JPH05326018A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05326018A
JPH05326018A JP4127067A JP12706792A JPH05326018A JP H05326018 A JPH05326018 A JP H05326018A JP 4127067 A JP4127067 A JP 4127067A JP 12706792 A JP12706792 A JP 12706792A JP H05326018 A JPH05326018 A JP H05326018A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
positive electrode
self
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127067A
Other languages
Japanese (ja)
Inventor
Tatsuo Mori
辰男 森
堅一 ▲高▼田
Kenichi Takada
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4127067A priority Critical patent/JPH05326018A/en
Publication of JPH05326018A publication Critical patent/JPH05326018A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve self-discharging properties during the storage of a lithium secondary battery in high temperature environment wherein the lithium secondary battery has a structure composed of a positive electrode of vanadium pentoxide, a negative electrode of a compound of lithium and niobium pentoxide, and an organic electrolytic solution used as an electrolyte. CONSTITUTION:A case 1 is used also as a positive electrode terminal, a sealing plate 2 which works also as a negative electrode terminal is sealed and insulated by a gasket 3 made of polypropylene, and a positive electrode 4 composed of 90% of vanadium pentoxide, 5% of carbon black, and 5% of fluororein is set in touch with the case 1. The negative electrode 5 prepared by giving lithium dope to a mixture of niobium oxide 90%, carbon black 5%, and fluororesin 5% through a separator 5 is set in touch with the sealing plate 2. The self- discharging property in high temperature environment is improved, using lithium perfluoromethylsulfonylimide as a lithium self for an electrolytic solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動用直流電源,バッ
クアップ用電源などとして用いる、五酸化バナジウムか
らなる正極、リチウムと五酸化ニオブとの化合物からな
る負極、有機電解質から構成されるリチウム二次電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode made of vanadium pentoxide, a negative electrode made of a compound of lithium and niobium pentoxide, and a lithium battery made of an organic electrolyte, which are used as a direct current power source for mobiles, a backup power source and the like. It relates to the next battery.

【0002】[0002]

【従来の技術】リチウムを負極に用いるリチウム二次電
池は、原理的に高エネルギ−密度を有することから、近
年注目を集め、盛んに開発が進められている。
2. Description of the Related Art Lithium secondary batteries using lithium as a negative electrode have a high energy density in principle, and have been attracting attention in recent years and are being actively developed.

【0003】しかしながら、充放電の際リチウム負極に
発生する樹枝状,苔状のリチウムのデンドライトのた
め、正極と負極が導通状態となり、いわゆる電池の内部
ショートを引き起こしてしまう。また、負極自身が元の
形状より次第に崩れて劣化していくため、長期間の充放
電サイクル寿命を保持することは非常に困難であった。
However, the dendritic and mossy lithium dendrites generated in the lithium negative electrode during charge and discharge bring the positive electrode and the negative electrode into conduction, which causes a so-called internal short circuit of the battery. Moreover, since the negative electrode itself gradually collapses from its original shape and deteriorates, it is very difficult to maintain a long-term charge / discharge cycle life.

【0004】そこで、その解決策の一つとして、負極に
リチウムと五酸化ニオブとの化合物を用いることが試み
られており、特に電解液中のリチウム塩として過塩素酸
リチウムを用いた場合は充放電サイクル寿命が大幅に向
上する電池系として期待されている。
Therefore, as one of the solutions, it has been attempted to use a compound of lithium and niobium pentoxide for the negative electrode, and especially when lithium perchlorate is used as the lithium salt in the electrolyte. It is expected as a battery system that has a significantly improved discharge cycle life.

【0005】[0005]

【発明が解決しようとする課題】しかし、このように過
塩素酸リチウムを用いた電池系では、満充電の状態で高
温雰囲気中に保存した場合、自己放電による電圧低下が
他のリチウム電池系に比べ顕著に観察される。自己放電
のメカニズムは明らかではないが、次のように考えられ
る。即ち、正極である五酸化バナジウムが高電位により
その一部がバナジン酸イオンとして電解液中に溶出す
る。溶解したバナジン酸イオンは負極であるリチウムが
ドープされた五酸化ニオブ電極を酸化する為に負極から
リチウムイオンが放出される。このリチウムイオンが五
酸化バナジウムと反応する事により自己放電が発生する
ものと考えられている。
However, in such a battery system using lithium perchlorate, when it is stored in a high temperature atmosphere in a fully charged state, the voltage drop due to self-discharge is caused in other lithium battery systems. In comparison, it is observed significantly. Although the mechanism of self-discharge is not clear, it is considered as follows. That is, vanadium pentoxide, which is the positive electrode, is partly eluted as vanadate ions into the electrolytic solution due to the high potential. The dissolved vanadate ions oxidize the negative electrode lithium-doped niobium pentoxide electrode, so that lithium ions are released from the negative electrode. It is believed that the lithium ions react with vanadium pentoxide to cause self-discharge.

【0006】以上の特性は電解液中のリチウム塩の種類
と密接に関連する事が知られており、自己放電特性を向
上させるリチウム塩も数種類提案されている。その一つ
にトリフルオロメタンスルホン酸リチウムを用いた電池
系があるが、電解液の導電率の低下に伴う放電負荷特性
の劣化を示す為に抜本的な対策となり得てないのが現状
である。
It is known that the above characteristics are closely related to the type of lithium salt in the electrolytic solution, and several types of lithium salts for improving self-discharge characteristics have been proposed. One of them is a battery system using lithium trifluoromethanesulfonate, but it is the current situation that it cannot be a drastic measure because it shows deterioration of discharge load characteristics due to decrease of conductivity of electrolyte.

【0007】本発明は、この種の電池系に最適な電解質
を提供することを目的とする。
The object of the present invention is to provide an optimal electrolyte for this type of battery system.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に本発明は、リチウム塩としてリチウムパーフルオロメ
チルスルホニルイミド(CF3SO22NLiを用いる
ものである。
In order to solve this problem, the present invention uses lithium perfluoromethylsulfonyl imide (CF 3 SO 2 ) 2 NLi as a lithium salt.

【0009】[0009]

【作用】 電解液中のリチウム塩としてリチウムパーフ
ルオロメチルスルホニルイミドを用いて電池系を組み立
てた後に満充電状態で高温雰囲気中に保存し自己放電率
を調べたところ、特性が著しく改善される事がわかっ
た。また、放電負荷特性は過塩素酸リチウムを用いた場
合と同等であり良好である。
[Operation] After assembling a battery system using lithium perfluoromethylsulfonylimide as a lithium salt in the electrolytic solution and then storing it in a high temperature atmosphere in a fully charged state and examining the self-discharge rate, the characteristics are remarkably improved. I understood. Moreover, the discharge load characteristics are the same as those in the case of using lithium perchlorate, which is good.

【0010】この効果の理由は明らかではないが、リチ
ウム塩としてリチウムパーフルオロメチルスルホニルイ
ミドを用いた場合、高温雰囲気保存中において正極であ
る五酸化バナジウムの溶解反応が著しく抑制された為と
考えられる。また、リチウムパーフルオロメチルスルホ
ニルイミドをリチウム塩とした電解液は過塩素リチウム
の場合とほぼ同等の導電率を示す事から良好な放電負荷
特性を示すものである。
Although the reason for this effect is not clear, it is considered that when lithium perfluoromethylsulfonylimide is used as the lithium salt, the dissolution reaction of vanadium pentoxide, which is the positive electrode, was significantly suppressed during storage in a high temperature atmosphere. .. Further, the electrolytic solution containing lithium perfluoromethylsulfonyl imide as a lithium salt exhibits a conductivity similar to that of lithium perchlorate, and thus exhibits a good discharge load characteristic.

【0011】[0011]

【実施例】以下に、本発明の一実施例について図面を参
照しながら説明する。図1に本発明のコイン形のリチウ
ム二次電池の構成を示す。図に示すように、正極端子を
兼ねたケース1と負極端子を兼ねた封口板2とがポリプ
ロピレン製ガスケット3で絶縁シールされている。正極
4は五酸化バナジウム90wt%、導電剤であるカーボ
ンブラック5wt%及び結着剤であるフッ素樹脂を5w
t%の重量比になるように混練し、直径15mm,厚み
0.5mmの大きさのペレットに成型し、高温真空乾燥し
て脱水処理して調整する。負極5はまず五酸化ニオブ9
0wt%、導電剤であるカーボンブラック5wt%及び
結着剤であるフッ素樹脂を5wt%の重量比になるよう
に混練し、直径15mm,厚み0.5mmの大きさのペレッ
トに成型し、高温真空乾燥して脱水処理して調整する。
この合剤ペレットに直径13mm、厚み0.1mmのリチウ
ム箔を密着させ、所定のリチウム塩を1モル/lを含む
プロピレンカーボネイト液中に浸漬し、リチウムを五酸
化ニオブ中にドーピングしたものである。セパレータ6
はポリプロピレン製微孔膜と不織布の2層ラミネート体
からなる。電解液はプロピレンカーボネイトと1,2ジ
メトキシエタンを1:1で混合した溶媒にリチウムパー
フルオロメチルスルホニルイミドを1モル/l溶解して
本発明電池(A)を作成した。電池の大きさは、直径2
0mm,厚さ2.0mmの大きさであり、容量は2.0Vか
ら1.0Vまでの電圧範囲で15mAhである。次に、比
較例として同様の電池構成及び溶媒を用いて溶質に過塩
素酸リチウムを1モル/l用いた比較電池(B)及びト
リフルオロメタンスルホン酸リチウムを1モル/l用い
た比較電池(C)を作成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of a coin-type lithium secondary battery of the present invention. As shown in the figure, a case 1 also serving as a positive electrode terminal and a sealing plate 2 also serving as a negative electrode terminal are insulated and sealed by a polypropylene gasket 3. The positive electrode 4 contains 90 wt% of vanadium pentoxide, 5 wt% of carbon black as a conductive agent, and 5 w of fluororesin as a binder.
The mixture is kneaded so as to have a weight ratio of t%, molded into pellets having a diameter of 15 mm and a thickness of 0.5 mm, dried at high temperature under vacuum, and dehydrated for adjustment. First, the negative electrode 5 is niobium pentoxide 9
0 wt%, carbon black 5 wt% as a conductive agent, and fluororesin a binder as a weight ratio of 5 wt% were kneaded and molded into pellets with a diameter of 15 mm and a thickness of 0.5 mm, and vacuumed at high temperature. Adjust by drying and dehydration.
A lithium foil having a diameter of 13 mm and a thickness of 0.1 mm was adhered to this mixture pellet, and a predetermined lithium salt was immersed in a propylene carbonate solution containing 1 mol / l to dope lithium into niobium pentoxide. .. Separator 6
Consists of a two-layer laminate of a polypropylene microporous membrane and a non-woven fabric. The electrolyte solution was prepared by dissolving lithium perfluoromethylsulfonyl imide at 1 mol / l in a solvent prepared by mixing propylene carbonate and 1,2 dimethoxyethane at a ratio of 1: 1 to prepare a battery (A) of the present invention. Battery size is diameter 2
The size is 0 mm and the thickness is 2.0 mm, and the capacity is 15 mAh in the voltage range of 2.0 V to 1.0 V. Next, as a comparative example, a comparative battery (B) using 1 mol / l of lithium perchlorate as a solute and a comparative battery (C) using 1 mol / l of lithium trifluoromethanesulfonate using the same battery structure and solvent. )made.

【0012】次に本発明電池(A)と比較電池(B)、
(C)を組立て直後の満充電の状態で2mAの定電流で
放電し1.0Vに至るまでの電気容量を測定した。次
に、同様に組立て直後の満充電の状態の電池を各々20
個ずつ60℃雰囲気中に保存し、20日、40日、60
日、80日、100日経過後にそれぞれ4個ずつ取り出
し、2mAの定電流で放電し1.0Vに至るまでの残存
電気容量を測定し、組立て直後の測定値と比較する事に
より自己放電の度合いを調べた。その結果を図2に示
す。図2から明らかなように、リチウム塩としてリチウ
ムパーフルオロメチルスルホニルイミドを用いることに
より過塩素酸リチウムを用いた場合より自己放電が極端
に抑制され、改善されている事がわかる。又、トリフル
オロメタンスルホン酸リチウムを用いた電池は自己放電
特性は良好であるが、組立て直後の放電容量が低く、放
電負荷特性が劣化する傾向が確認された。
Next, the battery of the present invention (A) and the comparative battery (B),
Immediately after assembling (C), it was discharged at a constant current of 2 mA in a fully charged state, and the electric capacity up to 1.0 V was measured. Next, in the same way, each fully charged battery immediately after assembly is
Store in 60 ℃ atmosphere individually for 20 days, 40 days, 60
After four days, 80 days, and 100 days, four of each were taken out and discharged at a constant current of 2 mA, and the remaining capacity up to 1.0 V was measured and compared with the measured value immediately after assembly to determine the degree of self-discharge. I checked. The result is shown in FIG. As is clear from FIG. 2, by using lithium perfluoromethylsulfonylimide as the lithium salt, self-discharge is extremely suppressed and improved as compared with the case of using lithium perchlorate. Further, although the battery using lithium trifluoromethanesulfonate has good self-discharge characteristics, it was confirmed that the discharge capacity immediately after assembly was low and the discharge load characteristics tended to deteriorate.

【0013】[0013]

【発明の効果】以上の実施例の説明からも明らかなよう
に、本発明のリチウム塩としてリチウムパーフルオロメ
チルスルホニルイミドを用いる事により正極に五酸化バ
ナジウム、負極にリチウムと五酸化ニオブの化合物を用
いたリチウム二次電池の高温雰囲気中における自己放電
特性を放電負荷特性を損なう事なく向上することがで
き、特性の優れたリチウム二次電池を提供するものであ
る。
As is apparent from the above description of the embodiments, by using lithium perfluoromethylsulfonylimide as the lithium salt of the present invention, vanadium pentoxide can be used for the positive electrode and lithium and niobium pentoxide for the negative electrode. It is intended to provide a lithium secondary battery having excellent characteristics, in which the self-discharge characteristics of the used lithium secondary battery in a high temperature atmosphere can be improved without impairing the discharge load characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるコイン形リチウム二次
電池の断面図
FIG. 1 is a sectional view of a coin-type lithium secondary battery according to an embodiment of the present invention.

【図2】60℃での保存期間と残存容量との関係を示す
FIG. 2 is a diagram showing the relationship between the storage period at 60 ° C. and the remaining capacity.

【符号の説明】[Explanation of symbols]

1 ケ−ス 2 封口板 3 ガスケット 4 正極 5 負極 6 セパレ−タ 1 case 2 Sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム塩を溶解した有機溶媒を電解液と
し、充電状態で正極に五酸化バナジウム、負極にリチウ
ムと五酸化ニオブとの化合物をそれぞれ用いた構成であ
って、前記リチウム塩にリチウムパ−フルオロメチルス
ルホニルイミド(CF3SO22NLiを用いることを
特徴とするリチウム二次電池。
1. A structure in which an organic solvent in which a lithium salt is dissolved is used as an electrolytic solution, and vanadium pentoxide is used as a positive electrode and a compound of lithium and niobium pentoxide is used as a negative electrode in a charged state. - fluoromethyl sulfonyl imide (CF 3 SO 2) lithium secondary battery, which comprises using a 2 NLi.
JP4127067A 1992-05-20 1992-05-20 Lithium secondary battery Pending JPH05326018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127067A JPH05326018A (en) 1992-05-20 1992-05-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127067A JPH05326018A (en) 1992-05-20 1992-05-20 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05326018A true JPH05326018A (en) 1993-12-10

Family

ID=14950769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127067A Pending JPH05326018A (en) 1992-05-20 1992-05-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05326018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104686A (en) * 1995-10-09 1997-04-22 Asahi Chem Ind Co Ltd Organic sulfonyl imidolithium
US6824928B2 (en) 2000-09-21 2004-11-30 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104686A (en) * 1995-10-09 1997-04-22 Asahi Chem Ind Co Ltd Organic sulfonyl imidolithium
US6824928B2 (en) 2000-09-21 2004-11-30 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
US7022878B2 (en) 2000-09-21 2006-04-04 Hitachi, Ltd. Organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JPWO2006115023A1 (en) * 2005-04-19 2008-12-18 松下電器産業株式会社 Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
US6451480B1 (en) Polyimide-based lithium ion battery
US5015547A (en) Lithium secondary cell
JP3396696B2 (en) Rechargeable battery
JP3368029B2 (en) Rechargeable battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JPH04162370A (en) Nonaqueous electrolyte secondary battery
JPH05326018A (en) Lithium secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH06188030A (en) Nonaqueous electrolyte battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JP3198774B2 (en) Lithium secondary battery
US6200356B1 (en) Lithium ion secondary electrochemical cell and a method of preventing the electrochemical dissolution of a copper current collector therein
JPH0495362A (en) Nonaqueous electrolytic battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JPH04190557A (en) Lithium secondary battery
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
KR20200020279A (en) Secondary battery with improved storage characteristics and method for prevnting storage characteristics
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP3030149B2 (en) Non-aqueous electrolyte battery
JP2937427B2 (en) Lithium battery
KR102572102B1 (en) Separator for electrochemical device with improved lifespan stability throuth resistance improvement and manufacturing method thereof and electrochemical device including the same