JPH0426075A - Organicelectrolyte battery - Google Patents

Organicelectrolyte battery

Info

Publication number
JPH0426075A
JPH0426075A JP2131685A JP13168590A JPH0426075A JP H0426075 A JPH0426075 A JP H0426075A JP 2131685 A JP2131685 A JP 2131685A JP 13168590 A JP13168590 A JP 13168590A JP H0426075 A JPH0426075 A JP H0426075A
Authority
JP
Japan
Prior art keywords
battery
potential
electrolyte
acetonitrile
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2131685A
Other languages
Japanese (ja)
Other versions
JP3239267B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP13168590A priority Critical patent/JP3239267B2/en
Publication of JPH0426075A publication Critical patent/JPH0426075A/en
Application granted granted Critical
Publication of JP3239267B2 publication Critical patent/JP3239267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve high rate discharging ability by providing negative pole plate whose potential is nobler than 0.2V vs. Li/Li<+>, and using an electrolyte containing an organic solvent prepared by mixing acetonitrile with either of propylene carbonate and ethylene carbonate or their mixture. CONSTITUTION:A negative pole plate 2 whose equilibrium potential and working potential are nobler than that of metal lithium by at least 0.2V is provided for a battery and an organic solvent prepared by mixing acetonitrile with either of propylene carbonate and ethylene carbonate or their mixture is used as an electrolyte. In a potential region at least 0.2V vs. Li/Li<+>, reduction decomposition of acetonitrile is hard to occur and conductivity is improved by addition of acetonitrile without deteriorating oxidizing property of the electrolyte. Consequently, high rate discharging ability is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関する。[Detailed description of the invention] Industrial applications The present invention relates to an organic electrolyte battery.

従来の技術 有機電解ン夜電池は、水溶液系電池に比較して高電圧、
高エネルギー密度か得られる点て優れている。しかし、
有機電解i夜は、導電率か著しく低いのて、有機電解液
電池の高率放電特性は水溶液系電池に比較してきわめて
劣りでいる。
Conventional technology Organic electrolyte batteries have higher voltage and lower voltage than aqueous batteries.
It is excellent in that it can provide high energy density. but,
Since the conductivity of organic electrolyte batteries is extremely low, the high rate discharge characteristics of organic electrolyte batteries are extremely inferior to those of aqueous batteries.

有機電解液電池の電解液としては、プロピレンカーボネ
ートもしくはエチレンカーホネーl−または両者を混合
したものに、電解質としてL+Cl0n。
The electrolyte for the organic electrolyte battery is propylene carbonate or ethylene carbonate L- or a mixture of both, and L+Cl0n as the electrolyte.

LiAsF6.Li BF4.LiPF6もしくはLi
CF3CO3またはそれらの混合物を加えたものが代表
的である。
LiAsF6. Li BF4. LiPF6 or Li
Typical examples include the addition of CF3CO3 or mixtures thereof.

プロピレンカーボネートおよびエチレンカーボネートは
、比較的誘電率が高いので、これらを用いた電解液の導
電率は比較的高い。しかし、有機電解液電池は、高率放
電性能の改善がつねに求められているので、この電解液
も導電率をさらに向上することが強く望まれている。
Since propylene carbonate and ethylene carbonate have relatively high dielectric constants, electrolytes using them have relatively high conductivity. However, since organic electrolyte batteries are constantly required to improve their high rate discharge performance, it is strongly desired that this electrolyte also have further improved conductivity.

発明が解決しようとする課題 従来、有機電解液の導電率を向上させるために、ジメI
・キシエタン(以下ではDMEと表記する)を添加する
方法か一般に用いられできた。しかし、開Eには次のよ
うな問題があった。すなわち、近年3.5V vs、 
Li/い゛以上のきわめて責な電位を示すLiCoO2
,LiNiO2,LiFeO2またはカーボン電極なと
の正極が用いられるようになってきたが、このような高
電位の正極を用いた場合には、DMEが電池内で酸化分
解されてしまい電池特性が急激に劣化するという問題が
あった。
Problems to be Solved by the Invention Conventionally, in order to improve the conductivity of an organic electrolyte,
- A method of adding xyethane (hereinafter referred to as DME) was commonly used. However, KaiE had the following problems. That is, in recent years 3.5V vs.
LiCoO2 exhibits an extremely negative potential higher than Li/゛
, LiNiO2, LiFeO2, or carbon electrodes have come to be used, but when such high-potential positive electrodes are used, DME is oxidized and decomposed within the battery, causing a rapid deterioration of battery characteristics. There was a problem with deterioration.

したがって、高電位な正極活物質を備えた有機電解液電
池は、高率放電性能の改善が非常に難しいという課題が
あ′つた。
Therefore, organic electrolyte batteries equipped with high-potential positive electrode active materials have a problem in that it is extremely difficult to improve high-rate discharge performance.

y、Mを解決するための手段 本発明は、電位が0.2V vs、い/い゛よりも貴で
あるような負極板を備え、プロピレンカーボネートもし
くはエチレンカーボネートの単体または両者の混合物に
アセトニトリルを混合してなる有機溶媒を電解液として
備えたことを特徴とする有機電解液電池を用いて前記課
題を解決するものである。
Means for Solving y, M The present invention is equipped with a negative electrode plate whose potential is nobler than 0.2 V vs. The above-mentioned problem is solved by using an organic electrolyte battery characterized by having a mixed organic solvent as an electrolyte.

作用 発明者は、DMEと同様の低粘度溶媒であって、しかも
DMEよりも酸化電位が責な有機溶媒について検討した
結果、後述のようにアセトニトリル(以下ではANと表
記する)が有用であることを見いだした。
As a result of studying organic solvents that are low viscosity solvents similar to DME, but with a higher oxidation potential than DME, the inventor found that acetonitrile (hereinafter referred to as AN) is useful as described below. I found it.

ANあるいはDMEを添加した場合の酸化電位の変化を
表1に示す。表中PCはプロピレンカーボネート、EC
はエチレンカーボネートを示す。DMEを添加した場合
には酸化電位が著しく卑に移行したが、ANを添加した
場合には酸化電位の低下がほとんと無かった。すなわち
、靜の添加は、電解液の耐酸化性能の劣化を招かないこ
とがわかった。
Table 1 shows the change in oxidation potential when AN or DME is added. PC in the table is propylene carbonate, EC
indicates ethylene carbonate. When DME was added, the oxidation potential became significantly less noble, but when AN was added, there was almost no decrease in the oxidation potential. In other words, it was found that the addition of hydroxide did not cause deterioration of the oxidation resistance of the electrolyte.

表1 酸化電位(vs、L /L ゛) つぎに、これらの電解液の導電率を表2に示す。Table 1 Oxidation potential (vs, L /L ゛) Next, Table 2 shows the electrical conductivity of these electrolytes.

ANまたはDMEを添加した場合には導電率が向上した
The conductivity was improved when AN or DME was added.

しかし、DMEを添加した場合には前記のように耐酸化
性能が低下するので望ましくない。
However, when DME is added, the oxidation resistance decreases as described above, which is not desirable.

以上のようにANの添加は、電解液の耐酸化性能を劣化
させずに導電率を向上できる点て優れている。
As described above, the addition of AN is excellent in that it can improve the electrical conductivity without deteriorating the oxidation resistance of the electrolytic solution.

表2 導電率(20℃) しかし、ANには次のような欠点がある。すなわち、従
来の有機電解液電池は、通常金属リチウム負極を用いて
いる。ANは、この金属リチウム負極と容易に反応(還
元分解)する。このため、従来の有機電解液電池では、
ANは、はとんど用いられていなかった。
Table 2 Electrical conductivity (20°C) However, AN has the following drawbacks. That is, conventional organic electrolyte batteries typically use a metallic lithium negative electrode. AN easily reacts (reductively decomposes) with this metallic lithium negative electrode. Therefore, in conventional organic electrolyte batteries,
AN was rarely used.

発明者は、ANの還元電位について詳しく検討した結果
、0.2V vs、Li/Li”以上の電位領域では、
ANの還元分解が起こりにくいことを見いたした。
As a result of a detailed study on the reduction potential of AN, the inventor found that in a potential region of 0.2V vs. Li/Li'' or higher,
It was found that reductive decomposition of AN is difficult to occur.

よって、本発明では、平衡電位および作動電位が金属リ
チウムよりも0.2V以上貴であるような負極板を備え
ることによって、ANの還元分解が起こらないようにし
た。そして、電解液にANを添加して、高電位の正極活
物質を備えた有機電解液電池の高率放電性能の改良を可
能にした。
Therefore, in the present invention, reductive decomposition of AN is prevented by providing a negative electrode plate whose equilibrium potential and operating potential are 0.2 V or more nobler than metal lithium. By adding AN to the electrolyte, it was possible to improve the high-rate discharge performance of an organic electrolyte battery equipped with a high-potential positive electrode active material.

実施例 以下、本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

正極活物質にl i CoO2を用い、負極活物質にア
ルミニウム合金を用いて、第一図に示した内部構造を有
するボタン型有機電解湾電池をつきのように試作した。
A button-type organic electrolytic bay battery having the internal structure shown in FIG. 1 was experimentally produced using l i CoO2 as the positive electrode active material and an aluminum alloy as the negative electrode active material.

90wtχの[月CoO2,8wt4のアセチレンフ゛
ラックおよび2wt%のポリテトラフルオロエチレン(
PTFE)を混合して正極合剤とした。そして、この正
極合剤を0.65g採集して、325meshのステン
レス(SLIS316)製金網に包み込んで、径が12
闘で厚さが2.1mmの正極板ベレット(1)を試作し
た。この正極板ペレッI・の放電容量は、0.5モルの
リチウムが吸蔵放出されるとした場合に80mAhであ
る。
90 wt% of CoO2, 8 wt4 of acetylene flake and 2 wt% of polytetrafluoroethylene (
PTFE) to form a positive electrode mixture. Then, 0.65g of this positive electrode mixture was collected and wrapped in a 325mesh stainless steel (SLIS316) wire gauze with a diameter of 12.
In this effort, we produced a prototype positive electrode plate pellet (1) with a thickness of 2.1 mm. The discharge capacity of this positive electrode plate pellet I is 80 mAh when 0.5 mole of lithium is intercalated and released.

AI(9iwt$)−Li(2wtX)−5i(5w、
t%)−Mn(1wt%)−Ga(1wt2:)合金を
カスアトマイス法によって平均粒径が20ミクロンの粉
末に加工した。そして、このアルミニウム合金粉末を0
.3g採集して、+80meshのニッケル金網に包み
込んで径が10mmで厚さカ月、 9mmの負極板ベレ
ッ1−(2)を試作した。なお、このアルミニウム合金
の電位は、リチウムよりも約0.3V責である。したが
フて、ANは負極において還元分解されない。
AI(9iwt$)-Li(2wtX)-5i(5w,
t%)-Mn(1wt%)-Ga(1wt2:) alloy was processed into powder with an average particle size of 20 microns by the Kastomys method. Then, this aluminum alloy powder was
.. 3g was collected and wrapped in a +80mesh nickel wire mesh to make a prototype negative electrode plate Veret 1-(2) with a diameter of 10mm and a thickness of 9mm. Note that the potential of this aluminum alloy is about 0.3 V lower than that of lithium. Therefore, AN is not reductively decomposed at the negative electrode.

葉脈状の無孔部と、孔が3次元的に配列した有孔部とを
有する平均厚さが23ミクロンのポリエチレン製微孔膜
(三菱化成株式会社エクセボールE)を直径14mmに
打ち抜いて微孔性セパレーター(3)を試作した。また
、ポリプロピレンの不織布を12mmに打ち抜いて平均
厚さが0.2闘の不織布セパレーター(4)を試作した
A polyethylene microporous membrane with an average thickness of 23 microns (Exeball E, Mitsubishi Kasei Corporation), which has a leaf-like non-porous part and a perforated part with three-dimensionally arranged pores, was punched out to a diameter of 14 mm. A porous separator (3) was prototyped. In addition, a nonwoven fabric separator (4) having an average thickness of 0.2mm was prototyped by punching out a polypropylene nonwoven fabric to a size of 12 mm.

これらの電池構成部品に後述の電解液を真空含浸したの
ち、第1図のように積層して、耐蝕性ステンレス鋼板製
の正極缶(5)、負極缶(6)およびポリプロピレン類
の絶縁力スケット(7)からなる電池ケースに収納して
径が15.4mmで厚さが5闘のボタン型有機電解液電
池を試作した。
After vacuum impregnating these battery components with the electrolytic solution described below, they are laminated as shown in Figure 1 to form a positive electrode can (5), a negative electrode can (6) made of corrosion-resistant stainless steel plates, and an insulating capacity socket made of polypropylene. (7) A button-type organic electrolyte battery with a diameter of 15.4 mm and a thickness of 5mm was housed in a battery case made of (7).

電解液として、1.5M LiCl0./PC+EC+
AN(’1:1:2)を用いた有機電解液電池を本発明
の実施例による電池1とする。
As electrolyte, 1.5M LiCl0. /PC+EC+
An organic electrolyte battery using AN ('1:1:2) is referred to as a battery 1 according to an embodiment of the present invention.

本例では電解質にLiCl0.を用いているが、表2に
示したようにいAsF6を用いた方が、導電率がより高
い。しかし、ヒ素系の電解液は、毒性が強いので実用は
難しいとされている。
In this example, the electrolyte is LiCl0. However, as shown in Table 2, the conductivity is higher when AsF6 is used. However, arsenic-based electrolytes are considered difficult to put into practical use because of their strong toxicity.

また、電解液に1.5M LiCl0a/PC+EC(
]:1)を用いた電池を比較のための電池Aとする。そ
して、電解液に1.5M LiClO4/PC+EC+
DME(1:1:2)を用いた電池を比較のための電池
Bとする。さらに、負極板に径が10mmで厚さが2m
mの金属リチウムを用いた以外は、本発明による電池1
と同じ電池を比較のための電池Cとする。これらの電池
の放電容量の放電電流依存性を検討した。
In addition, 1.5M LiCl0a/PC+EC (
]: A battery using 1) is designated as battery A for comparison. Then, 1.5M LiClO4/PC+EC+ was added to the electrolyte.
A battery using DME (1:1:2) is designated as Battery B for comparison. Furthermore, the diameter of the negative electrode plate is 10 mm and the thickness is 2 m.
Battery 1 according to the invention, except that m metallic lithium was used.
The same battery is designated as battery C for comparison. We investigated the discharge current dependence of the discharge capacity of these batteries.

その結果を第2図に示す。図から明かなように、本発明
による電池1および比較のための電池Bおよび電池Cは
、電池Aに比較して高率放電時の容量が多い。すなわち
、ANまたはDMEの添加によって電池の高率放電性能
が改善された。
The results are shown in FIG. As is clear from the figure, battery 1 according to the present invention and batteries B and C for comparison have a higher capacity at high rate discharge than battery A. That is, the addition of AN or DME improved the high rate discharge performance of the battery.

つぎに、上記の電池を0.0.0.100%の充放電サ
イクル試験にかけた。放電容量のサイクルの進行にとも
なう変化を第3図に示す。図から明らかなように、電池
Bおよび電池Cは、サイクル寿命が実施例のf;(!i
1または比較のための電池Aに比較して著しく短い。高
電位の正極板を用いてDMEを添加した場合には、DM
Eが酸化分解されることに起因して容量の低下が起こり
、AIJを添加して金属リチウム負極板を用いた場合に
は、A N b’l還元分解されることに起因して容量
低下が起きたものと考えられる。
Next, the above battery was subjected to a 0.0.0.100% charge/discharge cycle test. FIG. 3 shows the change in discharge capacity as the cycle progresses. As is clear from the figure, battery B and battery C have a cycle life of f;(!i
1 or significantly shorter than battery A for comparison. When DME is added using a high potential positive electrode plate, DM
A decrease in capacity occurs due to the oxidative decomposition of E, and when using a metal lithium negative electrode plate with the addition of AIJ, a decrease in capacity occurs due to the reductive decomposition of A Nb'l. This is considered to have happened.

以上の結果から、電112が0.2V vs−Li/L
i+よりも貴であるような負極板を用いて、ブロビレン
カーホネートもしくはエチレンカーボネートの単体また
は両者の混合物に、アセトニトリルを混合してなる有機
溶媒を用いたことを特徴とする本発明の有機電解液電池
は、高率放電性能およびサイクル寿命性能か著しく優れ
ていることがわかる。
From the above results, the voltage 112 is 0.2V vs-Li/L
The organic solvent of the present invention is characterized in that it uses a negative electrode plate that is more noble than i+, and uses an organic solvent prepared by mixing acetonitrile with brobylene carbonate or ethylene carbonate alone or a mixture of both. It can be seen that the electrolyte battery has significantly superior high rate discharge performance and cycle life performance.

なお、本発明では、負極としてリチウムよりも0.2V
以上責な電位を有する電極を用いるか、この負極として
は、実施例のようにアルミニウム合金負極を用いても良
いし、たとえは、カーボン負極、鉛負極、二酸化タング
ステン負極などを用いても良い。また、本発明の実施例
では、正極活物質にLiCoO2を用いているが、L 
i CoO2と同様に3.5V vs。
In addition, in the present invention, the negative electrode is 0.2V lower than lithium.
An electrode having the above-mentioned negative potential may be used, or an aluminum alloy negative electrode may be used as in the embodiment, or a carbon negative electrode, a lead negative electrode, a tungsten dioxide negative electrode, etc. may be used as the negative electrode. In addition, in the examples of the present invention, LiCoO2 is used as the positive electrode active material, but L
i Similar to CoO2, 3.5V vs.

Li/Li”以上の高電位を示すLiNiO2,LiN
i、、Co、02゜L i FeO2またはカーボン正
極板を用いても良い。もちろん、MnO2、V2O5、
TiS2なとの比較的低電位の正極活物質を用いても良
い。しかし、本発明が最も効果的なのは、DMEを用い
ることができないような高電位の正極活物質を備えた有
機電解液電池の場合である。
LiNiO2, LiN which exhibits a high potential higher than “Li/Li”
i,, Co, 02°L i FeO2 or a carbon positive electrode plate may be used. Of course, MnO2, V2O5,
A relatively low potential positive electrode active material such as TiS2 may also be used. However, the present invention is most effective in the case of organic electrolyte batteries with positive electrode active materials of such high potential that DME cannot be used.

発明の効果 本発明は、有機電解液電池の高率放電性能を著しく向上
できるものであり、その工業的価値はきわめて大である
Effects of the Invention The present invention can significantly improve the high rate discharge performance of organic electrolyte batteries, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の電池の内部構造の概略図で
ある。第2図は、本発明の電池と従来の電池との高率放
電性能を比較した図である。第3図は、 本発明の電池と従来の電池とのサイクツL/寿命性能を
比較した図である。 察 図 兎 方丈 忙 像 ン膚t (側A) 賽 Σ ヅイフル数 (〜)
FIG. 1 is a schematic diagram of the internal structure of a battery according to an embodiment of the present invention. FIG. 2 is a diagram comparing the high rate discharge performance of the battery of the present invention and a conventional battery. FIG. 3 is a diagram comparing the cycle length/life performance of the battery of the present invention and a conventional battery. The number of zuiful (~)

Claims (1)

【特許請求の範囲】[Claims]  電位が0.2Vvs.Li/Li^+よりも貴である
ような負極板を備え、プロピレンカーボネートもしくは
エチレンカーボネートの単体または両者の混合物にアセ
トニトリルを混合してなる有機溶媒を電解液として備え
たことを特徴とする有機電解液電池。
The potential is 0.2V vs. An organic electrolyte comprising a negative electrode plate which is more noble than Li/Li^+, and an organic solvent made by mixing acetonitrile with propylene carbonate or ethylene carbonate alone or a mixture of both as an electrolyte. liquid battery.
JP13168590A 1990-05-21 1990-05-21 Organic electrolyte battery Expired - Lifetime JP3239267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13168590A JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13168590A JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0426075A true JPH0426075A (en) 1992-01-29
JP3239267B2 JP3239267B2 (en) 2001-12-17

Family

ID=15063826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13168590A Expired - Lifetime JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3239267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488435A1 (en) * 2002-03-19 2004-12-22 Energy Storage Systems Pty, Ltd. An electrolyte for an energy storage device
CN1311585C (en) * 2003-08-20 2007-04-18 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8067120B2 (en) 2006-03-24 2011-11-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438450A (en) * 2006-05-18 2009-05-20 中信国安盟固利新能源科技有限公司 High output power type lithium ion battery with middle and small capacity
WO2012057311A1 (en) 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
WO2013062056A1 (en) 2011-10-28 2013-05-02 旭化成株式会社 Non-aqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488435A1 (en) * 2002-03-19 2004-12-22 Energy Storage Systems Pty, Ltd. An electrolyte for an energy storage device
US7314514B2 (en) * 2002-03-19 2008-01-01 Cap-Xx Limited Electrolyte for an energy storage device
EP1488435A4 (en) * 2002-03-19 2008-03-26 Cap Xx Ltd An electrolyte for an energy storage device
CN1311585C (en) * 2003-08-20 2007-04-18 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8067120B2 (en) 2006-03-24 2011-11-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system

Also Published As

Publication number Publication date
JP3239267B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
JPH0426075A (en) Organicelectrolyte battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPH04351860A (en) Non-aqueous electrolyte battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JP3036018B2 (en) Organic electrolyte battery
JPH0355770A (en) Lithium secondary battery
JPS61264682A (en) Organic electrolyte battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPH02239572A (en) Polyaniline battery
JP3049768B2 (en) Organic electrolyte battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JPH04363862A (en) Lithium secondary battery
JP3163444B2 (en) Lithium secondary battery
JPS63284763A (en) Organic electrolyte battery
JPH0822840A (en) Organic electrolyte secondary battery
JPH0318308B2 (en)
JPH04237967A (en) Nonaqueous electrolyte secondary battery
JPH04324258A (en) Lithium battery
JP2804577B2 (en) Non-aqueous electrolyte battery
JPH07226231A (en) Lithium secondary battery
JP2000012033A (en) Nonaqueous electrolyte battery
JPH07105233B2 (en) Organic electrolyte battery
JPH02276157A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9