JPH01227356A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH01227356A
JPH01227356A JP63051637A JP5163788A JPH01227356A JP H01227356 A JPH01227356 A JP H01227356A JP 63051637 A JP63051637 A JP 63051637A JP 5163788 A JP5163788 A JP 5163788A JP H01227356 A JPH01227356 A JP H01227356A
Authority
JP
Japan
Prior art keywords
lithium
active material
battery
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63051637A
Other languages
Japanese (ja)
Other versions
JP2559054B2 (en
Inventor
Shigeto Okada
重人 岡田
Hideaki Otsuka
大塚 秀昭
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63051637A priority Critical patent/JP2559054B2/en
Publication of JPH01227356A publication Critical patent/JPH01227356A/en
Application granted granted Critical
Publication of JP2559054B2 publication Critical patent/JP2559054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery having small size and good charge discharge performance by using a composite oxide crystal having a composition formula of LiVO3 as a positive active material, lithium or lithium alloy as a negative active material, and a substance movable for electrochemical reaction as an electrolyte. CONSTITUTION:A positive mix pellet 6 is formed by pressing a mixture of LiVO3 powder and a binder such as polytetrafluoroethylene powder against a positive case 3 made of stainless steel. A metallic lithium negative electrode 4 pressed against a stainless steel sealing plate 1, then a gasket 2 is fitted. An electrolyte prepared by dissolving 1N LiClO4 in an equal volume mixture of propylene carbonate and 2-dimethoxyethane is impregnated in a propylene microporous separator 5. A positive case 3 is fitted to the sealing plate 1 through the gasket 2 and crimped to form a battery. A coin type battery having large capacity and good charge-discharge cycle performance is manufactured.

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明はリチウム電池、さらに詳細には充放電可能なリ
チウム二次電池に関し、特に大きな充放電容量を与える
二元系複酸化物を正極活物質としたリチウム電池に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field of the Invention] The present invention relates to a lithium battery, and more particularly to a rechargeable and dischargeable lithium secondary battery, in which a binary double oxide that provides a particularly large charge and discharge capacity is used as a positive electrode. This relates to a lithium battery as an active material.

〔従来技術および問題点〕[Prior art and problems]

リチウム等のアルカリ金属およびその合金を負極活物質
とする非水電解液電池は、負極金属イオンの正極活物質
へのインサーシゴンもしくはインターカレーション反応
によって、その大放電容量と充電可逆性を両立させてい
る。従来からリチウムを負極活物質として用いる二次電
池としては、二酸化マンガンや五酸化バナジウム等のト
ンネル状もしくは層状の結晶質酸化物を正極に用いた電
池が提案されているが、充放電サイクルに伴う構造劣化
が激しくその充放電特性は充分とは言えなかった。
Non-aqueous electrolyte batteries that use alkali metals such as lithium and their alloys as negative electrode active materials achieve both large discharge capacity and charge reversibility through insertion or intercalation reactions of negative electrode metal ions into positive electrode active materials. There is. As secondary batteries that use lithium as the negative electrode active material, batteries that use tunnel-shaped or layered crystalline oxides such as manganese dioxide or vanadium pentoxide as the positive electrode have been proposed, but due to the charge-discharge cycle. Structural deterioration was severe and its charge/discharge characteristics were not satisfactory.

そこで、本発明の目的は上記現状の問題点を改良して、
小型で充放電特性に優れた電池特性をもつリチウム電池
を提供することにある。
Therefore, the purpose of the present invention is to improve the above-mentioned current problems, and
The object of the present invention is to provide a lithium battery that is small in size and has excellent charge and discharge characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的を達成するために、本発明リチウム電池では
、組成式LiVChで与えられる複酸化物結晶を正極活
物質として含み、リチウムまたはリチウム合金を負極活
物質とし、前記負極活物質に対して化学的に安定であり
、かつリチウムイオンが前記正極活物質あるいは前記負
極活物質と電気化学反応をするための移動を行い得る物
質を電解質物質としたことを特徴としている。
In order to achieve this object, the lithium battery of the present invention includes a double oxide crystal given by the composition formula LiVCh as a positive electrode active material, lithium or a lithium alloy as a negative electrode active material, and chemically reacts the negative electrode active material. The present invention is characterized in that the electrolyte material is a material that is stable and allows lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

上述のように本発明においては、正極活物質として、結
晶質のLiVO,を用いる。すなわち、本発明では、V
2O,にLi、Oを1:1のモル比で添加した二元系酸
化物を正極活物質として用いることにより、従来のリチ
ウム電池より充放電容量が大きく、サイクル性に優れた
リチウム電池を構成できることを確かめ、その認識の下
に本発明を完成した。
As described above, in the present invention, crystalline LiVO is used as the positive electrode active material. That is, in the present invention, V
By using a binary oxide in which Li and O are added to 2O, at a molar ratio of 1:1, as the positive electrode active material, a lithium battery with greater charge/discharge capacity and superior cycle performance than conventional lithium batteries is constructed. The present invention was completed based on this knowledge.

この正極活物質を用いて正極を形成するには、LiVO
3化合物粉末とポリテトラフルオロエチレンごとき結着
剤粉末との混合物をニッケル、ステンレス等の支持体上
に圧着成形する。あるいは、かかる混合物質粉末に導電
性を付与するためアセチレンブラックのような導電性粉
末を混合し、これに更にポリテトラフルオロエチレンの
ような結着剤粉末を所要に応じて加え、この混合物を金
属容器に入れ、あるいは前述の混合物をニッケル、ステ
ンレス等の支持体に圧着成形する等の手段によって形成
される。
To form a positive electrode using this positive electrode active material, LiVO
A mixture of three compound powders and a binder powder such as polytetrafluoroethylene is pressure-molded onto a support such as nickel or stainless steel. Alternatively, a conductive powder such as acetylene black is mixed in order to impart conductivity to the mixed material powder, and a binder powder such as polytetrafluoroethylene is further added as required, and this mixture is mixed with a conductive powder such as acetylene black. It is formed by placing the mixture in a container or by pressure-molding the above-mentioned mixture onto a support such as nickel or stainless steel.

上述のLiVO3結晶は下記のような電池反応をすると
考えられる。
The LiVO3 crystal described above is thought to undergo the following battery reaction.

すなわちLiVO31分子当たり、ILi原子と反応し
たときの発電容量は253Ah/kgである。そして実
施例の第4図より1■終止で、400Ah/kg以上の
放電容量が得られているので、LiVO3はVが5価よ
り3価に還元されることによって2原子Liと反応して
いると考えられる。すなわち電池反応は、 LiVO,+2Li□→Li3VO3 であると考えられる。
That is, the power generation capacity when one molecule of LiVO3 reacts with an ILi atom is 253 Ah/kg. As shown in FIG. 4 of the example, a discharge capacity of 400 Ah/kg or more is obtained in 1■ termination, so LiVO3 reacts with diatomic Li by reducing V from pentavalent to trivalent. it is conceivable that. That is, the battery reaction is considered to be as follows: LiVO, +2Li□→Li3VO3.

一方、第5図より劣化なく安定して可逆反応を行える容
量は200Ah/kg前後であるため、可逆反応は1原
子Liと起こしていると考えられLiVO,fLi で
=立 Li、VO3負極活物質であるリチウムは一般の
リチウム電池のそれと同様にシート状として、またはそ
のシートをニッケル、ステンレス等の導電体網に圧着し
て負極として形成される。また、負極活物質としてはリ
チウム以外にマグネシウム、カルシウム、ナトリウム等
、従来公知のものが使用できる。
On the other hand, as shown in Fig. 5, the capacity for stable reversible reactions without deterioration is around 200 Ah/kg, so it is thought that the reversible reactions occur with one atom of Li, and LiVO, fLi = vertical Li, VO3 negative electrode active material Lithium, which is lithium, is formed in the form of a sheet, similar to that of general lithium batteries, or the sheet is pressed onto a conductor network of nickel, stainless steel, etc. to form a negative electrode. Further, as the negative electrode active material, conventionally known materials such as magnesium, calcium, sodium, etc. can be used in addition to lithium.

電解質としては、例えばジメトキシエタン、2−メチル
テトラヒドロフラン、エチレンカーボネート、メチルホ
ルメート、ジメチルスルホキシド、プロピレンカーボネ
ート、アセトニトリル、ブチロラクトン、ジメチルフォ
ルムアミド等の有機溶媒に、L 1AsF、 、L i
BF、 、L i PF、、LiAlCl!、4、Li
ClO4等のルイス酸を溶解した非水電解質溶液が使用
できる。
As the electrolyte, for example, L 1 AsF, , Li
BF, ,Li PF, ,LiAlCl! ,4,Li
A non-aqueous electrolyte solution in which a Lewis acid such as ClO4 is dissolved can be used.

さらに、セパレータ、構造材料(電池ケース等)等の他
の要素についても従来公知の各種材料が使用でき、特に
制限はない。
Furthermore, various conventionally known materials can be used for other elements such as separators, structural materials (battery cases, etc.), and there are no particular limitations.

以下、実施例によって本発明の方法を更に具体的に説明
するが、本発明はこれらによりなんら制限されるもので
はない。なお、実施例において電池の作製および測定は
アルゴン雰囲気下のドライボックス中で行った。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these in any way. In addition, in the examples, battery production and measurements were performed in a dry box under an argon atmosphere.

〔実施例1〕 第1図は本発明による電池の一具体例であるコイン型電
池の断面図であり、図中1はステンレス製封口板、2は
ポリプロピレン製ガスケット、3はステンレス製正極ケ
ース、4はリチウム負極、5はポリプロピレン製微孔製
セパレータ、6は正極合剤ペレットを示す。
[Example 1] Fig. 1 is a sectional view of a coin-type battery which is a specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a stainless steel positive electrode case, 4 is a lithium negative electrode, 5 is a polypropylene microporous separator, and 6 is a positive electrode mixture pellet.

正極活物質には、■20SをLi、CO,と共に1:1
のモル組成で混合焼成して得た二元系複酸化物結晶粉末
を用いた。反応温度は第2図に示すL iZ Ov、O
3系の相図からL i z O・V205の融点である
560°Cより低温で固相反応させた。
For the positive electrode active material, ■ 20S was mixed with Li and CO in a 1:1 ratio.
A binary double oxide crystal powder obtained by mixing and firing with a molar composition of was used. The reaction temperature is L iZ Ov, O shown in Figure 2.
Based on the phase diagram of the three systems, the solid phase reaction was performed at a temperature lower than 560°C, which is the melting point of L iz O·V205.

得られた灰白色の粉末のX線回折図形を第3図に示す。The X-ray diffraction pattern of the obtained gray-white powder is shown in FIG.

いずれのピークもL iV O3で指数付けされた。得
られたL i VO,結晶を導電剤(アセチレンブラッ
ク粉末)、結着剤(ポリテトラフルオロエチレン)と共
に、70 : 25 : 5の重量比で混合の上、ロー
ル成形し、正極合剤ペレット6(J¥さ0.5mm、直
径17踵、200mg/cell)とした。まず、封口
板1上に金属リチウム負極4を加圧配置したものをガス
ケット6をこの順序に配置し、電解液としてプロピレン
カーボネート(PC)と2−ジメトキシエタン(DME
)の等容積混合溶媒にLiCf0nを溶解させた1規定
溶液をそれぞれ適責注入して含浸させた後に、正極ケー
ス3を被せてかしめることにより、厚さ2閣、直径23
mのコイン型電池を作製した。
Both peaks were indexed with L iV O3. The obtained LiVO crystals were mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) at a weight ratio of 70:25:5, and then roll-formed to form positive electrode mixture pellets 6. (J¥ length 0.5 mm, diameter 17 heel, 200 mg/cell). First, a metal lithium negative electrode 4 is placed under pressure on a sealing plate 1, a gasket 6 is placed in this order, and propylene carbonate (PC) and 2-dimethoxyethane (DME) are used as electrolytes.
), a 1N solution in which LiCf0n is dissolved in an equal volume mixed solvent is injected and impregnated, and then the positive electrode case 3 is covered and caulked to form a material with a thickness of 2 mm and a diameter of 23 mm.
A coin-type battery of 1.0 m was manufactured.

このようにして作製した電池の0.5s+A/aJの充
電電流密度で各終止電圧までの平均放電電圧、放電容量
、放電エネルギ密度を第1表に示す。
Table 1 shows the average discharge voltage, discharge capacity, and discharge energy density of the batteries thus produced up to each final voltage at a charging current density of 0.5 s+A/aJ.

LiVO3はV、O,等に比べ、放電電圧が低いため2
■終止の放電容量は決して太き(ないが、1.5■系正
極としては有望な材料であることがわかる。0. 5m
八へ−の放電電流密度での放電プロファイルを第4図に
示す。
Since LiVO3 has a lower discharge voltage than V, O, etc.
■Although the final discharge capacity is not large, it is clear that it is a promising material as a 1.5■ system positive electrode.0.5m
A discharge profile at a discharge current density of 8 is shown in FIG.

〔実施例2〕 電解液としてエチレンカーボネートと2−メチルテトラ
ヒドロフランの等容積混合溶媒にLiAsF。
[Example 2] LiAsF is used as an electrolytic solution in an equal volume mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran.

を溶解させた1、5規定溶液、工゛チレンカーボネ−ト
と2−ジメトキシエタンの等容積混合溶媒にL 1As
F、を溶解させた1、5規定溶液、プロピレンカーボネ
ートと2−ジメトキシエタンの等容積混合溶媒にL i
Cj! Oaを溶解させた1規定溶液の3種を用い、そ
れ以外は実施例1と同様にしてコイン型リチウム電池を
作製した。この3種のコイン型電池について、0.5m
A/cdの充放電電流密度で各々2−3.5V、1.6
−3.8V、1−3.5Vの電圧規制充放電試験を行っ
た。各々のサイクル挙動は第5図に示す。この図から明
らかなようにL i VO,・PzOsは放電過電圧が
小さ(、L i V Os 1 モBv当たり0.8L
i程度(200Ah/ kg)の可逆組成域をもち、ま
た、電圧規制範囲を拡大してもサイクルによる容量低下
が少ないことがわかる。
1.5N solution of L 1As dissolved in an equal volume mixed solvent of ethylene carbonate and 2-dimethoxyethane.
Li
Cj! A coin-type lithium battery was produced in the same manner as in Example 1 except for using three kinds of 1N solutions in which Oa was dissolved. For these three types of coin type batteries, 0.5m
2-3.5V, 1.6 respectively at charge/discharge current density of A/cd
-3.8V and 1-3.5V voltage regulation charge/discharge tests were conducted. Each cycle behavior is shown in FIG. As is clear from this figure, L i VO,・PzOs has a small discharge overvoltage (0.8 L per 1 moBv of L i VO,・PzOs
It has a reversible composition range of about i (200Ah/kg), and it can be seen that even if the voltage regulation range is expanded, the capacity decrease due to cycles is small.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、可逆容量の大き
な小型高エネルギ密度のリチウム電池を構成することが
でき、本発明電池はコイン型電池等種々の分野に利用で
きるという利点を有する。
As described above, according to the present invention, it is possible to construct a small, high-energy density lithium battery with a large reversible capacity, and the battery of the present invention has the advantage that it can be used in various fields such as coin-type batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるコイン電池の構成例を
示す断面図、第2図は本発明のL i VO。 の合成に用いたL iz OVz Os系の相図、第3
図は本発明の製造方法により得られた二元系バナジウム
酸化物のX線回折図形、゛第4図は本発明の一実施例に
おける電池の充電特性をしめず特性図、第5図は本発明
の一実施例における電池の充放電特性を示す特性図であ
る。 1・・・ステンレス製封口仮、2・・・ポリプロピレン
製ガスケット、3・・・ステンレス製正極ケース、4・
・・リチウム負極、5・・・ポリプロピレン製セパレー
タ、6・・・正極合剤ペレット。 出願人代理人  雨  宮  正  季第1図 (正極合剤ベレット) 第2図
FIG. 1 is a sectional view showing a configuration example of a coin battery according to an embodiment of the present invention, and FIG. 2 is a Li VO battery according to the present invention. Phase diagram of the L iz OVz Os system used for the synthesis of
The figure shows an X-ray diffraction pattern of a binary vanadium oxide obtained by the production method of the present invention. FIG. 3 is a characteristic diagram showing the charging and discharging characteristics of a battery in one embodiment of the invention. 1... Stainless steel temporary sealing, 2... Polypropylene gasket, 3... Stainless steel positive electrode case, 4...
... Lithium negative electrode, 5 ... Polypropylene separator, 6 ... Positive electrode mixture pellet. Applicant's agent Tadashi Amemiya Figure 1 (Cathode mixture pellet) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)組成式LiVO_3で与えられる複酸化物結晶を
正極活物質として含み、リチウムまたはリチウム合金を
負極活物質とし、前記負極活物質に対して化学的に安定
であり、かつリチウムイオンが前記正極活物質あるいは
前記負極活物質と電気化学反応をするための移動を行い
得る物質を電解質物質としたことを特徴とするリチウム
電池。
(1) Contains a double oxide crystal given by the composition formula LiVO_3 as a positive electrode active material, lithium or a lithium alloy as a negative electrode active material, is chemically stable with respect to the negative electrode active material, and lithium ions are contained in the positive electrode A lithium battery characterized in that an electrolyte material is a substance that can move to perform an electrochemical reaction with the active material or the negative electrode active material.
JP63051637A 1988-03-07 1988-03-07 Lithium battery Expired - Lifetime JP2559054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051637A JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051637A JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Publications (2)

Publication Number Publication Date
JPH01227356A true JPH01227356A (en) 1989-09-11
JP2559054B2 JP2559054B2 (en) 1996-11-27

Family

ID=12892363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051637A Expired - Lifetime JP2559054B2 (en) 1988-03-07 1988-03-07 Lithium battery

Country Status (1)

Country Link
JP (1) JP2559054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001572A1 (en) * 1989-07-20 1991-02-07 Dowty Electronic Components Limited Battery comprising lithium vanadium oxide as active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001572A1 (en) * 1989-07-20 1991-02-07 Dowty Electronic Components Limited Battery comprising lithium vanadium oxide as active material

Also Published As

Publication number Publication date
JP2559054B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
EP0870339B1 (en) Electrode material for electrochemical lithium intercalation
JP3625680B2 (en) Lithium secondary battery
US5196279A (en) Rechargeable battery including a Li1+x Mn2 O4 cathode and a carbon anode
US5514490A (en) Secondary lithium battery using a new layered anode material
GB2305168A (en) Lithium insertion compounds for batteries
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2000235856A (en) Lithium secondary battery
EP3896760A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JPH03108261A (en) Nonaqueous solvent secondary battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH01227356A (en) Lithium battery
JPS62176054A (en) Lithium battery
JP2559055B2 (en) Lithium battery
JPS63114065A (en) Organic electrolyte secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JPH0424829B2 (en)
JP3619701B2 (en) Lithium secondary battery
JPH10149827A (en) Electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100307159B1 (en) A positive active material for a lithium secondary battery
JPH1074519A (en) Alkali metal secondary battery
JP2638849B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12