JPH04171659A - Nonaqueous-electrolyte secondary battery - Google Patents

Nonaqueous-electrolyte secondary battery

Info

Publication number
JPH04171659A
JPH04171659A JP2300767A JP30076790A JPH04171659A JP H04171659 A JPH04171659 A JP H04171659A JP 2300767 A JP2300767 A JP 2300767A JP 30076790 A JP30076790 A JP 30076790A JP H04171659 A JPH04171659 A JP H04171659A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
discharge
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2300767A
Other languages
Japanese (ja)
Other versions
JP2797693B2 (en
Inventor
Hide Koshina
秀 越名
Akiyoshi Nishiyama
西山 晃好
Hiromi Okuno
奥野 博美
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300767A priority Critical patent/JP2797693B2/en
Publication of JPH04171659A publication Critical patent/JPH04171659A/en
Application granted granted Critical
Publication of JP2797693B2 publication Critical patent/JP2797693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery maintaining high energy density and having improved cycle characteristic and little self-discharge and capacity deterioration after storage by using a specific positive electrode material. CONSTITUTION:A secondary battery is constituted of a positive electrode mix 1, a lithium metal 4 and a separator 6 and the like. The positive electrode material is a lithium composite oxide expressed by a chemical formula LiMOZ (1.9<Z<2.1), part of lithium is substituted with an alkaline earth metal, and M is one or more among cobalt, iron and nickel. When this positive electrode material is used, the alkaline earth metal exists in the crystal lattice even if lithium ions are removed by 0.4 electron/metal or above during charging, thus the stable crystal lattice is formed. The cycle deterioration ratio is small in the charge/discharge cycle, and the self-discharge and capacity deterioration after high-temperature storage in the charged state are reduced.

Description

【発明の詳細な説明】 産業上の利用分野 高電圧でかつ高エネルギー密度という特長をもつ非水電
解液二次電池はカムコーダー、ポータプルTV、携帯電
話なとのポータプル電子機器の騨動用電源として有望で
ある。
[Detailed Description of the Invention] Industrial Applications Non-aqueous electrolyte secondary batteries, which are characterized by high voltage and high energy density, are promising as power sources for portable electronic devices such as camcorders, portable TVs, and mobile phones. It is.

本発明は、この非水電解液二次電池のサイクル特性およ
び保存特性の改善に関するものである。
The present invention relates to improvements in the cycle characteristics and storage characteristics of this non-aqueous electrolyte secondary battery.

従来の技術 従来より非水電解液二次電池は正極活物質に二硫化モリ
ブデン(MoS2)、二硫化チタン(TiS:)、二酸
化マンガフ (MnO: )、五酸化バナジウムい〜0
.)なとの遷移金属硫化物もしくは酸化物を用い、負極
には金属リチウムやリチウムイオンを吸蔵、放出する合
金、例えばウッド合金やリチウムアルミニウム合金なと
を用いた電池系が知られている。
Conventional technology Traditionally, non-aqueous electrolyte secondary batteries use molybdenum disulfide (MoS2), titanium disulfide (TiS: ), mangaf dioxide (MnO: ), vanadium pentoxide as positive electrode active materials.
.. ), a battery system is known in which a negative electrode is made of metallic lithium or an alloy that occludes and releases lithium ions, such as a wood alloy or a lithium aluminum alloy.

また非水電解液二次電池の電解液にはリチウム塩を溶解
したプロピレンカーボネイト(PC)。
In addition, the electrolyte of non-aqueous electrolyte secondary batteries is propylene carbonate (PC) in which lithium salt is dissolved.

エチレンカーボネイト(EC)、  ガンマブチロラク
トン(GBL)、  ジメトキシエタン(DME)。
Ethylene carbonate (EC), gamma butyrolactone (GBL), dimethoxyethane (DME).

2−メチルテトラヒドロフラグ(MTHF’)なとがよ
く用いられている。
2-methyltetrahydroflag (MTHF') is often used.

このような正・負極および電解液からなる非水電解液二
次電池で最近放電平均電圧が約4■を示す電池系が注目
を集めている。その正極活物質はリチウムコバルトオキ
サイド(LiCo02)やリチウマンガンオキサイド(
L i Mn: 04 )などのリチウム複合酸化物で
ある。リチウムコバルトオキサイドはリチウムマンガン
オキサイドよりも反応電子数が多いため、容量が大きく
、エネルギー密度の大きい電池が得られる可能性が高い
。しかし反応電子数を0.4電子/金属以上とした時の
サイクルに伴う容量劣化が大きいことや充電状態で高温
保存した時の自己放電並びに容量劣化が激しいなど改善
しなければならない点が多い。
Recently, a battery system that exhibits an average discharge voltage of about 4 cm has been attracting attention among non-aqueous electrolyte secondary batteries comprising positive and negative electrodes and an electrolyte. Its positive electrode active materials are lithium cobalt oxide (LiCo02) and lithium manganese oxide (
It is a lithium composite oxide such as L i Mn: 04). Lithium cobalt oxide has a larger number of reactive electrons than lithium manganese oxide, so there is a high possibility that a battery with larger capacity and energy density can be obtained. However, there are many points that need to be improved, such as large capacity deterioration due to cycling when the number of reaction electrons is 0.4 electrons/metal or more, and severe self-discharge and capacity deterioration when stored at high temperatures in a charged state.

発明が解決しようとする課題 正極活物質にリチウムコバルトオキサイドを用いること
により高エネルギー密度の非水電解液二次電池が得られ
ることがわかったが、先に述へたような反応電子数を0
,4電子/金属以上とした時にリチウムコバルトオキサ
イドの層状の結晶構造を支えるリチウムが40%以上抜
けてしまうため結晶構造が破壊され、サイクルに伴う容
量劣化率が大きくなる。また充電状態すなわちリチウム
が抜けた状態で高温保存した時にも結晶構造の破壊が起
こり、自己放電並びに容量劣化が激しくなるなどの課題
がある。
Problems to be Solved by the Invention It has been found that a non-aqueous electrolyte secondary battery with high energy density can be obtained by using lithium cobalt oxide as a positive electrode active material.
, 4 electrons/metal or more, 40% or more of the lithium supporting the layered crystal structure of lithium cobalt oxide is lost, destroying the crystal structure and increasing the rate of capacity deterioration with cycling. Furthermore, when stored at high temperatures in a charged state, that is, in a state in which lithium has been removed, the crystal structure is destroyed, causing problems such as self-discharge and severe capacity deterioration.

課題を解決するための手段 上記課題を解決するため、本発明はアルカリ土類金属を
その炭酸塩、硝酸塩、硫酸塩や水酸化物の形で添加量が
Mの1原子当たり0.5原子以下となるように加え合成
した活物質を非水電解液二次電池の正極材料として用い
る。
Means for Solving the Problems In order to solve the above problems, the present invention provides alkaline earth metals in the form of carbonates, nitrates, sulfates, and hydroxides in an amount of 0.5 or less per atom of M. The active material synthesized by adding the following is used as a positive electrode material for a non-aqueous electrolyte secondary battery.

作用 上記正極材料を用いることにより、充電時にリチウムイ
オンが0,4電子/金属以上抜けても結晶格子中にアル
カリ土類金属が存在するため、安定な結晶格子を作り出
し、充放電サイクルにおいてもサイクル劣化率が小さく
、また充電状態での高温保存においても自己放電や容量
劣化の小さい非水電解液二次電池が得られることとなる
Effect By using the above cathode material, even if lithium ions lose 0.4 electrons/metal or more during charging, the presence of alkaline earth metals in the crystal lattice creates a stable crystal lattice, and the cycle is maintained even during charge/discharge cycles. A non-aqueous electrolyte secondary battery with a low rate of deterioration and low self-discharge and low capacity deterioration even when stored at high temperatures in a charged state can be obtained.

実施例 以下、本発明の一実施例を第1図〜第4図に基づき説明
する。
EXAMPLE Hereinafter, an example of the present invention will be explained based on FIGS. 1 to 4.

第1図は本発明に係わる非水電解液二次電池の一部断面
図であり、例えば直径15m+n、高さが50師の電池
である。
FIG. 1 is a partial sectional view of a non-aqueous electrolyte secondary battery according to the present invention, and is, for example, a battery with a diameter of 15 m+n and a height of 50 mm.

第1図中、1は正極合剤で封口板12にチタン製正極リ
ード3で結線されたチタン製正極集電体2に充填されて
いる。6は有機溶媒(以下溶媒という)にPCとECの
体積比1:1の混合溶媒に支持電解質を調合し、しみこ
ませたポリプロピレン(以下PPと略す)製セパレータ
である。セパレータ6はリチウム金属4と正極合剤1に
挟まれている。4は負極活物質としてのリチウム金属で
あり、ニッケルメッキした鉄製ケース10にニッケル製
負極リード7で結線されているニッケル製一  4 − 負極集電体5に圧着固定されている。負極、セパレータ
と正極で構成された群は上部絶縁板8と底部絶縁板9で
ケース内に固定されている。]1はPP製ガスケットで
ある。
In FIG. 1, a positive electrode mixture 1 is filled in a titanium positive electrode current collector 2 connected to a sealing plate 12 with a titanium positive electrode lead 3. 6 is a separator made of polypropylene (hereinafter abbreviated as PP) in which a supporting electrolyte is prepared and impregnated with an organic solvent (hereinafter referred to as solvent) and a mixed solvent of PC and EC in a volume ratio of 1:1. Separator 6 is sandwiched between lithium metal 4 and positive electrode mixture 1. 4 is a lithium metal as a negative electrode active material, which is crimped and fixed to a nickel negative electrode current collector 5 which is connected to a nickel plated iron case 10 with a nickel negative electrode lead 7. A group consisting of a negative electrode, a separator, and a positive electrode is fixed in the case by an upper insulating plate 8 and a bottom insulating plate 9. ] 1 is a PP gasket.

なお、正極合剤1は、例えば組成が重量部で正極活物質
の100に対し、カーボンブラック7゜フン素樹脂系結
着剤4とし、充填容量が1400mAhとなるようにさ
れている。
The positive electrode mixture 1 has a composition of, for example, 100 parts by weight of the positive electrode active material, 7 parts carbon black, and 4 parts of the fluorine resin binder, and has a filling capacity of 1400 mAh.

本発明の正極活物質の製造方法は例えば酸化コバルトの
コバルト1原子に対し、リチウムとマグネシウムの原子
比がそれぞれ0.5〜1.0 〜0.5になるように炭
酸リチウムと炭酸マグネ/ラムを秤量し、十分混合した
後600〜900°Cの温度域で数回反応させるもので
ある。以下に示したような特長を備える活物質としては
コバルト化合物の他にニッケル化合物や鉄化合物および
コバルト化合物を含めたニッケル、鉄化合物との複合物
とマグネシウムを含んだアルカリ土類金属の炭酸塩、硫
酸塩、硝酸塩、水酸化物であった。
The method for producing the positive electrode active material of the present invention includes, for example, lithium carbonate and magnesium carbonate/lamb such that the atomic ratio of lithium and magnesium to one cobalt atom of cobalt oxide is 0.5 to 1.0 to 0.5, respectively. are weighed, thoroughly mixed, and then reacted several times in a temperature range of 600 to 900°C. In addition to cobalt compounds, active materials with the features shown below include nickel compounds, iron compounds, nickel and iron compounds containing cobalt compounds, carbonates of alkaline earth metals containing magnesium, They were sulfates, nitrates, and hydroxides.

鉄、ニッケル、コバルトは複合酸化物を作り、この製造
方法に適合していた。またアルカリ土類金属の塩化物を
除く主な化合物である炭酸塩、硫酸塩、硝酸塩、水酸化
物は反応した後に塩化物のような電池の保存特性に影響
を与える塩素か残らないため、有効であった。
Iron, nickel, and cobalt form composite oxides that are compatible with this manufacturing method. In addition, carbonates, sulfates, nitrates, and hydroxides, which are the main compounds of alkaline earth metals other than chlorides, are effective because they do not leave behind chlorine, which affects the storage characteristics of batteries like chlorides, after they react. Met.

上記の構成の電池を用いて、正極活物質に本発明の活物
質とLiMO:  (1,9<Z<2.1)の−例であ
るLiCOO2を用いた電池のサイクル特性を対比させ
たものを第2図に示した。充電は電流70mAで4.3
Vまで、放電は電流233mAで3,0■までの充放電
条件とした。
A comparison of the cycle characteristics of a battery using the active material of the present invention and LiCOO2, which is an example of LiMO: (1,9<Z<2.1), as the positive electrode active material using a battery with the above configuration. is shown in Figure 2. Charging is 4.3 with a current of 70mA
The conditions for discharging up to 3.0 V were set at a current of 233 mA.

また、正極活物質に本発明の活物質とLiCOO2を用
いた電池の60℃で20日間充電状態で保存した後の充
放電曲線を第3図に示し、第4図にそのサイクル特性を
示した。保存は10サイクルの充放電の後、充電状態で
保存した。充放電条件は上記と同様である。
In addition, Fig. 3 shows the charge-discharge curve of a battery using the active material of the present invention and LiCOO2 as the positive electrode active material after being stored in a charged state at 60°C for 20 days, and Fig. 4 shows its cycle characteristics. . The battery was stored in a charged state after 10 cycles of charging and discharging. The charging and discharging conditions are the same as above.

第2図中、AはL i Co 02単独の活物質を正極
材料とした電池のサイクル特性であり、B、C,Dはア
ルカリ土類金属の一例であるマグネシウムを添加剤とし
て用いたときの活物質を正極材料とした電池のサイクル
特性である。B、C,DはM1原子に対しL i + 
M gをそれぞれ(0,750,25) 、  (0,
50: 0150)、(0,250,75)原子の量を
添加したものである。
In Figure 2, A is the cycle characteristics of a battery using Li Co 02 alone as an active material as the positive electrode material, and B, C, and D are the cycle characteristics when magnesium, an example of an alkaline earth metal, is used as an additive. This is the cycle characteristics of a battery using an active material as a positive electrode material. B, C, and D are Li + for M1 atom
M g (0,750,25) and (0,
50: 0150), (0,250,75) atoms added.

第2図からもわかるようにマグネシウムを添加した活物
質を用いた電池はサイクル特性かLiCoO2単独の活
物質を用いた電池よりも良好であることが言える。しか
し添加量か075原子では充放電に寄与するリチウム原
子か減少するため、放電容量か低くなり、高エネルギー
密度化が不可能であることがわかった。従って以下には
マグネシウム添加量を0.25,0.50原子/Mつい
てのみ記した。リチウム添加量は上記と同様である。ま
た第3図でEはLiCOO::単独の活物質を正極材料
とした電池の保存前の放電曲線であり、FはLiCoO
2単独の活物質を正極材料とした電池を充電状態で60
°Cl2O日保存した後の放電曲線である。G、HはM
1原子に対しそれぞれマグネシウム0.25.0.50
原子の岱を添加した活物質を正極材料とした電池を上記
と同様な条件で保存した後の放電曲線である。
As can be seen from FIG. 2, it can be said that the battery using the active material to which magnesium is added has better cycle characteristics than the battery using the active material containing only LiCoO2. However, it was found that when the amount of addition is 0.75 atoms, the number of lithium atoms contributing to charging and discharging decreases, resulting in a low discharge capacity and making it impossible to achieve high energy density. Therefore, in the following, only the amounts of magnesium added of 0.25 and 0.50 atoms/M are described. The amount of lithium added is the same as above. Furthermore, in Fig. 3, E is the discharge curve before storage of a battery using LiCOO:: a single active material as the positive electrode material, and F is LiCoO
2 A battery using a single active material as a positive electrode material is charged for 60 hrs.
This is a discharge curve after storage in °Cl2O for days. G, H are M
Magnesium 0.25 and 0.50 per atom respectively
This is a discharge curve after a battery using an active material added with Atomic Radium as a positive electrode material was stored under the same conditions as above.

第3図かられかるように60℃で20日間保存した後の
放電曲線で、FのLiCoO2単独の活物質を正極材料
とした電池は他のマグネ/ラムを添加している活物質を
用いた電池(G、H)の放電曲線と異なり、活物質の結
晶構造が崩壊しているような形状を示した。それ対し、
他のマグネシウムを添加している活物質を用いた電池(
G、H)は保存前の放電曲線に類似し、結晶構造が崩壊
せず、安定しているような形状を示した。それを自己放
電としてみると、LiCoO2単独の活物質を正極材料
とした電池で約50%、マグネシウムを添加している活
物質を用いた電池(G、H)で約10〜13%となり、
やはりマグネシウムを添加した活物質を用いた電池の方
が自己放電も少なく安定した電池特性を示すことがわか
った。
As can be seen from Figure 3, the discharge curve after storage at 60°C for 20 days shows that the battery using F's LiCoO2 active material alone as the positive electrode material used other active materials containing Magne/Lam. Unlike the discharge curves of batteries (G, H), the crystal structure of the active material appeared to have collapsed. On the other hand,
Batteries using active materials containing other magnesium (
G, H) were similar to the discharge curves before storage, and the crystal structure did not collapse and showed a stable shape. Looking at this as self-discharge, it is approximately 50% in batteries using LiCoO2 alone as an active material as the positive electrode material, and approximately 10-13% in batteries using active materials containing magnesium (G, H).
It was found that batteries using active materials containing magnesium had less self-discharge and exhibited more stable battery characteristics.

第4図でIはLiCoO2単独の活物質を正極材料とし
た電池のサイクル特性で11サイクル目に充電状態での
保存を行い、その後も充放電サイ−9= クルを行ったものである。
In FIG. 4, I indicates the cycle characteristics of a battery using LiCoO2 alone as an active material as a positive electrode material, which was stored in a charged state at the 11th cycle, and was then subjected to 9 charge/discharge cycles.

J、にはM1原子に対しそれぞれマグネ/ラム0.25
.0.50原子の量を添加した活物質を正極材料とした
電池を上記と同様な条件で試験した時のサイクル特性で
ある。
J, has 0.25 magne/lam for each M1 atom.
.. This is the cycle characteristic when a battery using an active material added in an amount of 0.50 atoms as a positive electrode material was tested under the same conditions as above.

第4図かられかるように保存した後のサイクル特性は■
のLiCoO2単独の活物質を正極利料止した電池では
容量劣化が約50%と大きく、また保存後も劣化が大き
いことがわかる。これに対し、マグネシウムを添加した
J、には保存後の容量劣化が約7〜10%と小さく、か
つ保存後の容量劣化が小さいことかわかる。
As shown in Figure 4, the cycle characteristics after storage are ■
It can be seen that in a battery in which LiCoO2 alone as an active material is used as a positive electrode, the capacity deterioration is as large as about 50%, and the deterioration is large even after storage. On the other hand, it can be seen that the capacity deterioration after storage of J containing magnesium was as small as about 7 to 10%, and the capacity deterioration after storage was also small.

これらの現象は反応に寄与しないマグネシウムが結晶構
造の崩壊を防ぎ、保存における自己放電やその後の容量
劣化を低減したと思われる。
These phenomena appear to be due to the fact that magnesium, which does not contribute to the reaction, prevents the crystal structure from collapsing, reducing self-discharge during storage and subsequent capacity deterioration.

以」−の実施例かられかるようにマグネ/ラムを添加す
ることによりサイクル特性が無添加のものより向上し、
かつ保存後の自己放電や容量劣化も小さい非水電解液二
次電池か得られた。これらの傾向はマグネシウム以外の
アルカリ土類金属に共通してみられ、また添加されるリ
チウム複合酸化物もコバルト以外に本発明中にあるニン
ケル、鉄のリチウム複合酸化物にも見られた。
As can be seen from the examples below, by adding Magne/Ram, the cycle characteristics are improved compared to those without additives,
In addition, a non-aqueous electrolyte secondary battery was obtained with little self-discharge and capacity deterioration after storage. These trends are common to alkaline earth metals other than magnesium, and the lithium composite oxides added are also found in the lithium composite oxides of nickel and iron in the present invention, in addition to cobalt.

なお、ここでは負極に自己放電の小さいリチウム金属を
用いたが、そのほか負極にはリチウム合金、炭素材等も
使用できる。
Although lithium metal with low self-discharge is used for the negative electrode here, lithium alloys, carbon materials, etc. can also be used for the negative electrode.

発明の効果 以」二の発明から明らかなように本発明によれば、従来
のものと比較し、高エネルギー密度を維持し、サイクル
特性が向上し、かつ保存後の自己放電、容量劣化が小さ
いという特長を有するリチウム二次電池が得られる。
Effects of the Invention As is clear from the second invention, the present invention maintains high energy density, improves cycle characteristics, and exhibits less self-discharge and capacity deterioration after storage than conventional products. A lithium secondary battery having the following characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における非水電解液二次電池
の一部断面図、第2図は本発明の一実施例における非水
電解液二次電池のサイクル特性を示した図である。第3
図は同非水電解液二次電池の充電状態で保存した後の放
電曲線を示した図である。第4図は同非水電解液二次電
池の保存前後のサイクル特性を示した図である。 1・・・・・・正極合剤、4・・・・・リチウム全屈、
6・・・セパレータ。
FIG. 1 is a partial cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing cycle characteristics of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. be. Third
The figure shows a discharge curve of the non-aqueous electrolyte secondary battery after it was stored in a charged state. FIG. 4 is a diagram showing the cycle characteristics of the non-aqueous electrolyte secondary battery before and after storage. 1... Positive electrode mixture, 4... Lithium total bending,
6...Separator.

Claims (2)

【特許請求の範囲】[Claims] (1)アルカリ金属イオンを含む非水電解液と、前記ア
ルカリ金属イオンを出し入れすることのできる正極およ
び負極からなる電池において、正極材料がLiMO_Z
(1.9<Z<2.1)の化学式で示されるリチウム複
合酸化物でリチウムの一部がアルカリ土類金属で置換さ
れ、かつMがコバルト、鉄、ニッケルのうちのいずれか
一つ以上からなるものであることを特徴とする非水電解
液二次電池。
(1) In a battery consisting of a non-aqueous electrolyte containing alkali metal ions, a positive electrode and a negative electrode through which the alkali metal ions can be taken in and taken out, the positive electrode material is LiMO_Z.
A lithium composite oxide represented by the chemical formula (1.9<Z<2.1) in which a portion of lithium is replaced with an alkaline earth metal, and M is one or more of cobalt, iron, and nickel. A non-aqueous electrolyte secondary battery comprising:
(2)前記アルカリ土類金属は炭酸塩、硫酸塩、硝酸塩
、水酸化物の形で、そのうちの少なくとも一つ以上添加
したものである特許請求の範囲第1項記載の非水電解液
二次電池。(3)前記アルカリ土類金属の添加量がMの
1原子当たり0.5原子以下であることを特徴とする特
許請求の範囲第1項記載の非水電解液二次電池。
(2) The nonaqueous electrolyte secondary according to claim 1, wherein the alkaline earth metal is in the form of carbonate, sulfate, nitrate, or hydroxide, and at least one of them is added. battery. (3) The nonaqueous electrolyte secondary battery according to claim 1, wherein the amount of the alkaline earth metal added is 0.5 atoms or less per 1 atom of M.
JP2300767A 1990-11-05 1990-11-05 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2797693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300767A JP2797693B2 (en) 1990-11-05 1990-11-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300767A JP2797693B2 (en) 1990-11-05 1990-11-05 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04171659A true JPH04171659A (en) 1992-06-18
JP2797693B2 JP2797693B2 (en) 1998-09-17

Family

ID=17888850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300767A Expired - Fee Related JP2797693B2 (en) 1990-11-05 1990-11-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2797693B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712172A2 (en) 1994-11-09 1996-05-15 Toray Industries, Inc. Cathode material, method of preparing it and non-aqueous solvent type secondary battery having a cathode comprising it
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US7563538B2 (en) 2007-01-23 2009-07-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712172A2 (en) 1994-11-09 1996-05-15 Toray Industries, Inc. Cathode material, method of preparing it and non-aqueous solvent type secondary battery having a cathode comprising it
EP0712172A3 (en) * 1994-11-09 1996-07-17 Toray Industries Cathode material, method of preparing it and non-aqueous solvent type secondary battery having a cathode comprising it
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
US6991752B2 (en) 2000-12-27 2006-01-31 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell and cell using the same
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8691446B2 (en) 2006-10-26 2014-04-08 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US9350019B2 (en) 2006-10-26 2016-05-24 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US7563538B2 (en) 2007-01-23 2009-07-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device

Also Published As

Publication number Publication date
JP2797693B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US5256504A (en) Monaqueous electrolyte secondary batteries
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
EP0548449B1 (en) Nonaqueous electrolyte secondary batteries
JPH06342673A (en) Lithium secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH03108261A (en) Nonaqueous solvent secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH10255846A (en) Nonaqueous electrolyte secondary battery
JPH05101827A (en) Non-aqueous secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3005961B2 (en) Lithium battery
JP2559054B2 (en) Lithium battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees