JPH04171674A - Nonaqueous-electrolyte secondary battery - Google Patents

Nonaqueous-electrolyte secondary battery

Info

Publication number
JPH04171674A
JPH04171674A JP2300765A JP30076590A JPH04171674A JP H04171674 A JPH04171674 A JP H04171674A JP 2300765 A JP2300765 A JP 2300765A JP 30076590 A JP30076590 A JP 30076590A JP H04171674 A JPH04171674 A JP H04171674A
Authority
JP
Japan
Prior art keywords
carbonate
electrolyte
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2300765A
Other languages
Japanese (ja)
Inventor
Hiromi Okuno
奥野 博美
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300765A priority Critical patent/JPH04171674A/en
Priority to DE1991627251 priority patent/DE69127251T3/en
Priority to EP91107009A priority patent/EP0482287B2/en
Publication of JPH04171674A publication Critical patent/JPH04171674A/en
Priority to US08/060,252 priority patent/US5521027A/en
Priority to US08/077,327 priority patent/US5525443A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the cycle characteristic by containing cyclic carbonate and chain carbonate in the solvent component of a nonaqueous electrolyte. CONSTITUTION:A positive electrode mix using lithium-cobalt composite oxide as a main active material is molded in a can to form a positive electrode 6, and it is fixed to a grid 7 made of titanium. The positive electrode 6 and a negative electrode 4 are impregnated with an electrolyte, then they are coupled via a separator 5 and caulked together with a gasket 8 made of polypropylene and sealed. Cyclic carbonate and chain carbonate are contained in the solvent component of the nonaqueous electrolyte. The decomposition of the electrolyte and the breakdown of the layer structure of a negative electrode carbon material by the electrolyte are suppressed. The cycle characteristic is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関し、特にそのサイク
ル特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvement of its cycle characteristics.

従来の技術 従来、この種の非水電解液電池は高電圧、高エネルギー
密度を有し、かつ貯蔵性、耐漏液性などの信頼性に優れ
るため、広く民生用電子機器の電源に用いられている。
Conventional technology Conventionally, this type of non-aqueous electrolyte battery has been widely used as a power source for consumer electronic devices because it has high voltage, high energy density, and has excellent reliability such as storage performance and leakage resistance. There is.

また最近ではこの電池を二次電池化する試みか盛んであ
る。二次電池の負極としてリチウムイオンの放出・収納
を繰り返すことのできる合金、炭素材、導電性高分子、
金属リチウムなどが検討されている。また、正極には負
極から溶出したリチウムイオンを収納できる反応度を持
ち、層状あるいはトンネル型の結晶構造を有する遷移金
属の酸化物やカルコゲン化合物が検討されている。また
、二次電池の充放電過程でリチウムイオンが電解液を介
し、正・負極の間を移動するが、その電解液の溶媒とし
て一次電池ではプロピレンカーボネートを用いることが
多い。なぜならば、プロピレンカーボネートは支持塩を
よく溶かし、リチウムに対し安定で、しかも放電特性に
優れるという性質を持っているからである。
Recently, there have been many attempts to convert this battery into a secondary battery. Alloys, carbon materials, and conductive polymers that can repeatedly release and store lithium ions as negative electrodes for secondary batteries.
Metallic lithium and other materials are being considered. In addition, transition metal oxides and chalcogen compounds having a layered or tunnel-type crystal structure and having a reactivity capable of accommodating lithium ions eluted from the negative electrode are being considered for the positive electrode. Furthermore, during the charging and discharging process of secondary batteries, lithium ions move between the positive and negative electrodes via an electrolyte, and propylene carbonate is often used in primary batteries as a solvent for the electrolyte. This is because propylene carbonate dissolves the supporting salt well, is stable against lithium, and has excellent discharge characteristics.

例えば、リチウム/二酸化マンガン、リチウム/酸化銅
電池などの一次電池で用いられている。
For example, it is used in primary batteries such as lithium/manganese dioxide and lithium/copper oxide batteries.

発明が解決しようとする課題 このようにプロピレンカーボネートは一次電池において
優れた溶媒であるが、負極に炭素材を用いた二次電池の
溶媒として単独で用いた場合、充電時にそれ自身が分解
し、良好なサイクル特性が得られない。その分解原因に
ついていくつかの報告がなされているが、詳しくは不明
である。
Problems to be Solved by the Invention As described above, propylene carbonate is an excellent solvent for primary batteries, but when used alone as a solvent for secondary batteries that use a carbon material for the negative electrode, it decomposes during charging. Good cycle characteristics cannot be obtained. Several reports have been made regarding the cause of the decomposition, but the details are unknown.

一方、他の環状カーボネートを上記二次電池の溶媒とし
て検討した場合、例えばエチレンカーボネートは凝固点
が36,4℃と高いために溶質溶解による凝固点降下を
考慮しても電解液の凝固点が高くなる。すなわち、−2
0℃程度の低温で電解液が固体状態となり、電池が作動
しない。4そのため、二次電池の電解液として単独で用
いることは難しい。
On the other hand, when other cyclic carbonates are considered as a solvent for the secondary battery, for example, ethylene carbonate has a high freezing point of 36.4° C., so the freezing point of the electrolyte becomes high even when considering the freezing point drop due to solute dissolution. That is, -2
At temperatures as low as 0°C, the electrolyte becomes solid and the battery does not operate. 4. Therefore, it is difficult to use it alone as an electrolyte for secondary batteries.

また、鎖状カーボネートについて同様の検討を試みた場
合、環状カーボネートで見られた溶媒の分解及び低温で
の固化は緩和される。しかし、充放電の繰り返しに伴い
電池の内部インピーダンスが大幅に増加する。そのため
電池の分極が大きくなり、従って放電時の電池電圧が低
下し、結果的に放電容量が小さくなる。これは鎖状カー
ボネートの分子が環状カーボネートの分子に比べて小さ
いため、充電時にリチウムイオンと共に負極炭素の層間
に取りこまれ易い。それによって負極炭素の層間距離が
押し広げられる。従って、充放電によるリチウムイオン
の収納・放出をくり返すにつれて負極炭素の層構造の破
壊が進み、電池の内部インピーダンスが増加すると考え
られる。
Furthermore, when similar studies are attempted for chain carbonates, the decomposition of the solvent and solidification at low temperatures observed with cyclic carbonates are alleviated. However, with repeated charging and discharging, the internal impedance of the battery increases significantly. As a result, the polarization of the battery increases, resulting in a decrease in battery voltage during discharge, resulting in a decrease in discharge capacity. This is because the molecules of chain carbonate are smaller than the molecules of cyclic carbonate, so that they are easily incorporated into the negative electrode carbon layer together with lithium ions during charging. This expands the interlayer distance of the negative electrode carbon. Therefore, it is thought that as lithium ions are repeatedly stored and released through charging and discharging, the layered structure of the negative electrode carbon progresses and the internal impedance of the battery increases.

本発明は上記の課題を解決し、サイクル特性の改良を目
的とするものである。
The present invention aims to solve the above problems and improve cycle characteristics.

課題を解決するための手段 本発明は非水電解液の溶媒成分に環状カーボネートと鎖
状カーボネートを含むものである。
Means for Solving the Problems The present invention includes a non-aqueous electrolytic solution containing a cyclic carbonate and a chain carbonate as a solvent component.

作用 本発明で非水電解液の溶媒成分に環状カーボネートと鎖
状カーボネートを含むことにより、電解液の分解や電解
液による負極炭素材の層構造の破壊を抑え、サイクル特
性の向上がはかれるものである。
Function In the present invention, by including cyclic carbonate and chain carbonate in the solvent component of the nonaqueous electrolyte, decomposition of the electrolyte and destruction of the layer structure of the negative electrode carbon material by the electrolyte can be suppressed, and cycle characteristics can be improved. be.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

第1図は実施例に用いたコイン形非水電解液二次電池の
断面図である。図で1は耐食性ステンレス製のケース、
2は同じ材質の封口板、3は封口板2の内面にスポット
溶接したニッケルのグリ・ソド、4はカーボンを主体と
した負極活物質を缶内成型したものであり、ニッケルの
グリッド3に固着されている。5は三次元的空孔構造(
海綿状)を有するポリオレフィン系(ポリプロピレン、
ポリエチレンまたはそれらの共重合体)の微孔性フィル
ムからなるセパレータである。6は正極で、リチウムコ
バルト複合酸化物(LiCOO2)を主活物質とする正
極合剤を缶内成型したものであり、チタン製のグリッド
7に固着されている。正極6および負極4に電解液を含
浸させた後に七ノくレータ5を介してカップリングし、
8のポリプロピレン製ガスケットと共にかしめ、封口し
た。
FIG. 1 is a sectional view of a coin-shaped non-aqueous electrolyte secondary battery used in an example. In the figure, 1 is a case made of corrosion-resistant stainless steel.
2 is a sealing plate made of the same material, 3 is a nickel grid spot welded to the inner surface of the sealing plate 2, and 4 is a negative electrode active material mainly composed of carbon molded inside the can and fixed to the nickel grid 3. has been done. 5 is a three-dimensional pore structure (
polyolefins (polypropylene, spongy)
A separator made of a microporous film of polyethylene or a copolymer thereof. Reference numeral 6 denotes a positive electrode, which is formed by molding a positive electrode mixture containing lithium cobalt composite oxide (LiCOO2) as the main active material in a can, and is fixed to a grid 7 made of titanium. After the positive electrode 6 and the negative electrode 4 are impregnated with an electrolyte, they are coupled via a seven-layer generator 5,
It was caulked and sealed together with the polypropylene gasket No. 8.

[実施例1] 電解液の溶媒として鎖状カーボネートであるジメチルカ
ーボネート(以下DMCで示す)、およびジエチルカー
ボネート(以下DECで示す)それぞれの単独系(溶媒
■、■とする)と、エチレンカーボネート(以下ECで
示す)とDMC,およびEC,!:DECを体積比50
 : 50で混合した溶媒(溶媒■、■とする)の4種
類について上記コイン電池の試作を行った。電解液の溶
質は過塩素酸リチウムを用い、1モル/lの濃度になる
ように調整した。
[Example 1] As a solvent for the electrolytic solution, dimethyl carbonate (hereinafter referred to as DMC), which is a chain carbonate, and diethyl carbonate (hereinafter referred to as DEC) were used alone (solvents ① and ①), and ethylene carbonate (hereinafter referred to as DEC) was used. ), DMC, and EC,! : DEC volume ratio 50
The above coin batteries were prototyped using four types of solvents (referred to as solvents ■ and ■) mixed at 50%. Lithium perchlorate was used as the solute in the electrolytic solution, and the concentration was adjusted to 1 mol/l.

試験条件は1mAの定電流で充電終始電圧を4.2■、
放電終始電圧を3.Ovとし、充放電を100サイクル
くり返した。その結果を第2図、第3図に示す。
The test conditions were a constant current of 1mA and a voltage of 4.2■ at the end of charging.
The voltage at the end of discharge is set to 3. Ov, and charging and discharging were repeated 100 cycles. The results are shown in FIGS. 2 and 3.

なお電池の番号は溶媒の番号に対応させて付けている。The battery numbers are assigned to correspond to the solvent numbers.

第2図は充放電の繰り返しに伴う放電容量の変化を示し
たものである。
FIG. 2 shows the change in discharge capacity due to repeated charging and discharging.

第2図より■、■の鎖状カーボネート単独系に比べ、■
、■のECとの混合系は充放電のくり返しに伴う放電容
量の低下が少ない。これは■、■の方が、充放電のくり
返しに伴って平均放電電圧が大きく低下したためである
From Figure 2, compared to the chain carbonate single system of ■ and ■,
, ■ The mixed system with EC shows little decrease in discharge capacity due to repeated charging and discharging. This is because the average discharge voltage in cases ① and ① decreased more with repeated charging and discharging.

次に第3図は毎充電後電池の内部抵抗を測定し、その充
放電の繰り返しに伴う変化を示したものである。
Next, FIG. 3 shows the internal resistance of the battery measured after each charge, and its change with repeated charging and discharging.

第3図より■、■の鎖状カーホネート単独系では充放電
を繰り返すにつれて内部抵抗の大幅な増加が見られるが
、■、■のECとの混合系ではそのような顕著な増加は
見られなかった。この内部抵抗の違いにより第2図にお
ける■、■と■、■の差が生じていると考えられる。
Figure 3 shows that in the chain carbonate single systems of ■ and ■, a significant increase in internal resistance is observed as charging and discharging are repeated, but no such remarkable increase is observed in the mixed systems with EC, as shown in ■ and ■. Ta. It is thought that this difference in internal resistance causes the difference between ■, ■ and ■, ■ in FIG.

これらの結果から鎖状カーボネートが負極炭素の層間へ
侵入することを環状カーボネートの混在により抑制でき
ると考えられる。また、■の内部抵抗のほうが■のそれ
よりも小さくなるのは、DECの分子の方がDMCの分
子よりも大きく、負極炭素の層間に入りにくいため負極
構造の破壊を起こしにくいからである。
From these results, it is considered that the intrusion of chain carbonate into the interlayers of negative electrode carbon can be suppressed by the presence of cyclic carbonate. Furthermore, the reason why the internal resistance of (2) is smaller than that of (2) is that the molecules of DEC are larger than those of DMC and are less likely to enter between the layers of negative electrode carbon, making it difficult to cause destruction of the negative electrode structure.

[実施例2] 電解液の溶媒としてプロピレンカーボネート(以下PC
で示す)単独(溶媒■とする)とPCとDMC,および
pcとDECを体積比50:50で混合した溶媒(溶媒
■、■とする)の3種類について上記コイン電池の試作
を行った。電解液の調整条件および試験条件は実施例1
と同様とした。その結果を第4図、第5図に示す。
[Example 2] Propylene carbonate (hereinafter referred to as PC) was used as a solvent for the electrolytic solution.
The above-mentioned coin batteries were trial-manufactured using three types of solvents: 1) alone (designated as solvent ①), PC and DMC, and a mixture of PC and DEC at a volume ratio of 50:50 (designated as solvents ① and ①). Conditions for adjusting the electrolytic solution and test conditions are as in Example 1.
The same is true. The results are shown in FIGS. 4 and 5.

なお電池の番号は溶媒の番号に対応させて付けている。The battery numbers are assigned to correspond to the solvent numbers.

それぞれ第4図は第2図と、第5図は第3図と同様のも
のである。
FIG. 4 is similar to FIG. 2, and FIG. 5 is similar to FIG. 3, respectively.

第4図より■のPC単独は容量が低く、サイクル寿命も
短い。それに比べ、■、■の鎖状カーボネートとの混合
系は比較的容量が大きく、サイクル寿命も長い。また第
5図より■では充放電を繰り返すにつれて内部抵抗が大
幅に増加し、■、■ではそのような顕著な増加は見られ
なかった。これは■の電池において前述したような負極
炭素とPC間の反応が起こりPCの分解に充電容量の一
部が消費されたと考えられる。そのため放電容量が小さ
くなり、かつ、PCの分解による液枯れて内部抵抗の増
加が起こったと考えられる。それら1) C単独で見ら
れた現象は鎖状カーボネートとの混合溶媒とすることに
より改善されることかわかった。また実施例1の■、■
で見られた特性に比べ■、■の方がより良好な特性を示
すことから鎖状カーボネートの負極炭素の層間への挿入
反応はPCにより抑制されていることがわかった。つま
り、それぞれ単独では悪いサイクル特性を示すPCと鎖
状カーボネート類が混合して用いると相互作用により良
いサイクル特性を示すことかわかった。
From FIG. 4, it is seen that PC (■) alone has a low capacity and a short cycle life. In comparison, the mixed systems with chain carbonate (2) and (2) have a relatively large capacity and a long cycle life. Moreover, as shown in FIG. 5, the internal resistance of the battery (■) increased significantly as charging and discharging were repeated, while no such significant increase was observed in the batteries (2) and (4). This is considered to be because in the battery (2), a reaction between the negative electrode carbon and the PC occurred as described above, and a part of the charging capacity was consumed by the decomposition of the PC. As a result, the discharge capacity became smaller, and it is thought that the liquid dried up due to the decomposition of the PC, causing an increase in internal resistance. 1) It was found that the phenomena observed with C alone can be improved by using a mixed solvent with a chain carbonate. Also, ■ and ■ in Example 1
It was found that the insertion reaction of the chain carbonate into the interlayer of the negative electrode carbon was suppressed by the PC since the properties shown in the cases ① and ② were better than those observed in the above. In other words, it has been found that when PC and chain carbonates, which exhibit poor cycle characteristics when used alone, are used in combination, they exhibit better cycle characteristics due to their interaction.

以上の結果から本発明により非水電解液の溶媒成分に環
状カーボネートと鎖状カーボネートを含むことがサイク
ル特性の向上に大きな効果を持つことがわかった。
From the above results, it was found that including a cyclic carbonate and a chain carbonate in the solvent component of the nonaqueous electrolyte according to the present invention has a great effect on improving cycle characteristics.

なお、実施例では正極活物質にリチウムコバルト複合酸
化物を用いたが、他のたとえばリチウムマンガン複合酸
化物などのリチウム含有化合物であってもよい。
In the examples, a lithium cobalt composite oxide was used as the positive electrode active material, but other lithium-containing compounds such as a lithium manganese composite oxide may be used.

= 9− また、電解液の溶媒成分として、環状カーボネートにプ
ロピレンカーボネートとエチレンカーボネートの2例を
挙げたが、他の環状カーボネート、たとえばブチレンカ
ーボネートなどでも良く、二種以上の混合物としてもよ
い。また、鎖状カーボネートもジプロピルカーボネート
やメチルエチルカーボネートなどでも良く、二種以上の
混合物としてもよい。また、環状カーボネートと鎖状カ
ーボネートと他の溶媒、たとえばγ−ブチロラクトン等
のラクトン類、1.2−ジメトキシエタンなどのエーテ
ル類、等一種以上との混合溶媒としてもよい。
= 9- Moreover, although propylene carbonate and ethylene carbonate are two examples of cyclic carbonates as solvent components of the electrolytic solution, other cyclic carbonates such as butylene carbonate may be used, or a mixture of two or more types may be used. The chain carbonate may also be dipropyl carbonate, methyl ethyl carbonate, or a mixture of two or more thereof. Further, a mixed solvent of cyclic carbonate, chain carbonate, and one or more other solvents such as lactones such as γ-butyrolactone, ethers such as 1,2-dimethoxyethane, etc. may also be used.

発明の効果 このように本発明ではサイクル特性に優れた非水電解液
二次電池を提供することができるものである。
Effects of the Invention As described above, the present invention can provide a non-aqueous electrolyte secondary battery with excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるコイン形電池の代表的な構造を
示す断面図、第2図は実施例1の放電容量のサイクル特
性図、第3図は実施例1の充電後測定した電池の内部抵
抗のサイクル特性図、第4図は実施例2の放電容量のサ
イクル特性図、第5図は実施例2の充電後測定した電池
の内部抵抗のサイクル特性図である。 1・・・正極ケース、2・・・負極封目板、3・・・負
極集電体、4・・・負極、5・・・セパレータ、6・・
・正極、7・・・正極集電体、8・・・ガスケット。
Figure 1 is a sectional view showing a typical structure of the coin-shaped battery according to the present invention, Figure 2 is a cycle characteristic diagram of discharge capacity in Example 1, and Figure 3 is the inside of the battery measured after charging in Example 1. FIG. 4 is a cycle characteristic diagram of the discharge capacity of Example 2, and FIG. 5 is a cycle characteristic diagram of the internal resistance of the battery measured after charging in Example 2. DESCRIPTION OF SYMBOLS 1... Positive electrode case, 2... Negative electrode sealing plate, 3... Negative electrode current collector, 4... Negative electrode, 5... Separator, 6...
- Positive electrode, 7... Positive electrode current collector, 8... Gasket.

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムイオンを吸蔵・放出できる炭素材からな
る負極と、非水電解液と、リチウム含有化合物からなる
正極とを備え、上記非水電解液の溶媒に環状カーボネー
トと鎖状カーボネートを含むことを特徴とする非水電解
液二次電池。
(1) A negative electrode made of a carbon material capable of intercalating and releasing lithium ions, a nonaqueous electrolyte, and a positive electrode made of a lithium-containing compound, and the solvent of the nonaqueous electrolyte contains a cyclic carbonate and a chain carbonate. A non-aqueous electrolyte secondary battery featuring:
(2)電解液の溶媒成分である環状カーボネートにエチ
レンカーボネートを含んでいる特許請求の範囲第1項記
載の非水電解液二次電池。
(2) The nonaqueous electrolyte secondary battery according to claim 1, wherein the cyclic carbonate that is a solvent component of the electrolyte contains ethylene carbonate.
(3)電解液の溶媒成分である鎖状カーボネートに、ジ
メチルカーボネート、ジエチルカーボネートのうち少な
くとも一つを含む特許請求の範囲第1項記載の非水電解
液二次電池。
(3) The non-aqueous electrolyte secondary battery according to claim 1, wherein the chain carbonate as a solvent component of the electrolytic solution contains at least one of dimethyl carbonate and diethyl carbonate.
JP2300765A 1990-10-25 1990-11-05 Nonaqueous-electrolyte secondary battery Pending JPH04171674A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2300765A JPH04171674A (en) 1990-11-05 1990-11-05 Nonaqueous-electrolyte secondary battery
DE1991627251 DE69127251T3 (en) 1990-10-25 1991-04-30 Non-aqueous electrochemical secondary battery
EP91107009A EP0482287B2 (en) 1990-10-25 1991-04-30 A non-aqueous secondary electrochemical battery
US08/060,252 US5521027A (en) 1990-10-25 1993-05-12 Non-aqueous secondary electrochemical battery
US08/077,327 US5525443A (en) 1990-10-25 1993-06-14 Non-aqueous secondary electrochemical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300765A JPH04171674A (en) 1990-11-05 1990-11-05 Nonaqueous-electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04171674A true JPH04171674A (en) 1992-06-18

Family

ID=17888831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300765A Pending JPH04171674A (en) 1990-10-25 1990-11-05 Nonaqueous-electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04171674A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH05283104A (en) * 1992-01-13 1993-10-29 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
JPH0714607A (en) * 1993-04-28 1995-01-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH0745304A (en) * 1993-08-02 1995-02-14 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
US5681669A (en) * 1995-04-04 1997-10-28 Ube Industries, Ltd. Electrolyte for lithium secondary battery
US5998065A (en) * 1997-03-18 1999-12-07 Fujitsu Limited Ion-conductor for lithium secondary battery and lithium secondary battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JPH05283104A (en) * 1992-01-13 1993-10-29 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
JPH0714607A (en) * 1993-04-28 1995-01-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH0745304A (en) * 1993-08-02 1995-02-14 Japan Storage Battery Co Ltd Organic electrolyte secondary battery
US5681669A (en) * 1995-04-04 1997-10-28 Ube Industries, Ltd. Electrolyte for lithium secondary battery
US5998065A (en) * 1997-03-18 1999-12-07 Fujitsu Limited Ion-conductor for lithium secondary battery and lithium secondary battery using the same

Similar Documents

Publication Publication Date Title
US5525443A (en) Non-aqueous secondary electrochemical battery
US6528212B1 (en) Lithium battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
KR20010007465A (en) Nonaqueous Electrolyte Battery
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2003142078A (en) Nonaqueous electrolyte secondary battery
US20200381722A1 (en) Cathode active material and secondary battery using same
JPH04162370A (en) Nonaqueous electrolyte secondary battery
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JPH08241731A (en) Organic electrolytic secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
US8372541B2 (en) Non-aqueous electrolyte secondary battery
JPH0210666A (en) Nonaqueous electrolyte secondary battery
Hayashi et al. Electrolyte for high voltage Li/LiMn1. 9Co0. 1O4 cells
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JPH0636799A (en) Lithium secondary battery
JPH10255846A (en) Nonaqueous electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery