JP2559054B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP2559054B2
JP2559054B2 JP63051637A JP5163788A JP2559054B2 JP 2559054 B2 JP2559054 B2 JP 2559054B2 JP 63051637 A JP63051637 A JP 63051637A JP 5163788 A JP5163788 A JP 5163788A JP 2559054 B2 JP2559054 B2 JP 2559054B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63051637A
Other languages
Japanese (ja)
Other versions
JPH01227356A (en
Inventor
重人 岡田
秀昭 大▲塚▼
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63051637A priority Critical patent/JP2559054B2/en
Publication of JPH01227356A publication Critical patent/JPH01227356A/en
Application granted granted Critical
Publication of JP2559054B2 publication Critical patent/JP2559054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明はリチウム電池、さらに詳細には充放電可能な
リチウム二次電池に関し、特に大きな充放電容量を与え
る二元系複酸化物を正極活物質としたリチウム電池に関
するものである。
The present invention relates to a lithium battery, and more particularly to a lithium secondary battery that can be charged and discharged, and more particularly to a binary compound oxide that provides a large charge and discharge capacity as a positive electrode. The present invention relates to a lithium battery used as an active material.

〔従来技術および問題点〕 リチウム等のアルカリ金属およびその合金を負極活物
質とする非水電解液電池は、負極金属イオンの正極活物
質へのインサーションもしくはインターカレーション反
応によって、その大放電容量と充電可逆性を両立させて
いる。従来からリチウムを負極活物質として用いる二次
電池としては、二酸化マンガンや五酸化バナジウム等の
トンネル状もしくは層状の結晶質酸化物を正極に用いた
電池が提案されているが、充放電サイクルに伴う構造劣
化が激しくその充放電特性は充分とは言えなかった。
[Prior Art and Problems] A non-aqueous electrolyte battery using an alkali metal such as lithium and its alloy as a negative electrode active material has a large discharge capacity due to an insertion or intercalation reaction of a negative electrode metal ion into the positive electrode active material. It is compatible with reversibility of charging. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a tunnel-shaped or layered crystalline oxide such as manganese dioxide or vanadium pentoxide for the positive electrode has been proposed. The structure was so severe that its charge / discharge characteristics were not sufficient.

そこで、本発明の目的は上記現状の問題点を改良し
て、小型で充放電特性に優れた電池特性をもつリチウム
電池を提供することにある。
Therefore, an object of the present invention is to provide a lithium battery which is small in size and has battery characteristics excellent in charge / discharge characteristics by improving the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的を達成するために、本発明リチウム電池で
は、組成式LiVO3で与えられる複酸化物結晶を正極活物
質として含み、リチウムまたはリチウム合金を負極活物
質とし、前記正極活物質及び前記負極活物質に対して化
学的に安定であり、かつリチウムイオンが前記正極活物
質あるいは負極活物質と電気化学反応をするための移動
を行いうる非水電解質溶液を電解質物質としたことを特
徴としている。
In order to achieve such an object, in the lithium battery of the present invention, a compound oxide crystal represented by the composition formula LiVO 3 is included as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and the positive electrode active material and the negative electrode active material are used. The electrolyte material is a non-aqueous electrolyte solution that is chemically stable to a substance and is capable of moving lithium ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material.

本発明をさらに詳しく説明する。 The present invention will be described in more detail.

上述のように本発明においては、正極活物質として、
結晶質のLiVO3を用いる。すなわち、本発明では、V2O5
にLi2Oを1:1のモル比で添加した二元系酸化物を正極活
物質として用いることにより、従来のリチウム電池より
充放電容量が大きく、サイクル性に優れたリチウム電池
を構成できることを確かめ、その認識の下に本発明を完
成した。
As described above, in the present invention, as the positive electrode active material,
Crystalline LiVO 3 is used. That is, in the present invention, V 2 O 5
By using a binary oxide with Li 2 O added at a molar ratio of 1: 1 as the positive electrode active material, it is possible to construct a lithium battery that has a larger charge / discharge capacity than conventional lithium batteries and excellent cycleability. The present invention has been completed based on this confirmation.

この正極活物質を用いて正極を形成するには、LiVO3
化合物粉末とポリテトラフルオロエチレンごとき結着剤
粉末との混合物をニッケル、ステンレス等の支持体上に
圧着成形する。あるいは、かかる混合物質粉末に導電性
を付与するためアセチレンブラックのような導電性粉末
を混合し、これに更にポリテトラフルオロエチレンのよ
うな結着剤粉末を所要に応じて加え、この混合物を金属
容器に入れ、あるいは前述の混合物をニッケル、ステン
レス等の支持体に圧着成形する等の手段によって形成さ
れる。
To form a positive electrode using this positive electrode active material, LiVO 3
A mixture of the compound powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as nickel or stainless steel. Alternatively, a conductive powder such as acetylene black is mixed to give conductivity to the mixed substance powder, and a binder powder such as polytetrafluoroethylene is further added to the mixed powder as required, and the mixture is mixed with a metal. It is formed by a means such as putting it in a container or press-molding the above mixture on a support such as nickel or stainless.

上述のLiVO3結晶は下記のような電池反応をすると考
えられる。
The LiVO 3 crystal described above is considered to undergo the following battery reaction.

すなわちLiVO3 1分子当たり、1Li原子と反応したとき
の発電容量は253Ah/kgである。そして実施例の第4図よ
り1V終止で、400Ah/kg以上の放電容量が得られているの
で、LiVO3はVが5価より3価に還元されることによっ
て2原子Liと反応していると考えられる。すなわち電池
反応は、 LiVO3+2Li→Li3VO3 であると考えられる。
That is, the power generation capacity when reacting with 1 Li atom per molecule of LiVO 3 is 253 Ah / kg. Further, from FIG. 4 of the example, since the discharge capacity of 400 Ah / kg or more is obtained at the termination of 1 V, LiVO 3 reacts with diatomic Li by reducing V from trivalent to pentavalent. it is conceivable that. That is, the battery reaction is considered to be LiVO 3 + 2Li → Li 3 VO 3 .

一方、第5図より劣化なく安定して可逆反応を行える
容量は200Ah/kg前後であるため、可逆反応は1原子Liと
起こしていると考えられる。
On the other hand, as shown in Fig. 5, the capacity for stable reversible reaction without deterioration is around 200 Ah / kg, so it is considered that the reversible reaction takes place with 1 atomic Li.

LiVO3+LiLi2VO3 負極活物質であるリチウムは一般のリチウム電池のそ
れと同様にシート状として、またはそのシートをニッケ
ル、ステンレス等の導電体網に圧着して負極として形成
される。また、負極活物質としてはリチウム以外にマグ
ネシウム、カルシウム、ナトリウム等、従来公知のもの
が使用できる。
LiVO 3 + LiLi 2 VO 3 negative electrode active material lithium is formed into a sheet shape like that of a general lithium battery, or the sheet is pressure-bonded to a conductor network such as nickel or stainless steel to form a negative electrode. Further, as the negative electrode active material, conventionally known materials such as magnesium, calcium and sodium can be used in addition to lithium.

電解質としては、例えばジメトキシエタン、2−メチ
ルテトラヒドロフラン、エチレンカーボネート、メチル
ホルメート、ジメチルスルホキシド、プロピレンカーボ
ネート、アセトニトリル、ブチロラクトン、ジメチルフ
ォルムアミド等の有機溶媒に、LiAsF6、LiBF4、LiPF6
LiAlCl4、LiClO4等のルイス酸を溶解した非水電解質溶
液が使用できる。
As the electrolyte, for example, dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, in an organic solvent such as dimethylformamide, LiAsF 6 , LiBF 4 , LiPF 6 ,
A non-aqueous electrolyte solution in which a Lewis acid such as LiAlCl 4 or LiClO 4 is dissolved can be used.

さらに、セパレータ、構造材料(電池ケース等)等の
他の要素についても従来公知の各種材料が使用でき、特
に制限はない。
Further, conventionally known various materials can be used for other elements such as a separator and a structural material (battery case, etc.), and there is no particular limitation.

以下、実施例によって本発明の方法を更に具体的に説
明するが、本発明はこれらによりなんら制限されるもの
ではない。なお、実施例において電池の作製および測定
はアルゴン雰囲気下のドライボックス中で行った。
Hereinafter, the method of the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

〔実施例1〕 第1図は本発明による電池の一具体例であるコイン型
電池の断面図であり、図中1はステンレス製封口板、2
はポリプロピレン製ガスケット、3はステンレス製正極
ケース、4はリチウム負極、5はポリプロピレン製微孔
製セパレータ、6は正極合剤ペレットを示す。
[Example 1] Fig. 1 is a cross-sectional view of a coin-type battery, which is one specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2
Is a polypropylene gasket, 3 is a stainless steel positive electrode case, 4 is a lithium negative electrode, 5 is a polypropylene microporous separator, and 6 is a positive electrode material mixture pellet.

正極活物質には、V2O5をLi2CO3と共に1:1のモル組成
で混合焼成して得た二元系複酸化物結晶粉末を用いた。
反応温度は第2図に示すLi2O−V2O5系の相図からLi2O・
V2O5の融点である560℃より低温で固相反応させた。得
られた灰白色の粉末のX線回折図形を第3図に示す。い
ずれのピークもLiVO3で指数付けされた。得られたLiVO3
結晶を導電剤(アセチレンブラック粉末)、結着剤(ポ
リテトラフルオロエチレン)と共に、70:25:5の重量比
で混合の上、ロール成形し、正極合剤ペレット6(厚さ
0.5mm、直径17mm、200mg/cell)とした。まず、封口板
1上に金属リチウム負極4を加圧配置したものをガスケ
ット6をこの順序に配置し、電解液としてプロピレンカ
ーボネート(PC)と2−ジメトキシエタン(DME)の等
容積混合溶媒にLiClO4を溶解させた1規定溶液をそれぞ
れ適量注入して含浸させた後に、正極ケース3を被せて
かしめることにより、厚さ2mm、直径23mmのコイン型電
池を作製した。
As the positive electrode active material, a binary mixed oxide crystal powder obtained by mixing and firing V 2 O 5 with Li 2 CO 3 in a molar composition of 1: 1 was used.
The reaction temperature is Li 2 O · from the phase diagram of Li 2 O-V 2 O 5 system shown in Figure 2
Solid-phase reaction was performed at a temperature lower than 560 ° C., which is the melting point of V 2 O 5 . The X-ray diffraction pattern of the obtained off-white powder is shown in FIG. Both peaks were indexed with LiVO 3 . Obtained LiVO 3
The crystals were mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) at a weight ratio of 70: 25: 5, and then roll-formed, and the positive electrode mixture pellet 6 (thickness) was formed.
0.5 mm, diameter 17 mm, 200 mg / cell). First, a metallic lithium negative electrode 4 is placed under pressure on a sealing plate 1, a gasket 6 is placed in this order, and LiClO 2 is used as an electrolytic solution in an equal volume mixed solvent of propylene carbonate (PC) and 2-dimethoxyethane (DME). An appropriate amount of each 1N solution in which 4 was dissolved was injected and impregnated, and then the positive electrode case 3 was covered and caulked to produce a coin-type battery having a thickness of 2 mm and a diameter of 23 mm.

このようにして作製した電池の0.5mA/cm2の充電電流
密度で各終止電圧までの平均放電電圧、放電容量、放電
エネルギ密度を第1表に示す。LiVO3はV2O5等に比べ、
放電電圧が低いため2V終止の放電容量は決して大きくな
いが、、1.5V系正極としては有望な材料であることがわ
かる。0.5mA/cm2の放電電流密度での放電プロファイル
を第4図に示す。
Table 1 shows the average discharge voltage, discharge capacity and discharge energy density up to each cutoff voltage at a charging current density of 0.5 mA / cm 2 of the battery thus manufactured. Compared to V 2 O 5 etc., LiVO 3
Since the discharge voltage is low, the discharge capacity at the end of 2V is not large, but it is clear that it is a promising material for a 1.5V positive electrode. The discharge profile at a discharge current density of 0.5 mA / cm 2 is shown in FIG.

〔実施例2〕 電解液としてエチレンカーボネートと2−メチルテト
ラヒドロフランの等容積混合溶媒にLiAsF6を溶解させた
1.5規定溶液、エチレンカーボネートと2−ジメトキシ
エタンの等容積混合溶媒にLiAsF6を溶解させた1.5規定
溶液、プロピレンカーボネートと2−ジメトキシエタン
の等容積混合溶媒にLiClO4を溶解させた1規定溶液の3
種を用い、それ以外は実施例1と同様にしてコイン型リ
チウム電池を作製した。この3種のコイン型電池につい
て、0.5mA/cm2の充放電電流密度で各々2−3.5V、1.6−
3.8V、1−3.5Vの電圧規制充放電試験を行った。各々の
サイクル挙動は第5図に示す。この図から明らかなよう
にLiVO3・P2O5は放電過電圧が小さく、LiVO3 1モル当た
り0.8Li程度(200Ah/kg)の可逆組成域をもち、また、
電圧規制範囲を拡大してもサイクルによる容量低下が少
ないことがわかる。
Example 2 LiAsF 6 was dissolved in an equal volume mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran as an electrolytic solution.
1.5N solution, 1.5N solution of LiAsF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and 2-dimethoxyethane, and 1N solution of LiClO 4 dissolved in an equal volume mixed solvent of propylene carbonate and 2-dimethoxyethane Three
A coin-type lithium battery was produced in the same manner as in Example 1 except that the seeds were used. For these three types of coin-type batteries, charge / discharge current densities of 0.5 mA / cm 2 are 2-3.5 V and 1.6-, respectively.
A 3.8V, 1-3.5V voltage regulation charge / discharge test was performed. The cycle behavior of each is shown in FIG. As is clear from this figure, LiVO 3 · P 2 O 5 has a small discharge overvoltage, has a reversible composition range of about 0.8 Li (200 Ah / kg) per 1 mol of LiVO 3 , and
It can be seen that the capacity decrease due to the cycle is small even if the voltage regulation range is expanded.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、可逆容量の大
きな小型高エネルギ密度のリチウム電池を構成すること
ができ、本発明電池はコイン型電池等種々の分野に利用
できるという利点を有する。
As described above, according to the present invention, a small high energy density lithium battery having a large reversible capacity can be constructed, and the battery of the present invention has an advantage that it can be used in various fields such as a coin type battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例であるコイン電池の構成例を
示す断面図、第2図は本発明のLiVO3の合成に用いたLi2
O−V2O5系の相図、第3図は本発明の製造方法により得
られた二元系バナジウム酸化物のX線回折図形、第4図
は本発明の一実施例における電池の充電特性をしめす特
性図、第5図は本発明の一実施例における電池の充放電
特性を示す特性図である。 1……ステンレス製封口板、2……ポリプロピレン製ガ
スケット、3……ステンレス製正極ケース、4……リチ
ウム負極、5……ポリプロピレン製セパレータ、6……
正極合剤ペレット。
FIG. 1 is a sectional view showing a constitutional example of a coin battery which is an embodiment of the present invention, and FIG. 2 is a Li 2 used for synthesizing LiVO 3 of the present invention.
A phase diagram of the O-V 2 O 5 system, FIG. 3 is an X-ray diffraction pattern of the binary vanadium oxide obtained by the production method of the present invention, and FIG. 4 is charging of the battery in one embodiment of the present invention. FIG. 5 is a characteristic diagram showing the characteristics, and FIG. 5 is a characteristic diagram showing the charge / discharge characteristics of the battery in one embodiment of the present invention. 1 ... Stainless steel sealing plate, 2 ... Polypropylene gasket, 3 ... Stainless steel positive electrode case, 4 ... Lithium negative electrode, 5 ... Polypropylene separator, 6 ...
Positive electrode mixture pellet.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式LiVO3で与えられる複酸化物結晶を
正極活物質として含み、リチウムまたはリチウム合金を
負極活物質とし、前記正極活物質及び前記負極活物質に
対して化学的に安定であり、かつリチウムイオンが前記
正極活物質あるいは負極活物質と電気化学反応をするた
めの移動を行いうる非水電解質溶液を電解質物質とした
ことを特徴とするリチウム電池。
1. A composite oxide crystal represented by the composition formula LiVO 3 is used as a positive electrode active material, and lithium or a lithium alloy is used as a negative electrode active material, and is chemically stable to the positive electrode active material and the negative electrode active material. A lithium battery comprising a non-aqueous electrolyte solution, which is present and is capable of moving lithium ions for electrochemical reaction with the positive electrode active material or the negative electrode active material.
JP63051637A 1988-03-07 1988-03-07 Lithium battery Expired - Lifetime JP2559054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051637A JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051637A JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Publications (2)

Publication Number Publication Date
JPH01227356A JPH01227356A (en) 1989-09-11
JP2559054B2 true JP2559054B2 (en) 1996-11-27

Family

ID=12892363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051637A Expired - Lifetime JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Country Status (1)

Country Link
JP (1) JP2559054B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8916568D0 (en) * 1989-07-20 1989-09-06 Dowty Electronic Components A battery

Also Published As

Publication number Publication date
JPH01227356A (en) 1989-09-11

Similar Documents

Publication Publication Date Title
US6582854B1 (en) Lithium ion secondary battery, cathode active material therefor and production thereof
EP1150367B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
JP5682040B2 (en) Pyrophosphate compound and method for producing the same
JP4348854B2 (en) Positive electrode material and secondary battery using the same
US5514490A (en) Secondary lithium battery using a new layered anode material
JPH09330720A (en) Lithium battery
JPH06283207A (en) Nonaqueous electrolyte battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2847663B2 (en) Non-aqueous electrolyte battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP2006024415A (en) Cathode material and battery
JPH0521067A (en) Nonaqueous electrolytic battery
JPH08287914A (en) Lithium battery
JP4250889B2 (en) Method for producing positive electrode material
US6383684B1 (en) Lithium secondary battery comprising tungsten-containing oxide of monoclinic crystal structure
JP2559054B2 (en) Lithium battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JPH06111822A (en) Lithium battery
JP2559055B2 (en) Lithium battery
JP3301026B2 (en) Lithium battery
JP3436292B2 (en) Positive electrode material for lithium battery, method for producing the same, and lithium battery using the same
JP4244427B2 (en) Non-aqueous electrolyte battery
JPS63114065A (en) Organic electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery
JP3005961B2 (en) Lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12