JPH10255846A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10255846A
JPH10255846A JP9059223A JP5922397A JPH10255846A JP H10255846 A JPH10255846 A JP H10255846A JP 9059223 A JP9059223 A JP 9059223A JP 5922397 A JP5922397 A JP 5922397A JP H10255846 A JPH10255846 A JP H10255846A
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
secondary battery
active material
lin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9059223A
Other languages
Japanese (ja)
Inventor
Michiaki Tsurumi
通昭 鶴見
Hideaki Nagura
秀哲 名倉
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9059223A priority Critical patent/JPH10255846A/en
Publication of JPH10255846A publication Critical patent/JPH10255846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity stability and improved effective energy density by preventing the capacitive degradation of electrodes, by using a negative electrode capable of storing- releasing Li, a positive electrode containing Li and a nonaqueous electrolyte containing LiClO4 as well as LiN(CF3 SO2 )2 as electrolyte. SOLUTION: A negative electrode 4 using a substance capable of storing- releasing Li, for example, Li metal, a carbonaceous material or the like as an active material and a positive electrode 1 using a laminated composite oxide or the like containing Li, Ni, B and Mn as an active material, are wound by sandwiching a separator 3, and the obtained electrode group is housed in a negative electrode can 7, and a nonaqueous electrolyte containing electrolyte is filled to provide a nonaqueous electrolyte secondary battery. The electrolyte contains LiN(CF3 SO2 )2 and LiClO4 as a sub-component in the molar ratio of (1:1) to (19:1), with the total concentration of 0.5 to 2 mole/l. Thus, the reaction of the electrolyte with a current collecting body or the like and water is restrained, and the degradation of the positive electrode containing Ni as an active material can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液の電解
質にイミド塩LiN(CF3 SO2 2 を使用可能とし
た非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery in which imide salt LiN (CF 3 SO 2 ) 2 can be used as an electrolyte of the non-aqueous electrolyte.

【0002】[0002]

【従来の技術】従来、層状構造を有する金属酸化物系化
合物を正極に、リチウムイオンを吸蔵放出する化合物を
負極に用いるリチウム二次電池において、非水溶媒に溶
解させる電解質には、LiCLO4 、LiBF4 、Li
AsF6 、LiPF6 、LiCF3 SO3 ,LiAlC
4 等のリチウム塩が用いられている。
2. Description of the Related Art Conventionally, in a lithium secondary battery using a metal oxide-based compound having a layered structure as a positive electrode and a compound capable of inserting and extracting lithium ions as a negative electrode, LiCLO 4 , LiBF 4 , Li
AsF 6 , LiPF 6 , LiCF 3 SO 3 , LiAlC
lithium salt l 4 etc. are used.

【0003】また、正極の金属酸化物系化合物について
は、特にLiCoO2 、LiNiO2 が4Vの起電力を
有し、理論エネルギー密度が大きいため、注目されてい
る。
[0003] With respect to metal oxide compounds for the positive electrode, LiCoO 2 and LiNiO 2 have attracted attention because they have an electromotive force of 4 V and a large theoretical energy density.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような電解質及び正極物質との組合せの場合、次のよう
な問題がある。
However, in the case of the combination with the above-mentioned electrolyte and cathode material, there are the following problems.

【0005】まず、LiPF6 に代表される上記系の電
解質では、水が電解液中に含まれていると、それと反応
を起こしてフッ化水素を発生させるという問題がある。
即ち、フッ化水素は非常に強力な酸であり、電池缶のみ
ならず集電体、活物質すべてにとって、その機能を害す
る働きをする。よって、電解質から水を除去することが
必要不可欠であるが、厳密な管理が必要となる上、電池
内の水分等、活物質と反応性のある物質を完全に除去す
ることは困難である。
[0005] First, the electrolyte of the above system represented by LiPF 6 has a problem that, when water is contained in the electrolyte, it reacts with water to generate hydrogen fluoride.
That is, hydrogen fluoride is a very strong acid, and functions to impair the function not only of the battery can but also of the current collector and the active material. Therefore, it is indispensable to remove water from the electrolyte, but strict control is required, and it is difficult to completely remove a substance that is reactive with the active material such as moisture in the battery.

【0006】次に、正極のリチウム酸化物については、
当該正極のリチウム酸化物が、Niを含有する層状構造
の複合酸化物の場合、これと水分等との反応性が大きく
安定性に乏しいため、これを正極に用いた非水電解液二
次電池においては、その電池容量の劣化が大きい。ま
た、正極の分解電位が4.2V付近の低い電位にあり、
これも容量の劣化を大きくしているなど、解決すべき課
題を有している。
Next, regarding the lithium oxide of the positive electrode,
In the case where the lithium oxide of the positive electrode is a composite oxide having a layered structure containing Ni, since the reactivity with water and the like is large and the stability is poor, a non-aqueous electrolyte secondary battery using the same as the positive electrode is used. , The battery capacity is greatly degraded. Further, the decomposition potential of the positive electrode is at a low potential near 4.2 V,
This also has problems to be solved, such as increasing the deterioration of the capacity.

【0007】そこで、かかる電池の容量劣化をなくす上
で、上記のような厳密な管理の必要がないイミド塩Li
N(CF3 SO2 2 を、非水電解液の電解質に使用す
ることにより、正極活物質の安定性を向上させ、容量の
安定化をはかることが考えられる。
Therefore, in order to eliminate the capacity deterioration of the battery, the imide salt Li which does not need to be strictly controlled as described above is required.
By using N (CF 3 SO 2 ) 2 for the electrolyte of the non-aqueous electrolyte, it is conceivable to improve the stability of the positive electrode active material and stabilize the capacity.

【0008】しかし、実際上、このイミド塩が非水電解
液二次電池に使用された例はない。その理由として、イ
ミド塩を非水電解液の電解質に使用すると、正極集電体
を構成しているアルミニウム箔との反応が避けられな
い、ということが挙げられる。本発明者等の実験におい
ても、イミド塩LiN(CF3 SO2 2 単独の場合、
アルミミニウムの腐蝕により、放電テストでの電池容量
の劣化が起きること、しかし一方、水分の影響は受けに
くいことが確認された。
However, practically, there is no example in which this imide salt is used for a non-aqueous electrolyte secondary battery. The reason is that when an imide salt is used for the electrolyte of the non-aqueous electrolyte, a reaction with the aluminum foil constituting the positive electrode current collector is inevitable. In experiments conducted by the present inventors, in the case of using the imide salt LiN (CF 3 SO 2 ) 2 alone,
It was confirmed that the corrosion of aluminium caused the deterioration of the battery capacity in the discharge test, but that it was hardly affected by moisture.

【0009】そこで、本発明の目的は、非水電解液二次
電池において、これまで実際には使用不可能であったイ
ミド塩を非水電解液の電解質に使用可能にすること、及
び、これにより、特に活物質としてNiを含有する正極
で容量劣化の一因となっている水分による遊離酸の存在
・発生を抑え、非水電解液二次電池の高容量・安定化を
図り、実効エネルギー密度を向上させることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery in which an imide salt which has not been practically used until now can be used as an electrolyte of the non-aqueous electrolyte. In particular, the presence and generation of free acid due to moisture, which is a cause of capacity deterioration, in a positive electrode containing Ni as an active material is suppressed, and the capacity and stability of the nonaqueous electrolyte secondary battery are improved. The purpose is to increase the density.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究を重ねた結果、それ単独では
使用が困難なイミド塩LiN(CF3 SO2 2 も、過
塩素酸リチウムLiClO4 の共存する電解質において
は、アルミニウムの反応なしに使用することが可能とな
ることを見い出した。即ち、Niを含有する層状構造の
複合酸化物より成る正極活物質を用いた電池の容量劣化
が、イミド塩LiN(CF3 SO2 2と過塩素酸リチ
ウムLiClO4 の共存する電解質により抑制される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the imide salt LiN (CF 3 SO 2 ) 2 , which is difficult to use by itself, has been replaced with perchlorine It has been found that in an electrolyte in which lithium oxide LiClO 4 coexists, it can be used without reaction of aluminum. That is, capacity deterioration of a battery using a positive electrode active material composed of a composite oxide having a layered structure containing Ni is suppressed by an electrolyte in which imide salt LiN (CF 3 SO 2 ) 2 and lithium perchlorate LiClO 4 coexist. You.

【0011】具体的には、請求項1に係る本発明の非水
電解液二次電池は、リチウムを吸蔵放出可能な物質によ
り構成された負極と、ニッケルを含有する正極と、電解
質に少なくともLiN(CF3 SO2 2 を含有しかつ
LiClO4 を含む非水電解液とを具備する構成とした
ものである。換言すれば、電解質塩としてLiN(CF
3 SO2 2 とLiClO4 を含む有機電解質を用い、
少なくともNiを含む正極活物質を用いるものである。
Specifically, the non-aqueous electrolyte secondary battery of the present invention according to the first aspect of the present invention provides a non-aqueous electrolyte secondary battery comprising: a negative electrode made of a substance capable of inserting and extracting lithium; a positive electrode containing nickel; A non-aqueous electrolyte containing (CF 3 SO 2 ) 2 and LiClO 4 is provided. In other words, LiN (CF
Using an organic electrolyte containing 3 SO 2 ) 2 and LiClO 4 ,
A positive electrode active material containing at least Ni is used.

【0012】ここで、特にこの電解液は、Niの一部を
コバルト・ホウ素・マンガンで置換し、安定化した正極
活物質と組み合わせることで、より効果的となる。
Here, particularly, this electrolytic solution becomes more effective by replacing a part of Ni with cobalt, boron, and manganese and combining it with a stabilized cathode active material.

【0013】具体的には、請求項2に示すように、ニッ
ケルを含有する正極の活物質が、 一般式 Li(Nix,By,Mnz)O2 〔0.65≦x≦0.94, 0.01≦y≦0.0
5, 0.05≦z≦0.30〕である層状構造の複合
酸化物で構成される場合や、請求項3に示すように、 一般式 Li(Nix,Coy,Mnz)O2 〔0.45≦x≦0.80, 0.10≦y≦0.5
0, 0.10≦z≦0.45〕である層状構造の複合
酸化物で構成される場合である。
More specifically, the active material of the positive electrode containing nickel is represented by the general formula Li (Nix, By, Mnz) O 2 [0.65 ≦ x ≦ 0.94,0 .01 ≦ y ≦ 0.0
5, 0.05 ≦ z ≦ 0.30], or as defined in claim 3, the general formula Li (Nix, Coy, Mnz) O 2 [0. 45 ≦ x ≦ 0.80, 0.10 ≦ y ≦ 0.5
0, 0.10 ≦ z ≦ 0.45].

【0014】このような正極活物質には、Niのー部を
置換することによって、4.2V付近の電位にあった層
構造の変化を抑える効果のある組成物を前記電解液と組
み合わせて用いることにより、非水電解液二次電池の容
量を安定化させ、実効エネルギー密度を向上させること
ができる。
For such a positive electrode active material, a composition having an effect of suppressing a change in the layer structure at a potential of about 4.2 V by substituting the-part of Ni is used in combination with the electrolytic solution. Thereby, the capacity of the nonaqueous electrolyte secondary battery can be stabilized, and the effective energy density can be improved.

【0015】また、電池のタイプとしては請求項4に示
すように、対極の負極活物質にリチウムもしくはリチウ
ム合金を使用するのものでも良いし、あるいは、リチウ
ムを吸蔵放出可能な炭素質材料を用いるものでも良い。
Further, as the battery type, lithium or a lithium alloy may be used for the negative electrode active material of the counter electrode, or a carbonaceous material capable of inserting and extracting lithium may be used. It may be something.

【0016】更に請求項5に示すように、電解質の全濃
度は0.5モル/リットルから2モル/リットルであ
り、かつLiN(CF3 SO2 2 と副成分であるLi
ClO4 とのモル比が1:1から19:1の範囲とする
のが望ましい。
Further, the total concentration of the electrolyte is 0.5 mol / L to 2 mol / L, and LiN (CF 3 SO 2 ) 2 and Li as a sub-component are contained in the electrolyte.
The molar ratio with ClO 4 is preferably in the range of 1: 1 to 19: 1.

【0017】既に述べたように、非水電解液二次電池に
用いられる電解質塩には、LiPF6 ,LiBF4 ,L
iClO4 ,LiCF3 SO3 ,LiN(CF3
2 2等がある。そして、Niを含有する層状構造の
複合酸化物より成る正極活物質は、有機電解液中に水分
による遊離酸が存在すると、それが10ppm程度の低
濃度であっても、大きな容量劣化を引き起こす。このよ
うな関係において、イミド塩LiN(CF3 SO2 2
と過塩素酸リチウムLiClO4 との組合せの電解質と
した電解液を用いるときは、前記正極活物質に与える影
響が小さく、電池の容量劣化を殆ど引き起こさない。
As described above, the electrolyte salt used in the non-aqueous electrolyte secondary battery includes LiPF 6 , LiBF 4 , and LBF.
iClO 4 , LiCF 3 SO 3 , LiN (CF 3 S
O 2 ) 2 etc. When the free acid due to moisture is present in the organic electrolyte, the positive electrode active material made of a composite oxide having a layered structure containing Ni causes a large capacity deterioration even at a low concentration of about 10 ppm. In such a relationship, the imide salt LiN (CF 3 SO 2 ) 2
When an electrolytic solution is used as an electrolyte in which lithium is combined with lithium perchlorate LiClO 4 , the influence on the positive electrode active material is small, and the capacity of the battery is hardly deteriorated.

【0018】この場合、LiN(CF3 SO2 2 とL
iClO4 の濃度については、その全濃度が0.1モル
/リットルから2モル/リットルであることが好まし
い。その理由は、0.1モル/リットル以下の範囲及び
2モル/リットルを越える範囲では、放電テストの初期
から既に放電容量が小さいからである(表7参照)。よ
り好適には、0.8モル/リットルから1.6モル/リ
ットルの範囲である(表7参照)。
In this case, LiN (CF 3 SO 2 ) 2 and L
As for the concentration of iClO 4 , the total concentration is preferably from 0.1 mol / l to 2 mol / l. The reason is that in the range of 0.1 mol / liter or less and the range exceeding 2 mol / liter, the discharge capacity is already small from the beginning of the discharge test (see Table 7). More preferably, it is in the range of 0.8 mol / l to 1.6 mol / l (see Table 7).

【0019】また、LiN(CF3 SO2 2 とLiC
lO4 の混合比は、モル比で1:1から19:1の範囲
が好ましい。その理由は、このモル比が1:1より小さ
くなると、過塩素酸リチウムの特性に近くなり、充放電
におけるサイクル特性、即ち充放電テストを一定回数繰
り返した後の放電容量と、それ以後に更に所定回数繰り
返した後の放電容量との比(%)が悪くなること(モル
比が1:2である表5,表6参照)、また、逆にモル比
が19:1を越えると、イミド塩単独の場合に近くな
り、正極集電体のアルミニウム箔との反応が生じるの
で、初期充放電テストのときから所望の容量が得られ
ず、サイクル特性も低下するからである。イミド塩Li
N(CF3 SO2 2 と過塩素酸リチウムLiClO4
の混合比は、より好適には、上記範囲のいずれにも片寄
らない5:1から15:1の範囲であることが望まし
い。
Further, LiN (CF 3 SO 2 ) 2 and LiC
The mixing ratio of 10 4 is preferably in the range of 1: 1 to 19: 1 in molar ratio. The reason is that when this molar ratio is smaller than 1: 1, the characteristics become close to those of lithium perchlorate, and the cycle characteristics in charge and discharge, that is, the discharge capacity after repeating the charge and discharge test a certain number of times, and further thereafter When the ratio (%) to the discharge capacity after repeated a predetermined number of times becomes worse (see Tables 5 and 6 where the molar ratio is 1: 2), and when the molar ratio exceeds 19: 1, This is because the salt becomes close to the case of the salt alone and a reaction with the aluminum foil of the positive electrode current collector occurs, so that a desired capacity cannot be obtained from the time of the initial charge / discharge test, and the cycle characteristics also deteriorate. Imide salt Li
N (CF 3 SO 2 ) 2 and lithium perchlorate LiClO 4
Is more preferably in the range of 5: 1 to 15: 1, which is not biased to any of the above ranges.

【0020】上記の電解質を用いると、高い導電率が得
られ、電池缶や集電体が腐食する遊離酸の影響を抑える
ことができる。
When the above-mentioned electrolyte is used, a high conductivity can be obtained, and the influence of free acid which corrodes the battery can and the current collector can be suppressed.

【0021】有機溶媒としては、プロピレンカーボネー
ト,エチレンカーボネート等の高誘電率溶媒と、ジメチ
レンカーボネート,ジエチレンカーボネート等の低粘度
溶媒の等容量比混合液が望ましい。
As the organic solvent, a mixed solution of a high dielectric constant solvent such as propylene carbonate and ethylene carbonate and a low viscosity solvent such as dimethylene carbonate and diethylene carbonate in an equal volume ratio is preferable.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0023】図1に、試作したリチウムイオン二次電池
の全体の構成を、図2にその電極の構造を示す。図示す
るように、リチウムイオン電池は、アルミ箔から成る正
極集電体2に正極活物質としてNiを含有する層状構造
の複合酸化物を塗布した正極1を、その表裏に配設した
セパレータ3で挟み、その一側に銅箔を負極集電体5と
する負極4を配設し、これを巻回して電極群6を作製
し、負極缶7内に配設した構造となっている。
FIG. 1 shows the overall structure of a prototype lithium ion secondary battery, and FIG. 2 shows the structure of its electrodes. As shown in the figure, a lithium ion battery has a positive electrode 1 in which a layered composite oxide containing Ni as a positive electrode active material is applied to a positive electrode current collector 2 made of aluminum foil, and a separator 3 disposed on the front and back thereof. A negative electrode 4 having a copper foil as a negative electrode current collector 5 is disposed on one side thereof, and the negative electrode 4 is wound around the negative electrode 4 to form an electrode group 6, which is disposed in a negative electrode can 7.

【0024】電解液は、イミド塩LiN(CF3
2 2 と過塩素酸リチウムLiClO4 等副成分を含
む有機電解質のものである。
The electrolytic solution is an imide salt LiN (CF 3 S
The organic electrolyte contains O 2 ) 2 and secondary components such as lithium perchlorate LiClO 4 .

【0025】以下に述べる実施例1〜4のうち、実施例
1及び実施例2は負極が炭素質材料の場合であり、実施
例3及び実施例4はこれとはタイプを異にするが負極が
金属リチウムの場合である。
Of Examples 1 to 4 described below, Examples 1 and 2 are for the case where the negative electrode is made of a carbonaceous material, and Examples 3 and 4 are different in type from those described above. Is the case of metallic lithium.

【0026】(1)実施例1 まず、正極1は水酸化リチウム(LiOH・H2 O)と
水酸化ニッケル(Ni(OH)2 ),酸化コバルト(C
2 3 )と二酸化マンガン(MnO2 )をLi:N
i:Co:Mnにおいて、表1中に示す所定のモル比と
なるよう秤量し、乳鉢を用いて十分混合した後、この混
合物を酸素気流中650℃の温度で24時間加熱焼成
し、冷却後、粒径20μm以下に粉砕し、正極活物質を
得た。
(1) Example 1 First, the positive electrode 1 was made of lithium hydroxide (LiOH.H 2 O), nickel hydroxide (Ni (OH) 2 ), and cobalt oxide (C
o 2 O 3 ) and manganese dioxide (MnO 2 ) with Li: N
In i: Co: Mn, the mixture was weighed so as to have a predetermined molar ratio shown in Table 1 and sufficiently mixed using a mortar. The mixture was heated and calcined at a temperature of 650 ° C. for 24 hours in an oxygen stream, and then cooled. The powder was pulverized to a particle size of 20 μm or less to obtain a positive electrode active material.

【0027】この正極活物質を91重量部、導電剤とし
てグラファイトを6重量部およびバインダとしてポリフ
ッ化ビニリデンを3重量部の割合で混合し、更に溶剤と
してのN−メチルピロリドン100重量部を加えて、ス
ラリーにする。このスラリーを厚さ20μmのアルミニ
ウム箔でなる集電体の両面に均ーに塗布して、乾燥す
る。乾燥後に、ローラープレス機により圧縮成形して、
厚さ200μmの帯状正極を作った。
91 parts by weight of this positive electrode active material, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were mixed, and 100 parts by weight of N-methylpyrrolidone as a solvent were further added. Into a slurry. This slurry is uniformly applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, and dried. After drying, compression molding with a roller press machine,
A belt-shaped positive electrode having a thickness of 200 μm was produced.

【0028】次に、負極は粉砕したピッチコークスを9
0重量部およびバインダとしてポリフッ化ビニリデンを
10重量部の割合で混合し、溶剤としてのN−メチルピ
ロリドン100重量部を加えてスラリーにする。このス
ラリーを、集電体5の厚さ10μmの銅箔の両面に均ー
に塗布して、乾燥する。乾燥後に、ローラープレス機に
より圧縮成形して、厚さ200μmの帯状負極を作っ
た。各々の集電体に、上下交互となるようリードを低抗
溶接した。
Next, the negative electrode was prepared by mixing ground pitch coke with 9 pieces.
0 parts by weight and 10 parts by weight of polyvinylidene fluoride as a binder are mixed, and 100 parts by weight of N-methylpyrrolidone as a solvent is added to form a slurry. This slurry is uniformly applied to both surfaces of a 10 μm thick copper foil of the current collector 5 and dried. After drying, compression molding was performed using a roller press machine to produce a 200 μm-thick strip-shaped negative electrode. Leads were low-welded to each current collector so as to be alternately arranged vertically.

【0029】次に、上記正極1および負極4に、厚さ2
0μmの微孔性ポリプロピレンフィルムから成るセパレ
ータ3を各一枚用いて、これらを互いに積層させ巻回す
ることによって、渦巻状の巻回電極6をつくる。これを
電池外装缶7に挿入した。
Next, the positive electrode 1 and the negative electrode 4
A single spirally wound electrode 6 is formed by using one separator 3 made of a microporous polypropylene film having a thickness of 0 μm and laminating and winding each other. This was inserted into the battery outer can 7.

【0030】そして、リードの先から絶縁板を通し、正
極リード側の先に防爆弁を溶接した。また負極リード側
は、電池外装缶の底部に溶接した。
Then, an explosion-proof valve was welded to the tip of the positive electrode lead by passing an insulating plate from the tip of the lead. The negative electrode lead side was welded to the bottom of the battery outer can.

【0031】本発明の電解質、つまりLiN(CF3
2 2 を含有しかつLiClO4を含む電解質を電解
液に溶かし、LiN(CF3 SO2 2 とLiClO4
のモル比が15:1、電解液濃度が1.6 Mol/lのもの
に調整した。また比較のため電解質にLiPF6 を用い
た電解液を同様に調整した。
The electrolyte of the present invention, namely, LiN (CF 3 S
An electrolyte containing O 2 ) 2 and containing LiClO 4 is dissolved in the electrolyte, and LiN (CF 3 SO 2 ) 2 and LiClO 4
Were adjusted to a molar ratio of 15: 1 and an electrolyte concentration of 1.6 Mol / l. For comparison, an electrolytic solution using LiPF 6 as the electrolyte was similarly prepared.

【0032】先に調整した上記電解液を注入して、巻回
電極6を含浸させ、防爆弁と閉塞用の蓋を重ね、それら
の外周をガスケットで密着させ、電池外装缶でかしめ封
口した。
The above-prepared electrolytic solution was injected to impregnate the wound electrode 6, an explosion-proof valve and a closing lid were overlapped, their outer peripheries were brought into close contact with a gasket, and the battery was sealed with a battery outer can.

【0033】この様にして作製した電池を、次の条件で
初期容量、並びに60サイクル後の容量を測定した。こ
の充放電テストの結果を表1に示す。
The initial capacity and the capacity after 60 cycles of the battery thus manufactured were measured under the following conditions. Table 1 shows the results of the charge / discharge test.

【0034】[0034]

【表1】 [Table 1]

【0035】表1は、負極が炭素質材料の場合である。
電解液は、LiN(CF3 SO2 2 とLiClO4
モル比が15:1、電解液濃度が1.6 Mol/lのもので
あり、試作例1,2,5が本発明の範囲外のもの、試作
例3,4が本発明の範囲内のものである。1st,60
thは、充放電テストにおける充放電サイクル目がそれ
ぞれ1回目,60回目である場合の電池容量(mAh)
を示す。本発明に係る試作例3,4の充放電容量を、右
側の電解液をLiPF6 としたときの比較例と比べてみ
ると、初期電池容量及びサイクル特性が共にかなり改善
されており、特性にかなりの差が出ていることが分か
る。
Table 1 shows the case where the negative electrode is made of a carbonaceous material.
The electrolyte had a molar ratio of LiN (CF 3 SO 2 ) 2 to LiClO 4 of 15: 1 and an electrolyte concentration of 1.6 Mol / l. Outer products and prototype examples 3 and 4 are within the scope of the present invention. 1st, 60
th is the battery capacity (mAh) when the charge / discharge cycle in the charge / discharge test is the first and 60th, respectively.
Is shown. When comparing the charge and discharge capacities of Prototype Examples 3 and 4 according to the present invention with a comparative example in which the right electrolyte was LiPF 6 , both the initial battery capacity and the cycle characteristics were considerably improved, and the characteristics were improved. It can be seen that there is a considerable difference.

【0036】(2)実施例2 まず、正極1は水酸化リチウム(LiOH・H2 O)と
水酸化ニッケル(Ni(OH)2 ),ほう酸(H3 BO
3 )と二酸化マンガン(MnO2 )をLi:Ni:B:
Mnに於いて、表2中に示す所定のモル比となるよう秤
量し、乳鉢を用いて十分混合した後、この混合物を酸素
気流中650℃の温度で24時間加熱焼成し、冷却後、
粒径20μm以下に粉砕し、正極活物質を得た。この正
極活物質を91重量部、導電剤としてグラファイトを6
重量部およびバインダとしてポリフッ化ビニリデンを3
重量部の割合で混合し、溶剤としてのN−メチルピロリ
ドン100重量部を加えてスラリーにする。このスラリ
ーを厚さ20μmのアルミニウム箔でなる集電体の両面
に均ーに塗布して、乾燥する。乾燥後に、ローラープレ
ス機により圧縮成形して、厚さ200μmの帯状正極を
作った。
(2) Example 2 First, the positive electrode 1 was made of lithium hydroxide (LiOH.H 2 O), nickel hydroxide (Ni (OH) 2 ), and boric acid (H 3 BO).
3 ) and manganese dioxide (MnO 2 ) by Li: Ni: B:
In Mn, the mixture was weighed so as to have a predetermined molar ratio shown in Table 2 and sufficiently mixed using a mortar. The mixture was heated and calcined at a temperature of 650 ° C. for 24 hours in an oxygen stream, and after cooling,
The powder was pulverized to a particle size of 20 μm or less to obtain a positive electrode active material. 91 parts by weight of this positive electrode active material and 6 parts of graphite as a conductive agent
3 parts by weight of polyvinylidene fluoride as parts by weight and binder
Parts by weight, and 100 parts by weight of N-methylpyrrolidone as a solvent is added to form a slurry. This slurry is uniformly applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, and dried. After drying, compression molding was performed using a roller press machine to form a 200 μm-thick strip-shaped positive electrode.

【0037】次に、負極4は粉砕したピッチコークスを
90重量部およびバインダとしてポリフッ化ビニリデン
10を重量部の割合で混合し、溶剤としてのN−メチル
ピロリドン100重量部を加えてスラりーにする。この
スラリーを厚さ10μmの銅箔でなる集電体の両面に均
ーに塗布して乾燥する。乾燥後に、ローラープレス機に
より圧縮成形して、厚さ200μmの帯伏負極を作っ
た。各々の集電体に、上下交互となるようリードを抵抗
溶接した。
Next, 90 parts by weight of the crushed pitch coke and polyvinylidene fluoride 10 as a binder are mixed at a ratio of 90 parts by weight, and 100 parts by weight of N-methylpyrrolidone as a solvent is added to the negative electrode 4 to form a slurry. . This slurry is uniformly applied to both sides of a current collector made of a copper foil having a thickness of 10 μm and dried. After drying, compression molding was performed using a roller press machine to produce a 200-μm-thick band-shaped negative electrode. Leads were resistance-welded to the respective current collectors so as to be alternately arranged vertically.

【0038】次に、上記正極および負極に厚さ20μm
の微孔性ポリプロピレンフィルムから成るセパレータ3
を各一枚用いて、これらを互いに積層させ巻回すること
によって、渦巻伏の巻回電極6をつくる。これを電池外
装缶7に挿入した。
Next, a thickness of 20 μm was applied to the positive electrode and the negative electrode.
3 made of microporous polypropylene film
Is used, and these are laminated and wound to form a spirally wound spiral electrode 6. This was inserted into the battery outer can 7.

【0039】そして、リードの先から絶縁板を通し、正
極リード側の先に防爆弁を溶接した。また負極リード側
は、電池外装缶7の底部に溶接した。
Then, an explosion-proof valve was welded to the tip of the positive electrode lead through an insulating plate from the tip of the lead. The negative electrode lead side was welded to the bottom of the battery outer can 7.

【0040】本発明の電解質、つまりLiN(CF3
2 2 を含有しかつLiClO4を含む電解質を電解
液に溶かし、LiN(CF3 SO2 2 とLiClO4
のモル比が15:1、電解液濃度が1.6 Mol/lのもの
に調整した。
The electrolyte of the present invention, namely, LiN (CF 3 S
An electrolyte containing O 2 ) 2 and containing LiClO 4 is dissolved in the electrolyte, and LiN (CF 3 SO 2 ) 2 and LiClO 4
Were adjusted to a molar ratio of 15: 1 and an electrolyte concentration of 1.6 Mol / l.

【0041】先に調整した上記電解液を注入して、巻回
電極6を含浸させ、防爆弁と閉塞用の蓋を重ね、それら
の外周をガスケットで密着させ、電池外装缶7でかしめ
封口した。
The above-prepared electrolytic solution was injected to impregnate the wound electrode 6, the explosion-proof valve and the closing lid were overlapped, their outer circumferences were brought into close contact with a gasket, and the battery was sealed with a battery outer can 7. .

【0042】この様にして作製した電池を、次の条件で
初期容量、並びに60サイクル後の容量を測定した。こ
の充放電テストの結果を表2に示す。
The initial capacity and the capacity after 60 cycles of the battery thus manufactured were measured under the following conditions. Table 2 shows the results of the charge / discharge test.

【0043】[0043]

【表2】 [Table 2]

【0044】表2は、正極の組成が異なるだけで、他は
表1の場合と同じである。即ち、負極が表1の場合と同
じく炭素質材料の場合であり、電解液は電解質のLiN
(CF3 SO2 2 とLiClO4 のモル比が15:
1、電解液濃度が1.6 Mol/lのものである。試作例
6,7,10が本発明の囲外のもの、試作例8,9が本
発明の範囲内のものである。充放電サイクルが1回目,
60回目について、本発明に係る試作例8,9の充放電
容量(mAh)を、上記表1の右側に示した比較例(電
解液がLiPF6 の場合)と比べてみると、やはり初期
電池容量及びサイクル特性がかなり改善されていること
が分かる。
Table 2 is the same as Table 1 except for the composition of the positive electrode. That is, the negative electrode is made of a carbonaceous material as in Table 1, and the electrolyte is LiN
The molar ratio of (CF 3 SO 2 ) 2 to LiClO 4 is 15:
1. The electrolyte concentration is 1.6 Mol / l. Prototype examples 6, 7, and 10 are outside the scope of the present invention, and prototype examples 8 and 9 are within the scope of the present invention. The first charge / discharge cycle,
When the charge and discharge capacity (mAh) of Prototype Examples 8 and 9 according to the present invention for the 60th time was compared with the comparative example (when the electrolytic solution was LiPF 6 ) shown on the right side of Table 1 above, the initial battery was also found. It can be seen that the capacity and cycle characteristics have been significantly improved.

【0045】(3)実施例3 まず、正極は水酸化リチウム(LiOH・H2 O)と水
酸化ニッケル(Ni(OH)2 ),酸化コバルト(Co
2 3 )と二酸化マンガン(MnO2 )をLi:Ni:
Co:Mnにおいて、表3中に示す所定のモル比となる
よう秤量し、乳鉢を用いて十分混合した後、この混合物
を酸素気流中650℃の温度で24時間加熱焼成し、冷
却後、粒径20μm以下に粉砕し、正極活物質を得た。
この正極活物質を75重量部、導電剤としてアセチレン
ブラックを12.5重量部、結着剤としてテフロンを1
2.5重量部の割合で混合して、均質なペレットを作っ
た。このペレットをチタンメッシュの集電体に付着さ
せ、正極を作った。
(3) Example 3 First, the positive electrode was made of lithium hydroxide (LiOH.H 2 O), nickel hydroxide (Ni (OH) 2 ), and cobalt oxide (Co).
2 O 3 ) and manganese dioxide (MnO 2 ) with Li: Ni:
In Co: Mn, the mixture was weighed so as to have a predetermined molar ratio shown in Table 3 and sufficiently mixed using a mortar. Then, the mixture was heated and calcined at a temperature of 650 ° C. for 24 hours in an oxygen stream, cooled, and cooled. The powder was pulverized to a diameter of 20 μm or less to obtain a positive electrode active material.
75 parts by weight of this positive electrode active material, 12.5 parts by weight of acetylene black as a conductive agent, and 1 part of Teflon as a binder
2.5 parts by weight were mixed to produce homogeneous pellets. The pellet was adhered to a titanium mesh current collector to form a positive electrode.

【0046】次に、金属リチウム(もしくはリチウム−
アルミニウム合金)のリボンを所定の面積で打ち抜き、
負極を作った。
Next, metallic lithium (or lithium-
Aluminum alloy) ribbon is punched in a predetermined area,
A negative electrode was made.

【0047】正負両極を、コイン型セルの底部に溶接
し、対向させた。
The positive and negative electrodes were welded to the bottom of the coin-shaped cell and opposed to each other.

【0048】本発明の電解質、つまりLiN(CF3
2 2 を含有しかつLiClO4を含む電解質を電解
液に溶かし、LiN(CF3 SO2 2 とLiClO4
のモル比が15:1、電解液濃度が1.6 Mol/lのもの
に調整した。また比較のため電解質にLiPF6 を用い
た電解液を同様に調整した。
The electrolyte of the present invention, namely, LiN (CF 3 S
An electrolyte containing O 2 ) 2 and containing LiClO 4 is dissolved in the electrolyte, and LiN (CF 3 SO 2 ) 2 and LiClO 4
Were adjusted to a molar ratio of 15: 1 and an electrolyte concentration of 1.6 Mol / l. For comparison, an electrolytic solution using LiPF 6 as the electrolyte was similarly prepared.

【0049】次に、上記正極および負極の間に、20μ
mの微孔性ポリプロピレンフィルムから成るセパレータ
を挟み、先に調整した上記電解液を注入して、それらの
外周をガスケットで密着させ、かしめ封口した。
Next, between the positive electrode and the negative electrode, 20 μm
m, a separator made of a microporous polypropylene film was sandwiched, the above-prepared electrolytic solution was injected, and their outer peripheries were brought into close contact with a gasket and sealed by caulking.

【0050】この様にして作製したコイン型セルを用
い、次の条件で初期容量、並びに60サイクル後の容量
を測定した。この充放電テストの結果を表3に示す。
Using the coin-shaped cell thus produced, the initial capacity and the capacity after 60 cycles were measured under the following conditions. Table 3 shows the results of the charge / discharge test.

【0051】[0051]

【表3】 [Table 3]

【0052】表3は、負極が金属リチウムで、LiN
(CF3 SO2 2 とLiClO4 のモル比が15:
1、電解液濃度が1.6 Mol/lのものである。試作例1
1,12,15が本発明の範囲外のもの、試作例13,
14が本発明の範囲内のものである。充放電サイクルが
1回目,60回目の場合について、本発明に係る試作例
13,14の充放電容量(mAh)を、右側の比較例
(電解液がLiPF6 の場合)と比べてみると、初期電
池容量及びサイクル特性の顕著な改善が見られる。
Table 3 shows that the negative electrode was metallic lithium and LiN
The molar ratio of (CF 3 SO 2 ) 2 to LiClO 4 is 15:
1. The electrolyte concentration is 1.6 Mol / l. Prototype example 1
1, 12, and 15 are out of the scope of the present invention,
14 is within the scope of the present invention. When the charge and discharge cycles are the first and the 60th, the charge and discharge capacity (mAh) of the prototypes 13 and 14 according to the present invention is compared with the comparative example on the right side (when the electrolyte is LiPF 6 ). Significant improvements in initial battery capacity and cycle characteristics are seen.

【0053】(4)実施例4 まず、正極は水酸化リチウム(LiOH・H2 O)と水
酸化ニッケル(Ni(OH)2 ),ほう酸(H3
3 )と二酸化マンガン(MnO2 )をLi:Ni:
B:Mnに於いて、表4中に示す所定のモル比となるよ
う秤量し、乳鉢を用いて十分混合した後、この混合物を
酸素気流中650゜Cの温度で24時間加熱焼成し、冷
却後、粒径20μm以下に粉砕し、正極活物質を得た。
この正極活物質を75重量部、導電剤としてアセチレン
ブラックを12.5重量部、結着剤としてテフロンを1
2.5重量部の割合で混合して、均質なペレットを作っ
た。このペレットをチタンメッシュの集電体に付着さ
せ、正極を作った。
(4) Example 4 First, the positive electrode was made of lithium hydroxide (LiOH.H 2 O), nickel hydroxide (Ni (OH) 2 ), and boric acid (H 3 B).
O 3 ) and manganese dioxide (MnO 2 ) with Li: Ni:
B: Mn was weighed so as to have a predetermined molar ratio shown in Table 4 and thoroughly mixed using a mortar. The mixture was heated and calcined in an oxygen stream at a temperature of 650 ° C. for 24 hours, and cooled. Thereafter, the powder was pulverized to a particle size of 20 μm or less to obtain a positive electrode active material.
75 parts by weight of this positive electrode active material, 12.5 parts by weight of acetylene black as a conductive agent, and 1 part of Teflon as a binder
2.5 parts by weight were mixed to produce homogeneous pellets. The pellet was adhered to a titanium mesh current collector to form a positive electrode.

【0054】次に、金属リチウム(もしくはリチウム−
アルミニウム合金)のリボンを所定の面積で打ち抜き、
負極を作った。
Next, metallic lithium (or lithium-
Aluminum alloy) ribbon is punched in a predetermined area,
A negative electrode was made.

【0055】正負両極を、コイン型セルの底部に溶接
し、対向させた。
The positive and negative electrodes were welded to the bottom of the coin-shaped cell and opposed to each other.

【0056】本発明の電解質、つまりLiN(CF3
2 2 を含有しかつLiClO4を含む電解質を電解
液に溶かし、LiN(CF3 SO2 2 とLiClO4
のモル比が15:1、電解液濃度が1.6 Mol/lのもの
に調整した。
The electrolyte of the present invention, namely, LiN (CF 3 S
An electrolyte containing O 2 ) 2 and containing LiClO 4 is dissolved in the electrolyte, and LiN (CF 3 SO 2 ) 2 and LiClO 4
Were adjusted to a molar ratio of 15: 1 and an electrolyte concentration of 1.6 Mol / l.

【0057】次に、上記正極およひ負極の問に、20μ
mの微孔性ポリプロピレンフイルムから成るセパレータ
を挟み、先に調整した上記電解液を注入して、それらの
外周をガスケットで密着させ、かしめ封口した。
Next, regarding the positive electrode and the negative electrode, 20 μm
m, a separator made of a microporous polypropylene film was sandwiched, the above-prepared electrolytic solution was injected, and their outer peripheries were brought into close contact with a gasket and sealed by caulking.

【0058】この様にして作製したコイン型セルを用
い、次の条件で初期容量、並びに60サイクル後の容量
を測定した。この充放電テストの結果を表4に示す。
Using the coin-shaped cell thus produced, the initial capacity and the capacity after 60 cycles were measured under the following conditions. Table 4 shows the results of the charge / discharge test.

【0059】[0059]

【表4】 [Table 4]

【0060】表4は、正極の組成が異なるだけで、他は
表3の場合と同じである。即ち、負極が金属リチウムの
場合であり、電解液は、LiN(CF3 SO2 2 とL
iClO4 のモル比が15:1、電解液濃度が1.6 M
ol/lのものである。試作例16,17,20が本発明の
範囲外のもの、試作例18,19が本発明の範囲内のも
のである。充放電サイクルが1回目,60回目につい
て、本発明の試作例18,19の充放電容量(mAh)
を、上記表3の右側の比較例(電解液がLiPF6 の場
合)と比べてみると、やはり初期電池容量及びサイクル
特性がかなり改善されていることが分かる。
Table 4 is the same as Table 3 except for the composition of the positive electrode. That is, the case where the negative electrode is metallic lithium, and the electrolyte is LiN (CF 3 SO 2 ) 2 and L
iClO 4 molar ratio 15: 1, electrolyte concentration 1.6 M
ol / l. Prototype examples 16, 17, and 20 are outside the scope of the present invention, and prototype examples 18 and 19 are within the scope of the present invention. For the first and 60th charge / discharge cycles, the charge / discharge capacities (mAh) of the prototypes 18 and 19 of the present invention.
Is compared with the comparative example on the right side of Table 3 (when the electrolytic solution is LiPF 6 ), it can be seen that the initial battery capacity and the cycle characteristics are also considerably improved.

【0061】(5)他の試作例 表5,表6は、負極に金属リチウムを用いた上記表3,
表4のケースにおいて、電解液のイミド塩LiN(CF
3 SO2 2 と過塩素酸リチウムLiClO4のモル比
を1:2に変えた場合のデータである。
(5) Examples of Other Prototypes Tables 5 and 6 show the above Tables 3 and 4 using metallic lithium for the negative electrode.
In the case of Table 4, the imide salt LiN (CF
These data are obtained when the molar ratio of 3 SO 2 ) 2 to lithium perchlorate LiClO 4 is changed to 1: 2.

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【表6】 [Table 6]

【0064】上記表5,表6のデータを、既に述べた表
3の試作ナンバー14及び表4の試作ナンバー19と比
較して分かるように、表5,表6の如くイミド塩と過塩
素酸リチウムのモル比を1:2まで小さくした場合、そ
の充放電テストの結果は、モル比が15:1の場合より
60回目の充放電容量(mAh)がかなり小さくなっ
て、サイクル特性の悪化が顕著となり、従来の比較例と
ほぼ同じになってしまう。これは、イミド塩LiN(C
3 SO2 2 と過塩素酸リチウムLiClO4のモル
比が1:1より小さくなると過塩素酸リチウムの特性に
近くなるためと考えられる。従って、電解液のLiN
(CF3 SO2 2 とLiClO4 のモル比は、1:1
までに止めるのがよい。また実験例としては示してない
が、逆にイミド塩と過塩素酸リチウムのモル比が19:
1を越えると、イミド塩単独の場合に近くなり、正極集
電体のアルミニウム箔の腐蝕が生じるので、初期充放電
テストのときから所望の容量が得られず、サイクル性も
低下する。よって、LiN(CF3 SO2 2 とLiC
lO4 の混合比は、モル比で1:1から19:1の範囲
が好ましく、より好適には、上記範囲のいずれにも片寄
らない5:1から15:1の範囲であることが望まし
い。
As can be seen by comparing the data in Tables 5 and 6 with the trial number 14 in Table 3 and the trial number 19 in Table 4, as shown in Tables 5 and 6, the imide salt and perchloric acid When the molar ratio of lithium was reduced to 1: 2, the result of the charge / discharge test showed that the charge / discharge capacity (mAh) at the 60th time was considerably smaller than that in the case where the molar ratio was 15: 1, and the cycle characteristics deteriorated. It becomes remarkable and becomes almost the same as the conventional comparative example. This is because the imide salt LiN (C
It is considered that when the molar ratio of F 3 SO 2 ) 2 to lithium perchlorate LiClO 4 is smaller than 1: 1, the characteristics are close to those of lithium perchlorate. Therefore, the LiN
The molar ratio of (CF 3 SO 2 ) 2 to LiClO 4 is 1: 1
It is better to stop by. Although not shown as an experimental example, the molar ratio of the imide salt to lithium perchlorate was 19:
If it exceeds 1, the case becomes close to the case of the imide salt alone, and corrosion of the aluminum foil of the positive electrode current collector occurs, so that a desired capacity cannot be obtained from the initial charge / discharge test, and the cyclability also deteriorates. Therefore, LiN (CF 3 SO 2 ) 2 and LiC
The mixing ratio of 10 4 is preferably in the range of 1: 1 to 19: 1 in terms of molar ratio, and more preferably in the range of 5: 1 to 15: 1 which is not biased to any of the above ranges.

【0065】表7は、電解液のイミド塩LiN(CF3
SO2 2 と過塩素酸リチウムLiClO4 の全濃度
( Mol/l)の値を変化させたときの、初期の放電容量
(%)について示したものである。
Table 7 shows that the imide salt LiN (CF 3
It shows the initial discharge capacity (%) when the value of the total concentration (Mol / l) of SO 2 ) 2 and lithium perchlorate LiClO 4 was changed.

【0066】[0066]

【表7】 [Table 7]

【0067】表7から、LiN(CF3 SO2 2 とL
iClO4 の濃度については、その全濃度が0.1( M
ol/l)から2( Mol/l)の範囲とするのが好ましいこと
が分かる。0.1( Mol/l)以下の範囲及び2( Mol/
l)を越える範囲では、放電テストの初期から既に放電
容量が80%を下回ってしまうからである。また、この
表7から、より好適な濃度は、0.8( Mol/l)から
1.6( Mol/l)の範囲であることが分かる。
From Table 7, it can be seen that LiN (CF 3 SO 2 ) 2 and L
Regarding the concentration of iClO 4 , the total concentration was 0.1 (M
(mol / l) to 2 (Mol / l). 0.1 (Mol / l) or less and 2 (Mol / l)
This is because in the range exceeding l), the discharge capacity is already less than 80% from the beginning of the discharge test. From Table 7, it can be seen that a more preferable concentration is in the range of 0.8 (Mol / l) to 1.6 (Mol / l).

【0068】[0068]

【発明の効果】以上説明したように本発明によれば、次
のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0069】(1)請求項1に記載の非水電解液二次電
池は、リチウムを吸蔵放出可能な物質により構成された
負極と、ニッケルを含有する正極と、電解質に少なくと
もLiN(CF3 SO2 2 を含有しかつLiClO4
を含む非水電解液とを具備するものである。単独では使
用が困難なイミド塩LiN(CF3 SO2 2 が、過塩
素酸リチウムLiClO4 との共存により、集電体のア
ルミニウムとの反応を抑えて使用可能となるものであ
り、特に活物質としてNiを含有する正極で、容量劣化
の一因となっている、水分による遊離酸の存在・発生を
抑え、電池の容量減少を抑えることができる。従って、
この電解液を、Niを含有する層状構造の複合酸化物よ
り成る正極活物質を用いた二次電池に用いることによ
り、その容量の安定化と実効エネルギー密度の向上とを
図り、従来とは格段に相違する高エネルギー密度の電池
特性を得ることができる。
(1) The non-aqueous electrolyte secondary battery according to the first aspect is characterized in that a negative electrode made of a substance capable of inserting and extracting lithium, a positive electrode containing nickel, and at least LiN (CF 3 SO 3) 2 ) LiClO 4 containing 2
And a non-aqueous electrolytic solution containing: The imide salt LiN (CF 3 SO 2 ) 2, which is difficult to use by itself, can be used by suppressing the reaction of the current collector with aluminum by coexistence with lithium perchlorate LiClO 4. A positive electrode containing Ni as a substance can suppress the presence and generation of free acid due to moisture, which is a cause of capacity deterioration, and can suppress a decrease in battery capacity. Therefore,
By using this electrolyte in a secondary battery that uses a positive electrode active material composed of a composite oxide having a layered structure containing Ni, the capacity is stabilized and the effective energy density is improved. Thus, battery characteristics with a high energy density different from the above can be obtained.

【0070】(2)特に、この電解液の作用は、請求項
2,請求項3に記載のように、Niの一部をコバルト・
ホウ素・マンガンで置換し、分解電位を上げた正極活物
質と組み合わせることで、より効果的となり、非水電解
液二次電池の、容量を安定化させ、実効エネルギー密度
を向上させることができる。
(2) In particular, the function of this electrolytic solution is to partially convert Ni to cobalt.
By combining with a positive electrode active material having an increased decomposition potential by substituting with boron / manganese, the effect becomes more effective, and the capacity of the nonaqueous electrolyte secondary battery can be stabilized, and the effective energy density can be improved.

【0071】(3)更に、この作用効果は、請求項4に
記載のように、電池のタイプが、対極の負極活物質にリ
チウムもしくはリチウム合金を使用するのもの、あるい
は、リチウムを吸蔵放出可能な炭素質材料を用いるも
の、のいずれでも得られる。
(3) Further, as for this function and effect, as described in claim 4, the battery type is one using lithium or a lithium alloy as the negative electrode active material of the counter electrode, or capable of inserting and extracting lithium. And those using a suitable carbonaceous material.

【0072】(4)また、上記作用効果は、請求項5に
記載のように、電解質の全濃度が0.5から2モル/リ
ットルであり、かつLiN(CF3 SO2 2 と副成
分であるLiClO4 のモル比が1:1から19:1の
範囲にあるように調整することにより、特に顕著なもの
となり、実際的な非水電解液二次電池が得られる。
(4) Further, the above-mentioned effect is obtained when the total concentration of the electrolyte is 0.5 to 2 mol / liter, and LiN (CF 3 SO 2 ) 2 and the subcomponent By adjusting the molar ratio of LiClO 4 to be in the range of 1: 1 to 19: 1, the result becomes particularly remarkable, and a practical nonaqueous electrolyte secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかる非水電解液二次電池
を一部展開して断面で示した図である。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to one embodiment of the present invention, which is partially developed.

【図2】図1の非水電解液二次電池の電極構造を示した
斜視図である。
FIG. 2 is a perspective view showing an electrode structure of the non-aqueous electrolyte secondary battery of FIG.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 セパレータ 4 負極 5 負極集電体 6 電極群 7 負極缶 REFERENCE SIGNS LIST 1 positive electrode 2 positive electrode current collector 3 separator 4 negative electrode 5 negative electrode current collector 6 electrode group 7 negative electrode can

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵放出可能な物質により構
成された負極(4)と、ニッケルを含有する正極(1)
と、電解質に少なくともLiN(CF3 SO2 2 を含
有しかつLiClO4 を含む非水電解液とを具備するこ
とを特徴とする非水電解液二次電池。
An anode (4) made of a substance capable of inserting and extracting lithium, and an anode (1) containing nickel.
And a non-aqueous electrolyte secondary battery containing at least LiN (CF 3 SO 2 ) 2 in the electrolyte and containing LiClO 4 .
【請求項2】 正極(1)の活物質が、 一般式 Li(Nix,By,Mnz)O2 〔0.65≦x≦0.94, 0.01≦y≦0.0
5, 0.05≦z≦0.30〕である層状構造の複合
酸化物で構成されていることを特徴とする請求項1記載
の非水電解液二次電池。
2. The active material of the positive electrode (1) is represented by a general formula Li (Nix, By, Mnz) O 2 [0.65 ≦ x ≦ 0.94, 0.01 ≦ y ≦ 0.0
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is composed of a composite oxide having a layered structure satisfying the condition: 5, 0.05 ≦ z ≦ 0.30].
【請求項3】 正極(1)の活物質が、 一般式 Li(Nix,Coy,Mnz)O2 〔0.45≦x≦0.80, 0.10≦y≦0.5
0, 0.10≦z≦0.45〕である層状構造の複合
酸化物で構成されていることを特徴とする請求項1記載
の非水電解液二次電池。
3. The active material of the positive electrode (1) is represented by a general formula Li (Nix, Coy, Mnz) O 2 [0.45 ≦ x ≦ 0.80, 0.10 ≦ y ≦ 0.5
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is composed of a composite oxide having a layered structure in which 0, 0.10 ≦ z ≦ 0.45].
【請求項4】 負極活物質として、リチウムもしくはリ
チウム合金、あるいはリチウムを吸蔵放出可能な炭素質
材料を用いたことを特徴とする請求項1記載の非水電解
液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein lithium, a lithium alloy, or a carbonaceous material capable of inserting and extracting lithium is used as the negative electrode active material.
【請求項5】 電解質の全濃度が0.5モル/リットル
から2モル/リットルであり、かつLiN(CF3 SO
2 2 と副成分であるLiClO4 のモル比が1:1か
ら19:1であることを特徴とする請求項1記載の非水
電解液二次電池。
5. The method according to claim 1, wherein the total concentration of the electrolyte is 0.5 mol / l to 2 mol / l and the concentration of LiN (CF 3 SO
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the molar ratio of 2 to LiClO 4 as a subcomponent is 1: 1 to 19: 1.
JP9059223A 1997-03-13 1997-03-13 Nonaqueous electrolyte secondary battery Pending JPH10255846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059223A JPH10255846A (en) 1997-03-13 1997-03-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059223A JPH10255846A (en) 1997-03-13 1997-03-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10255846A true JPH10255846A (en) 1998-09-25

Family

ID=13107175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059223A Pending JPH10255846A (en) 1997-03-13 1997-03-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10255846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003515911A (en) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー Electrode material for positive electrode of rechargeable lithium battery
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
WO2018043189A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515911A (en) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー Electrode material for positive electrode of rechargeable lithium battery
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
EP2144314A2 (en) 2001-04-20 2010-01-13 GS Yuasa Corporation Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
US7691535B2 (en) 2002-03-27 2010-04-06 Gs Yuasa Corporation Active substance of positive electrode and non-aqueous electrolyte battery containing the same
JP2005050582A (en) * 2003-07-30 2005-02-24 Mitsubishi Chemicals Corp Positive pole for lithium secondary battery and lithium secondary battery using it
WO2018043189A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
US7462422B2 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
EP1347524B1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
US20130078512A1 (en) Lithium secondary battery
EP2690700A1 (en) Secondary battery
EP1443575B1 (en) Positive plate material and cell comprising it
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
EP2600457A1 (en) Lithium ion secondary battery and process for production thereof
KR20100064632A (en) Cathode and lithium battery using same
US9601809B2 (en) Lithium secondary battery
JP2010080407A (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery
WO2011129066A1 (en) Lithium-ion secondary battery
US10693123B2 (en) Positive electrode and secondary battery using same
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
CN104868168A (en) Nonaqueous electrolyte secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2008071623A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH10255846A (en) Nonaqueous electrolyte secondary battery
KR20040080929A (en) Nonaqueous electrolyte secondary cell
JP2001080914A (en) Carbon material and its production as well as nonaqueous electrolytic battery and its production
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPH06267539A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426