, electrode There is also a problem such as low flexibility.
JP 2005-294028 A

そこで本発明は、上記現状に鑑み、高容量であるとともに、サイクル特性に優れた非水電解質二次電池を提供することを課題とする。   In view of the above situation, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics.

すなわち本発明に係る非水電解質二次電池は、開放電位(リチウム基準)が3V以上の第1のリチウム層状化合物と3V未満の第2のリチウム層状化合物とを含有する正極を備えており、前記第1及び第2のリチウム層状化合物の混合比は、重量比で、第2のリチウム層状化合物/第1のリチウム層状化合物が0.01〜0.3であることを特徴とする。   That is, the nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode containing a first lithium layered compound having an open potential (lithium reference) of 3 V or more and a second lithium layered compound of less than 3 V, The mixing ratio of the first and second lithium layered compounds is characterized in that the second lithium layered compound / first lithium layered compound is 0.01 to 0.3 by weight.

このようなものであれば、初期充電前に予め正極に前記第1のリチウム層状化合物に加えて、開放電位の低い前記第2のリチウム層状化合物を含有させておき、充放電時に下限電位を3V(リチウム基準)以上に設定することにより、初期充電時には第1及び第2のリチウム層状化合物の両方からリチウムイオンが脱離するが、次の放電時には第1のリチウム層状化合物に対してのみリチウムイオンが再挿入され、第2のリチウム層状化合物から脱離したリチウムイオンは再挿入されず負極活物質にドープされたままとなる。そして、2回目以降の充放電サイクルでは、第1のリチウム層状化合物からのみリチウムイオンが脱離し、第1のリチウム層状化合物に対してのみリチウムイオンが再挿入される。   In such a case, before the initial charge, in addition to the first lithium layered compound, the positive electrode contains the second lithium layered compound having a low open potential in advance, and the lower limit potential is set to 3 V during charging and discharging. (Lithium reference) By setting the above, lithium ions are desorbed from both the first and second lithium layered compounds at the initial charge, but only at the first lithium layered compound at the next discharge Is reinserted, and lithium ions desorbed from the second lithium layered compound are not reinserted and remain doped in the negative electrode active material. In the second and subsequent charge / discharge cycles, lithium ions are desorbed only from the first lithium layered compound, and lithium ions are reinserted only into the first lithium layered compound.

このように、初期充電時に第2のリチウム層状化合物から脱離したリチウムイオンが負極活物質へドープされることにより、負極の放電深度を浅くしても、移動可能なリチウムイオン量が増加し、可逆領域内で負極を作動させることが可能になるので、負極の劣化を抑制して電池のサイクル特性を改善することが可能となる。   As described above, the lithium ion desorbed from the second lithium layered compound during the initial charging is doped into the negative electrode active material, so that the amount of movable lithium ions increases even when the discharge depth of the negative electrode is shallow, Since the negative electrode can be operated in the reversible region, it is possible to suppress the deterioration of the negative electrode and improve the cycle characteristics of the battery.

更に、本発明によれば、負極活物質へのリチウムイオンの均一なドープが可能となるとともに、ドープしたリチウムイオンが再脱離した後の負極活物質の層間拡大に伴う抵抗上昇や、リチウムメタルの不安定性等の問題も生じない。   Furthermore, according to the present invention, the negative electrode active material can be uniformly doped with lithium ions, and the resistance increase associated with the interlayer expansion of the negative electrode active material after the doped lithium ions are re-desorbed, and lithium metal Instability and other problems do not occur.

なお、本発明に係る非水電解質二次電池は上限電圧を4.3V以下(リチウム基準)として充放電を行うことが好ましい。上限電位を4.3V超とすると、第2のリチウム層状化合物が劣化して層状構造が崩れ、第2のリチウム層状化合物が溶解したり電解液と反応して分解したりして、非水電解質二次電池のサイクル特性の低下を招く。   The nonaqueous electrolyte secondary battery according to the present invention is preferably charged and discharged with an upper limit voltage of 4.3 V or lower (lithium reference). When the upper limit potential exceeds 4.3 V, the second lithium layered compound deteriorates and the layered structure collapses, and the second lithium layered compound dissolves or reacts with the electrolytic solution and decomposes, resulting in a nonaqueous electrolyte. This leads to deterioration of the cycle characteristics of the secondary battery.

また、本発明に係る非水電解質二次電池が3V未満の過放電状態になった場合は、第2のリチウム層状化合物に対しリチウムイオンが再挿入されることにより、過放電が防止されるという効果がある。   In addition, when the nonaqueous electrolyte secondary battery according to the present invention is in an overdischarge state of less than 3 V, lithium ions are reinserted into the second lithium layered compound, thereby preventing overdischarge. effective.

前記第2のリチウム層状化合物は、Mo、Ti、Cr、V、及び、Cuからなる群より選ばれる少なくとも1種の金属元素を含有するリチウム金属化合物であることが好ましい。   The second lithium layered compound is preferably a lithium metal compound containing at least one metal element selected from the group consisting of Mo, Ti, Cr, V, and Cu.

また、前記リチウム金属化合物は、酸化物、窒化物、水酸化物、硫化物、及び、リン酸化合物からなる群より選ばれる少なくとも1種の化合物であることが好ましい。   The lithium metal compound is preferably at least one compound selected from the group consisting of oxides, nitrides, hydroxides, sulfides, and phosphate compounds.

一方、前記第1のリチウム層状化合物としては、Co、Ni、及び、Mnからなる群より選ばれる少なくとも1種の金属元素を含有するリチウム金属化合物が挙げられる。   On the other hand, examples of the first lithium layered compound include a lithium metal compound containing at least one metal element selected from the group consisting of Co, Ni, and Mn.

このような本発明に係る非水電解質二次電池は、シリコン、錫、シリコン合金、錫合金、酸化ケイ素、及び、リチウムバナジウム酸化物からなる群より選ばれる少なくとも1種の化合物を含有している負極を備えていることが好ましい。   Such a nonaqueous electrolyte secondary battery according to the present invention contains at least one compound selected from the group consisting of silicon, tin, a silicon alloy, a tin alloy, silicon oxide, and lithium vanadium oxide. It is preferable to have a negative electrode.

このような構成を有する本発明によれば、高容量であるとともに、サイクル特性に優れた非水電解質二次電池を得ることができる。   According to the present invention having such a configuration, a nonaqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics can be obtained.

以下に本発明の一実施形態に係る非水電解質二次電池について説明する。   A nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described below.

本実施形態に係る非水電解質二次電池は、例えば、コイン、ボタン、シート、シリンダー、偏平、角形等の形態をとり、正極、負極、電解質、セパレータ等から構成されている。   The nonaqueous electrolyte secondary battery according to the present embodiment has, for example, a coin, a button, a sheet, a cylinder, a flat shape, a square shape, and the like, and includes a positive electrode, a negative electrode, an electrolyte, a separator, and the like.

前記正極は、活物質として、少なくとも、開放電位(リチウム基準)が3V以上である第1のリチウム層状化合物と3V未満である第2のリチウム層状化合物とを含有している。   The positive electrode contains, as an active material, at least a first lithium layered compound having an open potential (lithium reference) of 3 V or higher and a second lithium layered compound of less than 3 V.

前記第1のリチウム層状化合物としては、Co、Ni、又は、Mnを含有するリチウム金属化合物であることが好ましく、これらの金属元素は1種が含有されていてもよく、2種以上が含有されていてもよい。このような第1のリチウム層状化合物としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等が挙げられる。これらの第1のリチウム層状化合物は、単独で用いられてもよく、2種以上が併用されてもよい。 The first lithium layered compound is preferably a lithium metal compound containing Co, Ni, or Mn, and one or more of these metal elements may be contained. It may be. Examples of the first lithium layered compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMnO 2 ). These 1st lithium layered compounds may be used independently and 2 or more types may be used together.

前記第2のリチウム層状化合物としては、Mo、Ti、Cr、V、又は、Cuを含有するリチウム金属化合物であることが好ましく、これらの金属元素は1種が含有されていてもよく、2種以上が含有されていてもよい。このような第2のリチウム層状化合物としては、例えば、LiMoO、LiCuO、LiTiO、LiVO等の酸化物、LiMnN等の窒化物、LiFeS等の硫化物、LiFeOOH等の水酸化物、LiFe(PO等のリン酸化合物等が挙げられる。これらの第2のリチウム層状化合物は、単独で用いられてもよく、2種以上が併用されてもよい。 The second lithium layered compound is preferably a lithium metal compound containing Mo, Ti, Cr, V, or Cu, and one of these metal elements may be contained. The above may be contained. Examples of the second lithium layered compound include oxides such as Li 2 MoO 3 , Li 2 CuO 2 , Li 2 TiO 3 , and LiVO 2 , nitrides such as Li 7 MnN 4 , and sulfides such as LiFeS 2. Products, hydroxides such as LiFeOOH, and phosphoric acid compounds such as Li 3 Fe 2 (PO 4 ) 3 . These 2nd lithium layered compounds may be used independently and 2 or more types may be used together.

前記第1及び第2のリチウム層状化合物の混合比は、用いる化合物に応じて適宜選択することができるが、重量比で、第2のリチウム層状化合物/第1のリチウム層状化合物が0.01〜0.3であり、好ましくは0.05〜0.2であり、より好ましくは0.05〜0.1である。第2のリチウム層状化合物が多すぎると、負極へのリチウムイオンのドープ量が多くなりすぎて可逆なLi量が低下し、電池全体としての容量が低下する。   The mixing ratio of the first and second lithium layered compounds can be appropriately selected according to the compound to be used, but the weight ratio of the second lithium layered compound / the first lithium layered compound is 0.01 to 0.3, preferably 0.05 to 0.2, and more preferably 0.05 to 0.1. When there is too much 2nd lithium layered compound, the doping amount of the lithium ion to a negative electrode will increase too much, the reversible amount of Li will fall, and the capacity | capacitance as the whole battery will fall.

前記負極としては、例えば、黒鉛系炭素材料、シリコン、錫、シリコン合金、錫合金、酸化ケイ素、リチウムバナジウム酸化物等を活物質とするものが挙げられるが、なかでも、シリコン、錫、シリコン合金、錫合金等のリチウムと合金化可能な化合物や、酸化ケイ素、リチウムバナジウム酸化物等を活物質とするものが好ましい。黒鉛系炭素材料の容量密度が560〜630mAh/cmであるのに対して、シリコン、錫、シリコン合金、錫合金、酸化ケイ素、リチウムバナジウム酸化物等の容量密度は850mAh/cm以上であり、これらを用いることにより電池の小型化及び高容量化を図ることができる。なお、これらの負極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the negative electrode include graphite-based carbon materials, silicon, tin, silicon alloys, tin alloys, silicon oxides, lithium vanadium oxides, and the like, among others, silicon, tin, and silicon alloys. In addition, a compound that can be alloyed with lithium, such as a tin alloy, silicon oxide, lithium vanadium oxide, or the like as an active material is preferable. While the capacity density of the graphite-based carbon material is 560 to 630 mAh / cm 3 , the capacity density of silicon, tin, silicon alloy, tin alloy, silicon oxide, lithium vanadium oxide, etc. is 850 mAh / cm 3 or more. By using these, the battery can be reduced in size and capacity. In addition, these negative electrode active materials may be used independently and 2 or more types may be used together.

前記正極及び負極は、前記の活物質からなる粉末に、例えば、導電剤、結着剤、フィラー、分散剤、イオン導電剤等の添加剤が、適宜選択され配合されていてもよい。   For the positive electrode and the negative electrode, additives such as, for example, a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately selected and blended with the powder made of the active material.

前記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、前記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。   Examples of the conductive agent include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Is mentioned.

前記正極又は負極を製造するには、例えば、前記の活物質と各種添加剤との混合物を水や有機溶媒等の溶媒に添加してスラリー又はペースト化し、得られたスラリー又はペーストを、ドクターブレード法等を用いて電極支持基板に塗布し、乾燥し、圧延ロール等で圧密化して、正極又は負極とする。   In order to produce the positive electrode or the negative electrode, for example, a mixture of the active material and various additives is added to a solvent such as water or an organic solvent to form a slurry or paste, and the obtained slurry or paste is used as a doctor blade. It is applied to the electrode support substrate using a method or the like, dried, and consolidated with a rolling roll or the like to obtain a positive electrode or a negative electrode.

前記電極支持基板としては、例えば、銅、ニッケル、ステンレス鋼等からなる箔、シートやネット:炭素繊維からなるシートやネット等から構成されたものが挙げられる。なお、電極支持基板を用いずに、ペレット状に圧密化成形して負極としてもよい。   Examples of the electrode support substrate include a foil, a sheet or a net made of copper, nickel, stainless steel, or the like: a sheet or a net made of carbon fiber. Instead of using the electrode support substrate, the negative electrode may be formed by compacting into a pellet.

前記電解質としては、例えば、有機溶媒にリチウム塩を溶解させた非水電解液、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との複合材等が挙げられる。   Examples of the electrolyte include a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, a composite material of a polymer electrolyte and an inorganic solid electrolyte, and the like.

前記非水電解液の溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状エステル類:γ−ブチルラクトン等のγ−ラクトン類:1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類:テトラヒドロフラン類の環状エーテル類:アセトニトリル等のニトリル類等が挙げられる。   Examples of the solvent for the non-aqueous electrolyte include chain esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate: γ-lactones such as γ-butyllactone: 1,2-dimethoxy Chain ethers such as ethane, 1,2-diethoxyethane, and ethoxymethoxyethane: Cyclic ethers of tetrahydrofuran: Nitriles such as acetonitrile.

前記非水電解液の溶質であるリチウム塩としては、例えば、LiAsF、LiBF、LiPF、LiAlCl、LiClO、LiCFSO、LiSbF、LiSCN、LiCl、LiCSO、LiN(CFSO、LiC(CFSO、LiCSO等が挙げられる。 Examples of the lithium salt that is a solute of the non-aqueous electrolyte include LiAsF 6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H 5 SO 3 , Examples thereof include LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC 4 P 9 SO 3 .

前記セパレータとしては、例えば、ポリプロピレンやポリエチレン等のポリオレフィンからなる多孔質膜が使用できる。   As the separator, for example, a porous film made of polyolefin such as polypropylene or polyethylene can be used.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1、比較例1)
結着材であるポリフッ化ビニリデン(呉羽化学工業株式会社製#1100)2質量部をN−メチル−2−ピロリドンに溶解し、得られた溶液に、第1のリチウム層状化合物としてLiCoO 77質量部と、第2のリチウム層状化合物としてLiMoO 19質量部と、導電カーボン2質量部と、を加えてスラリー化した。調製済みの正極スラリーを厚み20μmのAl箔上に均一に塗布し、乾燥して正極とした。正極における、活物質:導電カーボン:ポリフッ化ビニリデンの比は96:2:2であった。
(Example 1, Comparative Example 1)
A polyvinylidene fluoride (Kureha Chemical Industry Co., Ltd. # 1100) 2 parts by weight as a binding material was dissolved in N- methyl-2-pyrrolidone and the resulting solution, LiCoO 2 77 mass as the first lithium layered compound Part, 19 parts by mass of Li 2 MoO 3 as a second lithium layered compound, and 2 parts by mass of conductive carbon were added to form a slurry. The prepared positive electrode slurry was uniformly applied on an Al foil having a thickness of 20 μm and dried to obtain a positive electrode. The ratio of active material: conductive carbon: polyvinylidene fluoride in the positive electrode was 96: 2: 2.

次に、リチウムバナジウム酸化物(LVO)粉末と炭素材料粉末との混合物を負極活物質とし、このLVO粉末と炭素材料粉末との混合粉末90重量部と、結着剤となるポリフッ化ビニリデン10重量部とを混合し、N−メチル−2−ピロリドンに分散させて負極スラリーとした。そして、この負極スラリーを厚み20μmの銅箔上に均一に塗布し、乾燥して負極とした。   Next, a mixture of lithium vanadium oxide (LVO) powder and carbon material powder is used as the negative electrode active material, 90 parts by weight of the mixed powder of this LVO powder and carbon material powder, and 10 weight of polyvinylidene fluoride as the binder. Were mixed in N-methyl-2-pyrrolidone to obtain a negative electrode slurry. And this negative electrode slurry was uniformly apply | coated on 20-micrometer-thick copper foil, and it was made into the negative electrode by drying.

得られた正極及び負極に20μmのポリプロピレン製セパレータを介在させ、非水電解質を注液して2032型のコイン型リチウム二次電池を作製した。非水電解質としては、エチレンカーボネートとジエチルカーボネートとが3:7の割合で混合されてなる混合溶媒に、LiPFが1.50モル/Lの濃度で溶解されてなる非水電解液を用いた。 A 20-μm polypropylene separator was interposed between the obtained positive electrode and negative electrode, and a nonaqueous electrolyte was injected to prepare a 2032 type coin-type lithium secondary battery. As the non-aqueous electrolyte, a non-aqueous electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.50 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 3: 7 was used. .

得られたリチウム二次電池について、25℃の環境下で、定電流定電圧(定電流時0.1C)で4.2Vまで充電後、定電流(0.1C)で3.0Vまで放電した。充放電の電流値は、2サイクル目は、0.2C、3サイクル目は0.5C、4サイクル目以降は1Cとした。この条件で充放電を300サイクル実施し、300サイクル終了後の容量維持率を測定した。結果は下記表1に示した。   The obtained lithium secondary battery was charged to 4.2 V at a constant current and a constant voltage (0.1 C at a constant current) in an environment of 25 ° C. and then discharged to 3.0 V at a constant current (0.1 C). . The charge / discharge current value was 0.2 C for the second cycle, 0.5 C for the third cycle, and 1 C for the fourth and subsequent cycles. Under these conditions, 300 cycles of charge / discharge were performed, and the capacity retention rate after the end of 300 cycles was measured. The results are shown in Table 1 below.

また、確認のため、負極材料にLi金属を使用した以外は実施例1と同様な構成を有する電池を作成し、4.3−1.5Vで充放電した場合(図1)と、4.3−3.0Vで充放電した場合(図2)とで、充放電曲線を作成した。結果を図1及び図2に示す。   For confirmation, a battery having the same configuration as in Example 1 except that Li metal was used as the negative electrode material was prepared and charged and discharged at 4.3 to 1.5 V (FIG. 1). When charging / discharging at 3-3.0V (FIG. 2), a charging / discharging curve was created. The results are shown in FIGS.

図1では、3V以下にLiMoOの放電電位が観察され、また、図2に示すように、下限電圧を3Vにした場合にはLiMoOの放電は見られず、LiMoOは初期充電時にのみ反応しており、その後は、LiCoOのみの反応が行われていることが観察された。 In Figure 1, discharge potential of Li 2 MoO 3 was observed below 3V, also, as shown in FIG. 2, the discharge of the Li 2 MoO 3 was not observed in the case of the lower limit voltage was 3V, Li 2 MoO It was observed that 3 reacted only at the initial charge, and thereafter only LiCoO 2 was reacted.

更に、比較例1として、第1のリチウム層状化合物であるLiCoO 96重量部だけを正極活物質として使用したこと以外は実施例1と同様な構成を有する電池を作成し、実施例1とサイクル特性を比較した。サイクル特性の評価は、4.2−3.0Vで、4サイクル目以降は1Cで充放電し、4サイクル目の容量維持率を100%として行なった。結果を図3に示す。 Further, as Comparative Example 1, a battery having the same configuration as that of Example 1 except that only 96 parts by weight of LiCoO 2 as the first lithium layered compound was used as the positive electrode active material was prepared. The characteristics were compared. The evaluation of the cycle characteristics was 4.2-3.0 V, and the charge and discharge were performed at 1 C after the fourth cycle, and the capacity retention rate at the fourth cycle was 100%. The results are shown in FIG.

図3では、サイクルを重ねていくにつれ比較例1は劣化していくが、実施例1は100サイクルで95%以上の容量維持率を保つことが示された。   FIG. 3 shows that Comparative Example 1 deteriorates as the cycle is repeated, but Example 1 shows that the capacity retention rate of 95% or more is maintained in 100 cycles.

なお、図4は、実施例1の正極の顕微鏡写真(倍率:3500倍)を示す。   FIG. 4 shows a micrograph (magnification: 3500 times) of the positive electrode of Example 1.

(実施例2)
第1のリチウム層状化合物であるLiCoOの使用量を91質量部に変更し、第2のリチウム層状化合物であるLiMoOの使用量を5質量部に変更したこと以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
(Example 2)
Example 1 except that the amount of LiCoO 2 used as the first lithium layered compound was changed to 91 parts by mass and the amount of Li 2 MoO 3 used as the second lithium layered compound was changed to 5 parts by mass. A battery was prepared in the same manner as described above and subjected to measurement of the capacity retention rate.

(実施例3)
正極において、第1のリチウム層状化合物であるLiCoOの使用量を91質量部に、かつ、第2のリチウム層状化合物であるLiMoOの使用量を5質量部に変更し、負極活物質をSiOに変更したこと以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
(Example 3)
In the positive electrode, the usage amount of LiCoO 2 as the first lithium layered compound was changed to 91 parts by mass, and the usage amount of Li 2 MoO 3 as the second lithium layered compound was changed to 5 parts by mass, and the negative electrode active material A battery was prepared in the same manner as in Example 1 except that was changed to SiO, and was used for measuring the capacity retention rate.

(実施例4)
負極活物質をSiOに変更した以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
Example 4
A battery was prepared in the same manner as in Example 1 except that the negative electrode active material was changed to SiO, and subjected to capacity retention rate measurement.

(比較例2)
第1のリチウム層状化合物であるLiCoOの使用量を58質量部に変更し、第2のリチウム層状化合物であるLiMoOの使用量を38質量部に変更したこと以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
(Comparative Example 2)
Example 1 except that the amount of LiCoO 2 used as the first lithium layered compound was changed to 58 parts by mass and the amount of Li 2 MoO 3 used as the second lithium layered compound was changed to 38 parts by mass. A battery was prepared in the same manner as described above and subjected to measurement of the capacity retention rate.

(比較例3)
正極活物質として第1のリチウム層状化合物であるLiCoO 96重量部だけを使用し、負極活物質をSiOに変更したこと以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
(Comparative Example 3)
A battery was prepared in the same manner as in Example 1 except that only 96 parts by weight of LiCoO 2 that was the first lithium layer compound was used as the positive electrode active material, and the negative electrode active material was changed to SiO. It used for the measurement.

(比較例4)
第1のリチウム層状化合物であるLiCoOの使用量を58質量部に変更し、第2のリチウム層状化合物であるLiMoOの使用量を38質量部に変更し、負極活物質をSiOに変更したこと以外は、実施例1と同様にして電池を作成し、容量維持率の測定に供した。
(Comparative Example 4)
The amount of LiCoO 2 that is the first lithium layered compound is changed to 58 parts by mass, the amount of Li 2 MoO 3 that is the second lithium layered compound is changed to 38 parts by mass, and the negative electrode active material is changed to SiO. A battery was prepared in the same manner as in Example 1 except that the change was made, and the capacity maintenance rate was measured.

表1に記載の結果より、第2のリチウム層状化合物を多量に使用し過ぎると、電池容量の低下を招くが、適量使用すれば、高容量を維持したまま、サイクル特性を向上できることが明らかとなった。   From the results shown in Table 1, it is clear that if the second lithium layered compound is used in a large amount, the battery capacity is reduced, but if an appropriate amount is used, the cycle characteristics can be improved while maintaining a high capacity. became.

負極材料にLi金属を使用した以外は実施例1と同様な構成を有する電池の4.3−1.5Vにおける充放電曲線を示すグラフ。The graph which shows the charging / discharging curve in 4.3-1.5V of the battery which has the structure similar to Example 1 except having used Li metal for negative electrode material. 負極材料にLi金属を使用した以外は実施例1と同様な構成を有する電池の4.3−3.0Vにおける充放電曲線を示すグラフ。The graph which shows the charging / discharging curve in 4.3-3.0V of the battery which has the structure similar to Example 1 except having used Li metal for negative electrode material. 実施例1の電池と比較例1の電池とのサイクル特性を比較したグラフ。The graph which compared the cycle characteristic of the battery of Example 1 and the battery of the comparative example 1. FIG. 実施例1の正極の顕微鏡写真。2 is a photomicrograph of the positive electrode of Example 1.

Claims (5)

開放電位(リチウム基準)が3V以上の第1のリチウム層状化合物と3V未満の第2のリチウム層状化合物とを含有する正極を備えており、
前記第2のリチウム層状化合物は、Mo、Ti、Cr、及び、Vからなる群より選ばれる少なくとも1種の金属元素を含有するリチウム金属化合物であり、
前記第1及び第2のリチウム層状化合物の混合比は、重量比で、第2のリチウム層状化合物/第1のリチウム層状化合物が0.01〜0.1である非水電解質二次電池。
A positive electrode containing a first lithium layered compound having an open potential (based on lithium) of 3 V or more and a second lithium layered compound of less than 3 V;
The second lithium layered compound is a lithium metal compound containing at least one metal element selected from the group consisting of Mo, Ti, Cr, and V;
The mixing ratio of the first and second lithium layered compounds is a non-aqueous electrolyte secondary battery in which the second lithium layered compound / first lithium layered compound is 0.01 to 0.1 by weight.
初期充電前に前記正極に予め前記第1及び第2のリチウム層状化合物を含有させておき、充放電時に下限電位を3V(リチウム基準)以上に設定する請求項1記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode contains the first and second lithium layered compounds in advance before initial charging, and the lower limit potential is set to 3 V (lithium reference) or more during charging and discharging. . 前記リチウム金属化合物は、酸化物、窒化物、水酸化物、硫化物、及び、リン酸化合物からなる群より選ばれる少なくとも1種の化合物である請求項1又は2記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the lithium metal compound is at least one compound selected from the group consisting of oxides, nitrides, hydroxides, sulfides, and phosphate compounds. . 前記第1のリチウム層状化合物は、Co、Ni、及び、Mnからなる群より選ばれる少なくとも1種の金属元素を含有するリチウム金属化合物である請求項1、2又は3記載の非水電解質二次電池。 The first lithium layered compound, Co, Ni, and a non-aqueous electrolyte secondary of at least one of claims 1, 2 or 3, wherein the lithium metal compound containing a metal element selected from the group consisting of Mn battery. シリコン、錫、シリコン合金、錫合金、酸化ケイ素、及び、リチウムバナジウム酸化物からなる群より選ばれる少なくとも1種の化合物を含有している負極を備えている請求項1、2、3又は4記載の非水電解質二次電池。
Silicon, tin, silicon alloy, tin alloy, silicon oxide, and at least one of claims 1 to 4, wherein comprises a negative electrode containing a compound selected from the group consisting of lithium vanadium oxide Non-aqueous electrolyte secondary battery.
JP2008165237A 2008-06-25 2008-06-25 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5259268B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008165237A JP5259268B2 (en) 2008-06-25 2008-06-25 Nonaqueous electrolyte secondary battery
KR1020090045592A KR101256059B1 (en) 2008-06-25 2009-05-25 Lithium secondary battery
CN200910149493A CN101615692A (en) 2008-06-25 2009-06-25 Lithium rechargeable battery
EP09251650A EP2139059A1 (en) 2008-06-25 2009-06-25 Rechargeable lithium battery
US12/492,070 US20090325072A1 (en) 2008-06-25 2009-06-25 Rechargeable lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165237A JP5259268B2 (en) 2008-06-25 2008-06-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010009799A JP2010009799A (en) 2010-01-14
JP5259268B2 true JP5259268B2 (en) 2013-08-07

Family

ID=41495199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165237A Expired - Fee Related JP5259268B2 (en) 2008-06-25 2008-06-25 Nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP5259268B2 (en)
KR (1) KR101256059B1 (en)
CN (1) CN101615692A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
KR101730955B1 (en) 2010-02-18 2017-04-27 삼성에스디아이 주식회사 Cathode and lithium battery using same
CN106099039A (en) * 2010-04-01 2016-11-09 株式会社Lg化学 Anode of secondary cell, lithium secondary battery and medium-sized and/or large-sized battery pack
KR101293931B1 (en) 2010-04-01 2013-08-07 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising the Same
US9077050B2 (en) 2010-06-04 2015-07-07 Samsung Sdi Co., Ltd. Lithium secondary battery including lithium molybdate
KR101202334B1 (en) 2010-07-20 2012-11-16 삼성에스디아이 주식회사 Positive electrode and Lithium battery comprising the same
CN103155066B (en) * 2010-10-04 2017-02-08 电子部品研究院 Cathode active material for a lithium ion capacitor, and method for producing the cathode active material
JP5623241B2 (en) * 2010-10-29 2014-11-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5849543B2 (en) * 2011-09-05 2016-01-27 セイコーエプソン株式会社 Electrode body for lithium ion secondary battery, method for producing electrode body for lithium ion secondary battery, and lithium ion secondary battery
KR101383360B1 (en) * 2012-04-04 2014-04-14 전자부품연구원 Positive active material for lithium ion capacitor and preparation method thereof
JP6057644B2 (en) * 2012-09-21 2017-01-11 株式会社Kri Lithium ion battery
KR101724004B1 (en) 2013-02-06 2017-04-06 삼성에스디아이 주식회사 Rechargeable lithium battery
KR101497330B1 (en) 2013-06-03 2015-03-02 주식회사 엘지화학 Electrode Assembly for Sulfur-Lithium Ion Battery and Sulfur-Lithium Ion Battery Comprising The Same
CN105247715B (en) * 2013-07-30 2019-04-09 株式会社Lg 化学 Anode of secondary cell mixture comprising irreversible additive
KR101753214B1 (en) * 2013-09-05 2017-07-19 주식회사 엘지화학 Cathode additives for lithium secondary battery with high capacity
JP6191365B2 (en) * 2013-09-27 2017-09-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR101503807B1 (en) * 2013-10-30 2015-03-19 (주) 퓨리켐 A manufacture method of lithium ion capacitor using lithium metal powder
KR101671067B1 (en) * 2014-10-06 2016-11-01 전남대학교산학협력단 Positive electrode active material with hig capacity for lithium secondary battery, positive electrode and battery comprising the same
CN106410161A (en) * 2016-11-17 2017-02-15 湖南工业大学 Composite microsphere negative electrode material with core-shell structure, preparation method and application of composite microsphere negative electrode material
JP6845782B2 (en) * 2017-11-02 2021-03-24 テイカ株式会社 Predoping agent for lithium ion capacitor, positive electrode and lithium ion capacitor for lithium ion capacitor using the predoping agent for lithium ion capacitor, manufacturing method of lithium ion capacitor and predoping method of lithium ion capacitor
EP4057416A4 (en) * 2020-09-21 2023-10-11 LG Energy Solution, Ltd. Lithium secondary battery activation method and lithium secondary battery
CN116960349B (en) * 2023-09-20 2024-03-29 宁德时代新能源科技股份有限公司 Negative plate, preparation method thereof, battery and electric equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079382B2 (en) * 1990-05-17 2000-08-21 旭化成工業株式会社 Non-aqueous secondary battery
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
CA2240844A1 (en) * 1995-12-27 1997-07-10 Motorola, Inc. Electrode material for lithium intercalation electrochemical cells
EP1864344B1 (en) * 2005-04-01 2018-05-02 Lg Chem, Ltd. Lithium secondary battery comprising electrode additive
JP2007207490A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JP2010009799A (en) 2010-01-14
KR20100002107A (en) 2010-01-06
KR101256059B1 (en) 2013-04-18
CN101615692A (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP5259268B2 (en) Nonaqueous electrolyte secondary battery
JP5662132B2 (en) Lithium ion secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008098151A (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2009064714A (en) Electrode and lithium secondary battery using the same
JP2007123251A (en) Nonaqueous electrolyte secondary battery
JP2007335319A (en) Nonaqueous electrolyte secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP6477691B2 (en) Secondary battery electrode binder composition, secondary battery electrode slurry composition, secondary battery electrode, and secondary battery
KR101352672B1 (en) Anode active material for secondary battery
CN107660316B (en) Positive electrode of lithium electrochemical power generation device
DE102019111559A1 (en) SILICON ANODE MATERIALS
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2012146650A (en) Negative electrode active material composition, method for manufacturing negative electrode plate using the same, and lithium secondary battery
WO2013042421A1 (en) Secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
US20200020947A1 (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery comprising the same
JP2005302300A (en) Nonaqueous electrolyte battery
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
KR20170000903A (en) Lithium secondary battery
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
WO2013024739A1 (en) Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees