JPH07226231A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH07226231A
JPH07226231A JP6015187A JP1518794A JPH07226231A JP H07226231 A JPH07226231 A JP H07226231A JP 6015187 A JP6015187 A JP 6015187A JP 1518794 A JP1518794 A JP 1518794A JP H07226231 A JPH07226231 A JP H07226231A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
lithium secondary
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6015187A
Other languages
Japanese (ja)
Other versions
JP3198774B2 (en
Inventor
堅一 ▲高▼田
Kenichi Takada
Nobuharu Koshiba
信晴 小柴
Toshihiko Ikehata
敏彦 池畠
Koichi Chikayama
浩一 近山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01518794A priority Critical patent/JP3198774B2/en
Publication of JPH07226231A publication Critical patent/JPH07226231A/en
Application granted granted Critical
Publication of JP3198774B2 publication Critical patent/JP3198774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase overcharge capability in high temperature atmosphere of a lithium secondary battery using vanadium pentoxide in a positive electrode. CONSTITUTION:A case 1 also serving as a positive terminal and a sealing plate 2 also serving as a negative terminal are insulatingly sealed through a polypropylene gasket 3, and a positive electrode 4 made of vanadium pentoxide is arranged so as to come in contact with the case 1. A negative electrode 5 made of a compound of lithium with niobium pentoxide or a lithium alloy is faced to the positive electrode 4 through a separator and brought into contact with the sealing plate 2. An organic electrolyte is used as the electrolyte, and 3-20wt.% aluminium powder is added to the positive electrode 4 to increase overcharge capability in high temperature atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、さらに詳細には、移動用直流電源、バックアップ用
電源などに用いられる充放電可能なリチウム二次電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a rechargeable lithium secondary battery used as a mobile DC power source, a backup power source and the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクス分野における技
術の急速な発展により、電子機器の小型化が進み、それ
ら機器の電源として、小型軽量で高エネルギー密度を有
する電池の需要が高まっている。そしてその電池とし
て、負極にリチウムを用いるリチウム二次電池が注目を
集め、盛んに開発が進められている。その中で、正極に
五酸化バナジウム、負極にリチウム合金またはリチウム
五酸化ニオブとその化合物を用いたリチウム二次電池が
知られている。
2. Description of the Related Art Due to recent rapid development of technology in the electronics field, miniaturization of electronic devices has progressed, and there has been an increasing demand for batteries having a small size, light weight, and high energy density as a power source for those devices. As such a battery, a lithium secondary battery using lithium as a negative electrode has been attracting attention and is being actively developed. Among them, a lithium secondary battery using vanadium pentoxide for the positive electrode and a lithium alloy or lithium niobium pentoxide and its compound for the negative electrode is known.

【0003】負極にリチウム合金を用いた場合は、特に
高電圧で高エネルギー密度が大幅に向上できる電池系と
して期待され、また負極にリチウムと五酸化ニオブとの
化合物を用いた場合は、特に充放電サイクル寿命が大幅
に向上できる電池系と期待されている。
When a lithium alloy is used for the negative electrode, it is expected to be used as a battery system capable of greatly improving high energy density at high voltage, and especially when a compound of lithium and niobium pentoxide is used for the negative electrode. It is expected to be a battery system that can significantly improve the discharge cycle life.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な電池系では、高温雰囲気中で過充電した場合、電池容
量の低下が著しいことがわかった。このメカニズムは明
らかではないが、次のように考えられる。五酸化バナジ
ウムは充電される位置が3.4〜約4VvsLiと高い
ため、過充電の際には正極に高電位が印加され、正極で
ある五酸化バナジウムの一部が酸化され、バナジン酸イ
オンとして電解液中に溶解する。溶解したバナジン酸イ
オンは負極であるリチウム合金またはリチウムがドープ
された五酸化ニオブ電極上で還元され、これと同時に、
電解液中の溶媒が酸化される。その溶媒の酸化生成物が
負極電極上に膜を形成し、充放電反応を抑制するためと
考えられる。
However, it has been found that in such a battery system, the battery capacity significantly decreases when overcharged in a high temperature atmosphere. This mechanism is not clear, but it is considered as follows. Since vanadium pentoxide is charged at a high position of 3.4 to about 4 VvsLi, a high potential is applied to the positive electrode during overcharge, and part of the positive electrode vanadium pentoxide is oxidized to form vanadate ions. Dissolves in electrolyte. The dissolved vanadate ions are reduced on the negative electrode lithium alloy or lithium-doped niobium pentoxide electrode, and at the same time,
The solvent in the electrolytic solution is oxidized. It is considered that the oxidation product of the solvent forms a film on the negative electrode and suppresses the charge / discharge reaction.

【0005】本発明は、この種の電池系で過充電特性を
改良し、信頼性の高いリチウム二次電池を提供すること
を目的とするものである。
An object of the present invention is to provide a highly reliable lithium secondary battery with improved overcharge characteristics in this type of battery system.

【0006】[0006]

【課題を解決するための手段】これら電池の正極合剤
は、一般的に五酸化バナジウムを90%前後含有し、カ
ーボンブラックと決着剤がそれぞれ数%ずつで構成され
ているが、本発明ではさらにアルミニウム粉末を添加す
るものである。アルミニウム粉末の添加量は、広い範囲
で有効であるが、正極合剤に対し3〜20wt% が最も効
果的である。
The positive electrode mixture of these batteries generally contains about 90% vanadium pentoxide, and is composed of carbon black and a binder in several% each. Further, aluminum powder is added. The amount of aluminum powder added is effective over a wide range, but 3 to 20 wt% is most effective for the positive electrode mixture.

【0007】[0007]

【作用】アルミニウム粉末を正極合剤に添加することに
より、過充電特性が改善される。
[Function] By adding aluminum powder to the positive electrode mixture, the overcharge characteristic is improved.

【0008】効果の理由は明らかではないが、アルミニ
ウム粉末の正極への添加により、五酸化バナジウムの酸
化によるバナジン酸イオンの生成前にアルミニウムの酸
化が先行して起こるためと考えられる。
Although the reason for the effect is not clear, it is considered that the addition of aluminum powder to the positive electrode causes the oxidation of aluminum to precede the formation of vanadate ions by the oxidation of vanadium pentoxide.

【0009】また、このアルミニウムの酸化物は正極合
剤内で安定に存在し、五酸化バナジウムの電気化学反応
に悪影響を与えないためと考えられる。
It is considered that this aluminum oxide is stably present in the positive electrode mixture and does not adversely affect the electrochemical reaction of vanadium pentoxide.

【0010】[0010]

【実施例】以下、本発明一実施例を図面を参照にしなが
ら説明する。図1に本発明のコイン形リチウム二次電池
の構成を示す。図に示すように、正極端子を兼ねたケー
ス1と負極端子を兼ねた封口板2とがポリプロピレン製
ガスケット3で絶縁されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the coin-type lithium secondary battery of the present invention. As shown in the figure, a case 1 also serving as a positive electrode terminal and a sealing plate 2 also serving as a negative electrode terminal are insulated by a polypropylene gasket 3.

【0011】正極4と負極5はポリプロピレン製微孔膜
からなるセパレータ6で分離されている。本実施例では
正極4へのアルミニウム粉末の添加量の効果を検討する
ため、五酸化バナジウムを一定量の100mgとし、正極
合剤に対しアルミニウム粉末をそれぞれ0,1,2,
3,5,10,20,30,40wt% とし、導電材であ
るカーボンブラックを5wt% 、結着剤であるフッ素樹脂
を5wt% の重量比となるように混合し、混練した。これ
を直径13mm、厚み約0.5mmの大きさのペレットに成
形し、高温真空乾燥によって、脱水処理して正極合剤を
作成した。負極5はまず五酸化ニオブ90wt% 、導電材
であるカーボンブラックを5wt% 、結着材であるフッ素
樹脂を5wt% の重量比となるように混練し、これを直径
13mm、厚み0.5mmの大きさのペレットに成形し、高
温真空乾燥して脱水処理して調製した。この合剤ペレッ
トに直径10mm、厚み0.1mmのリチウム箔を密着さ
せ、過塩素酸リチウムを1モル/l を溶解させたプロピ
レンカーボネート液中に浸漬し、リチウムを五酸化ニオ
ブ中にドーピングしたものである。電解液は、プロピレ
ンカーボネートと1,2ジメトキシエタンを体積比1:
1で混合した溶媒に過塩素酸リチウムを1モル/l 溶解
したものを用いた。電池の大きさは、直径16mm、厚さ
1.6mmである。
The positive electrode 4 and the negative electrode 5 are separated by a separator 6 made of polypropylene microporous film. In this example, in order to examine the effect of the amount of aluminum powder added to the positive electrode 4, vanadium pentoxide was set to a fixed amount of 100 mg, and aluminum powder was added to the positive electrode mixture in an amount of 0, 1, 2, respectively.
3,5,10,20,30,40 wt%, 5 wt% of carbon black as a conductive material and 5 wt% of fluororesin as a binder were mixed and kneaded. This was molded into a pellet having a diameter of 13 mm and a thickness of about 0.5 mm, and dehydrated by high temperature vacuum drying to prepare a positive electrode mixture. For the negative electrode 5, first, 90 wt% of niobium pentoxide, 5 wt% of carbon black as a conductive material, and 5 wt% of fluororesin as a binder were kneaded so as to have a weight ratio of 13 mm in diameter and 0.5 mm in thickness. It was prepared by molding into pellets of a size, vacuum drying at high temperature, and dehydration treatment. Lithium foil having a diameter of 10 mm and a thickness of 0.1 mm was adhered to the mixture pellet, and lithium perchlorate was immersed in a propylene carbonate solution in which 1 mol / l was dissolved, and lithium was doped into niobium pentoxide. Is. The electrolytic solution contains propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1:
A solvent prepared by dissolving 1 mol / l of lithium perchlorate in the solvent mixed in 1 was used. The size of the battery is 16 mm in diameter and 1.6 mm in thickness.

【0012】これらの電池は1.8V以上で満充電され
るが、60℃雰囲気中でこれらの電池に2.0Vの定電
圧を印加した過充電状態で保存し、60日保存後、20
℃雰囲気中において2kΩの定抵抗放電を行い、2Vか
ら1Vまでの放電容量を測定し、組立て直後の測定値に
対する割合、つまり放電容量の残存率を求めた。その結
果を図2に示す。
Although these batteries are fully charged at 1.8 V or more, they are stored in an overcharged state where a constant voltage of 2.0 V is applied to these batteries in an atmosphere of 60 ° C.
A constant resistance discharge of 2 kΩ was performed in an atmosphere of ° C, the discharge capacity from 2 V to 1 V was measured, and the ratio to the measured value immediately after assembly, that is, the residual rate of the discharge capacity was obtained. The result is shown in FIG.

【0013】図2から明らかなように、アルミニウム粉
末がわずかでも入ると残存率は上昇する。特に、アルミ
ニウム粉末の添加量が約3wt% から添加効果が大とな
り、20wt% でほぼ飽和状態となる。実際の電池では、
大きさが制限されているので最小の体積、重量が好まし
い。従って、アルミニウム粉末の最適添加量は3〜20
wt% である。
As is clear from FIG. 2, the residual rate increases when even a small amount of aluminum powder enters. In particular, when the amount of aluminum powder added is about 3 wt%, the effect is large, and when it is 20 wt%, it becomes almost saturated. With a real battery,
Since the size is limited, the minimum volume and weight are preferable. Therefore, the optimum addition amount of aluminum powder is 3 to 20.
wt%.

【0014】なお、本実施例では負極としてリチウムを
ドープした五酸化ニオブを用いたが、負極としてリチウ
ムとアルミニウムの合金などのリチウム合金を用いた場
合でも、本実施例と同様の効果が得られた。
Although lithium-doped niobium pentoxide was used as the negative electrode in this embodiment, the same effect as in this embodiment can be obtained even when a lithium alloy such as an alloy of lithium and aluminum is used as the negative electrode. It was

【0015】[0015]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、正極合剤にアルミニウム粉末を添加するこ
とによって、高温雰囲気中の過充電特性を向上すること
ができ、信頼性の高いリチウムに時電池を提供するもの
である。
As is apparent from the above examples, according to the present invention, by adding aluminum powder to the positive electrode mixture, the overcharge characteristics in a high temperature atmosphere can be improved and the reliability of the overcharge characteristics can be improved. It is what provides a high lithium battery at times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるコイン形リチウム二次
電池の断面図
FIG. 1 is a sectional view of a coin-type lithium secondary battery in an example of the present invention.

【図2】アルミニウム粉末の添加量と放電容量の残存率
との関係を示す図
FIG. 2 is a diagram showing the relationship between the amount of aluminum powder added and the residual rate of discharge capacity.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 ガスケット 4 正極 5 負極 6 セパレータ 1 case 2 sealing plate 3 gasket 4 positive electrode 5 negative electrode 6 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近山 浩一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Chikayama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 五酸化バナジウムを主体とする正極と、
リチウムを主体とする負極と、リチウム塩を溶解した有
機溶媒を電解液とする再充電可能なリチウム二次電池で
あって、前記正極にアルミニウム粉末を添加したことを
特徴とするリチウム二次電池。
1. A positive electrode containing vanadium pentoxide as a main component,
What is claimed is: 1. A rechargeable lithium secondary battery comprising a negative electrode containing lithium as a main component and an organic solvent in which a lithium salt is dissolved as an electrolytic solution, wherein aluminum powder is added to the positive electrode.
【請求項2】 アルミニウム粉末の添加量が、正極合剤
に対し、3〜20wt%である請求項1に記載のリチウム
二次電池。
2. The lithium secondary battery according to claim 1, wherein the addition amount of the aluminum powder is 3 to 20 wt% with respect to the positive electrode mixture.
JP01518794A 1994-02-09 1994-02-09 Lithium secondary battery Expired - Lifetime JP3198774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01518794A JP3198774B2 (en) 1994-02-09 1994-02-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01518794A JP3198774B2 (en) 1994-02-09 1994-02-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07226231A true JPH07226231A (en) 1995-08-22
JP3198774B2 JP3198774B2 (en) 2001-08-13

Family

ID=11881842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01518794A Expired - Lifetime JP3198774B2 (en) 1994-02-09 1994-02-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3198774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140791A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Nonaqueous electrolyte cell
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140791A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Nonaqueous electrolyte cell
JPWO2013140791A1 (en) * 2012-03-22 2015-08-03 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte battery
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3198774B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
JP3358478B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JP2000058125A (en) Nonaqueous electrolyte battery
JP3198774B2 (en) Lithium secondary battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JPH04169076A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH0426075A (en) Organicelectrolyte battery
JPH04351860A (en) Non-aqueous electrolyte battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH05326018A (en) Lithium secondary battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPH06338346A (en) Lithium secondary battery
JPH07335256A (en) Lithium secondary battery
JPH1097873A (en) Organic electrolyte secondary battery
JPH0558224B2 (en)
JP3030149B2 (en) Non-aqueous electrolyte battery
JPH04237967A (en) Nonaqueous electrolyte secondary battery
JP3325967B2 (en) Non-aqueous solvent secondary battery
JPH04363862A (en) Lithium secondary battery
JPH0654667B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term