JPH1074519A - Alkali metal secondary battery - Google Patents

Alkali metal secondary battery

Info

Publication number
JPH1074519A
JPH1074519A JP8250996A JP25099696A JPH1074519A JP H1074519 A JPH1074519 A JP H1074519A JP 8250996 A JP8250996 A JP 8250996A JP 25099696 A JP25099696 A JP 25099696A JP H1074519 A JPH1074519 A JP H1074519A
Authority
JP
Japan
Prior art keywords
electrode active
active material
alkali metal
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8250996A
Other languages
Japanese (ja)
Inventor
Kaoru Asakura
薫 朝倉
Shigeto Okada
重人 岡田
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8250996A priority Critical patent/JPH1074519A/en
Publication of JPH1074519A publication Critical patent/JPH1074519A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high voltage discharge battery with excellent charge/ discharge characteristic. SOLUTION: An alkali metal secondary battery is formed of alkali metal (A) containing double oxide A2 PtO3 as positive electrode active material 6, lithium metal or lithium ion storage/release possible material as negative electrode active material 4 and material, in which alkali metal ions can be moved for electrochemical reaction with the positive electrode active material and negative electrode active material, as electrolyte. In this way, a great capacity non-aqueous electrolyte secondary battery can be constituted and is advantageously used in various fields.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ金属二次電池、
さらに詳細には充放電可能な非水電解質二次電池に関
し、特に放電電圧の高い電池を提供する正極活物質に関
する。
The present invention relates to an alkaline metal secondary battery,
More specifically, the present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and more particularly to a positive electrode active material that provides a battery having a high discharge voltage.

【0002】[0002]

【従来の技術お及び問題点】リチウムなどのアルカリ金
属及びその合金や化合物を負極活物質とする非水電解質
電池は、負極金属イオンの正極活物質へのインサーショ
ンもしくはインターカレーション反応によって、その大
放電容量と充電可逆性を両立させている。従来からこれ
らの正極活物質には、LiCoO2やLiNiO2などの
層状酸化物が提案されているが、比重が小さいため、比
重量容量に比べ比容積容量が芳しくなく、またこれらの
金属酸化物は構造上、深い充電を行うと酸素層間の静電
反発力が高まり、固体マトリックスが乱れるため、大容
量での充放電サイクルが事実上困難である。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or an alloy or compound thereof as a negative electrode active material is produced by an insertion or an intercalation reaction of a negative electrode metal ion into a positive electrode active material. It has both large discharge capacity and charge reversibility. Hitherto, layered oxides such as LiCoO 2 and LiNiO 2 have been proposed for these positive electrode active materials. However, since the specific gravity is small, the specific volume capacity is not as good as the specific weight capacity. Due to the structure, when deep charging is performed, electrostatic repulsion between oxygen layers increases, and the solid matrix is disturbed, so that a large-capacity charge / discharge cycle is practically difficult.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記現状の
問題点を改善するために提案されたもので、その目的
は、充放電特性に優れた電池特性を持つ高電圧放電可能
な電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to improve the above-mentioned problems, and an object of the present invention is to provide a high-voltage dischargeable battery having excellent charge-discharge characteristics. To provide.

【0004】[0004]

【問題点を解決するための手段】かかる目的を達成する
ため、本発明のアルカリ金属二次電池では、アルカリ金
属(A)含有複酸化物A2PtO3を正極活物質として含
み、リチウム金属またはリチウムイオンを吸蔵、放出可
能な物質を負極活物質とし、前記アルカリ金属のイオン
が前記正極活物質及ぴ前記負極活物質と電気化学反応を
するための移動を行い得る物質を電解質としたことを特
徴としている。
Means for Solving the Problems In order to achieve the above object, the alkali metal secondary battery of the present invention contains an alkali metal (A) -containing double oxide A 2 PtO 3 as a positive electrode active material, and contains lithium metal or lithium metal. A material capable of occluding and releasing lithium ions is used as a negative electrode active material, and a material capable of performing an electrochemical reaction of the alkali metal ions with the positive electrode active material and the negative electrode active material is used as an electrolyte. Features.

【0005】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0006】LiCoO2やLiNiO2などのAMO2
(M:遷移金属)は、A−O−M−Oの層構造をとり、
充電末期では層間での静電反発力が強まり、固体マトリ
ックスが乱れ容量の低下を招く。一方、A2PtO3は、
AMO2層状酸化物と類似の構造をとり、A[A1/3Pt
2/3]O2(M=A1/3Pt2/3)で表される。リチウムイ
オンと白金イオンが混在する層が存在するため、充電末
期には、層間での静電反発力が弱められ、理論容量に相
当する容量が期待できる。
[0006] AMO, such as LiCoO 2 and LiNiO 2 2
(M: transition metal) has an A-O-M-O layer structure,
At the end of charging, the electrostatic repulsion between the layers is increased, and the solid matrix is disturbed, resulting in a reduction in capacity. On the other hand, A 2 PtO 3
It has a structure similar to AMO 2 layered oxide, and A [A 1/3 Pt
2/3 ] O 2 (M = A 1/3 Pt 2/3 ). Since there is a layer in which lithium ions and platinum ions are mixed, at the end of charging, the electrostatic repulsion between the layers is weakened, and a capacity corresponding to the theoretical capacity can be expected.

【0007】この正極活物質を用いて正極を形成するに
は、前記化合物粉末とポリテトラフルオロエチレンのご
とき結着剤粉末との混合物をステンレス等の支持体上に
圧着成形する、或いは、本正極活物質に導電性を付与す
るためアセチレンブラックのような導電性粉末を混合
し、これにさらにポリテトラフルオロエチレンのような
結着剤粉末を所要に応じて加え、この混合物を金属容器
にいれる、あるいは前述の混合物をステンレスなどの支
持体に圧着成形する、あるいは前述の混合物を有機溶剤
等の溶媒中に分散してスラリー状にして金属基板上に塗
布する、等の手段によって形成される。
In order to form a positive electrode using this positive electrode active material, a mixture of the compound powder and a binder powder such as polytetrafluoroethylene is compression-formed on a support such as stainless steel, or Mixing a conductive powder such as acetylene black to impart conductivity to the active material, further adding a binder powder such as polytetrafluoroethylene as necessary, and putting the mixture in a metal container, Alternatively, it is formed by means such as press-molding the above-mentioned mixture on a support such as stainless steel, or dispersing the above-mentioned mixture in a solvent such as an organic solvent to form a slurry and applying the slurry on a metal substrate.

【0008】負極活物質であるリチウムは、一般のリチ
ウム電池のそれと同様にシート状にして、またそのシー
トをニッケル、ステンレス等の導電体網に圧着して負極
として形成される。また、負極活物質としては、リチウ
ム以外にリチウム合金やリチウム化合物、その他ナトリ
ウム、カリウム、マグネシウム等従来公知のアルカリ金
属、及ぴそれらのアルカリ金属合金、アルカリ金属イオ
ンを吸蔵、放出可能な炭素材料等が使用できる。
[0008] Lithium, which is a negative electrode active material, is formed into a sheet in the same manner as that of a general lithium battery, and the sheet is pressure-bonded to a conductive net made of nickel, stainless steel or the like to form a negative electrode. In addition, as the negative electrode active material, in addition to lithium, lithium alloys and compounds, conventionally known alkali metals such as sodium, potassium, and magnesium, and their alkali metal alloys and carbon materials capable of occluding and releasing alkali metal ions, etc. Can be used.

【0009】電解液としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルホルムアミド、ジメチルカーボネート、ジ
エチルカーボネート、スルホラン、エチルメチルカーボ
ネート等に、アルカリ金属イオンを含むルイス酸を溶解
した非水電解質溶媒、溶融塩、あるいは固体電解質等が
使用できる。
Examples of the electrolyte include dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate and the like. Alternatively, a non-aqueous electrolyte solvent, a molten salt, or a solid electrolyte in which a Lewis acid containing an alkali metal ion is dissolved can be used.

【0010】さらにセパレータ、電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用で
き、特に制限はない。
As for other elements such as a structural material such as a separator and a battery case, various conventionally known materials can be used, and there is no particular limitation.

【0011】[0011]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらによりなんら制限さ
れるものではない。なお、実施例において電池の作成及
ぴ測定はアルゴン雰囲気下で行った。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In the examples, preparation and measurement of the battery were performed in an argon atmosphere.

【0012】[0012]

【実施例1】図1は本発明による電池の一具体例である
コイン型電池の断面図であり、図中1は封口板、2はガ
スケット、3は正極ケース、4は負極、5はセパレー
タ、6は正極合剤ペレットを示す。
Embodiment 1 FIG. 1 is a cross-sectional view of a coin-type battery which is a specific example of a battery according to the present invention, wherein 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, and 5 is a separator. And 6 indicate positive electrode material mixture pellets.

【0013】正極活物質には、炭酸リチウムと白金ブラ
ックを次式の反応式にのっとって、秤量混合の上、大気
開放下、800℃で24時間焼成して得たLi2PtO3
を用いた。
Li 2 PtO 3, which is obtained by weighing and mixing lithium carbonate and platinum black according to the following reaction formula, firing at 800 ° C. for 24 hours in the open air, as a positive electrode active material:
Was used.

【0014】反応式:Li2CO3+Pt+O2→Li2
tO3+CO2
Reaction formula: Li 2 CO 3 + Pt + O 2 → Li 2 P
tO 3 + CO 2

【0015】得られた粉末試料のX線回折図形を図2に
示す。そのX線回折パターンは、まさしく空間群P31
の結晶対称性をもつ層状構造(JCPDS#29−08
20)であると同定された。
FIG. 2 shows an X-ray diffraction pattern of the obtained powder sample. The X-ray diffraction pattern is exactly the space group P31
(JCPDS # 29-08)
20).

【0016】この試料をaとする。This sample is designated as a.

【0017】この試料aを粉砕して粉末とし、導電剤
(アセチレンブラック)、結着剤(ポリテトラフルオロ
エチレン)と共に混合の上、ロール成形し、正極合剤ペ
レット6(厚さ0.5mm、直径15mm)とした。
The sample a was pulverized into a powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and then roll-formed to form a positive electrode mixture pellet 6 (0.5 mm thick, 0.5 mm thick). (Diameter 15 mm).

【0018】次に正極ケース3上に正極合剤ペレット6
を加圧配置し、ネット付けしたものにセパレータ5を配
置し、電解液として、プロピレンカーボネート(PC)
とエチレンカーボネート(EC)、ジメチルカーボネー
ト(DMC)を体積比1:1:2の割合で混合した溶媒
にLiPF6を溶解させた1規定溶液を適量注入して含
浸させた後に、プロピレン製ガスケット2の凹部に挿入
したステンレス製の封口板1上に金属リチウムの負極4
を加圧配置したものを被せてかしめることにより、厚さ
2mm、直径23mmのコイン型リチウム電池を作製し
た。
Next, the positive electrode mixture pellet 6 is placed on the positive electrode case 3.
Is placed under pressure, the separator 5 is placed on the net, and propylene carbonate (PC) is used as the electrolytic solution.
And a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1: 2 was injected with an appropriate amount of a 1 N solution of LiPF 6 and impregnated with the mixture. A negative electrode 4 of metallic lithium is placed on a stainless steel sealing plate 1 inserted in the recess of FIG.
Was pressed and covered to form a coin-type lithium battery having a thickness of 2 mm and a diameter of 23 mm.

【0019】このように作製した電池を、0.5mA/
cm2の電流密度で4.5Vまで初期充電した後、同様
の電流密度で、3.5V−4.5Vの電圧範囲で充放電
した際の第一サイクル目の充放電曲線を図3に、充放電
容量のサイクル依存性を図4に示す。初期充電により、
正極活物質であるLi2PtO3の結晶構造中のリチウム
イオンが脱離し、続く放電過程では、リチウムイオンの
挿入に伴い4V以上の平坦な放電が可能であった。
The battery manufactured in this manner was charged at 0.5 mA /
FIG. 3 shows a charge / discharge curve of the first cycle when initially charged to 4.5 V at a current density of 2 cm 2 and charged and discharged at a similar current density in a voltage range of 3.5 V to 4.5 V. FIG. 4 shows the cycle dependency of the charge / discharge capacity. By initial charge,
Lithium ions in the crystal structure of Li 2 PtO 3 as the positive electrode active material were desorbed, and in the subsequent discharge process, a flat discharge of 4 V or more was possible with the insertion of lithium ions.

【0020】図5は、Li2PtO3の充放電に伴う構造
変化を表わしたもので、XRD測定(X−Ray Di
ffraction(X線回折))結果より、層間距離
に相当するd(003)回折線の変化を追うことで、層
間距離の変化が分かる。充電(●)を進めると(横軸x
が0より増える方向)層間距離が減少し、放電(○)す
ると(横軸xが減る方向)層間距離が増加する可逆的な
結果が得られた。以上のことから、「層間距離が可逆的
に伸縮している」ことが観測できた。すなわち、充放電
に伴うXRD測定により、層間距離が可逆的に伸縮して
いることを観測し、本充放電反応がLi2PtO3層間へ
のLiインターカレーション反応であることを確認し
た。本発明の方法により可逆的なリチウム二次電池が構
成されていることがわかる。
FIG. 5 shows a structural change accompanying charge and discharge of Li 2 PtO 3. XRD measurement (X-Ray Di)
From the (fraction (X-ray diffraction)) result, the change in the interlayer distance can be found by following the change in the d (003) diffraction line corresponding to the interlayer distance. When charging (●) proceeds (horizontal axis x
The reversible result was obtained in which the interlayer distance was decreased (in the direction in which X increased from 0) and the interlayer distance was increased in the discharge (() (in the direction in which the horizontal axis x decreased). From the above, it was observed that "the interlayer distance is reversibly expanded and contracted". That is, by XRD measurement accompanying charge / discharge, it was observed that the interlayer distance was reversibly expanded and contracted, and it was confirmed that this charge / discharge reaction was a Li intercalation reaction between Li 2 PtO 3 layers. It can be seen that a reversible lithium secondary battery is configured by the method of the present invention.

【0021】また、0.05mA/cm2の微少電流密
度で4.5Vまで初期充電した後、同様の電流密度で、
3.5V−4.5Vの電圧範囲で充放電した際の充放電
曲線を図6に示す。Li2PtO3はリチウムイオンが脱
離された状態でも層間の静電反発力が比較的弱いため、
リチウムイオン単独層のほぼ全リチウムイオンが脱離し
た量に相当する充電容量が得られており、本発明により
正極活物質の大容量化が期待できる。
After initial charging to 4.5 V at a very small current density of 0.05 mA / cm 2 ,
FIG. 6 shows a charge / discharge curve when charging / discharging was performed in a voltage range of 3.5 V to 4.5 V. Li 2 PtO 3 has a relatively weak electrostatic repulsion between layers even when lithium ions are desorbed.
A charge capacity corresponding to the amount of almost all lithium ions desorbed from the lithium ion single layer is obtained, and it is expected that the present invention can increase the capacity of the positive electrode active material.

【0022】[0022]

【実施例2】正極活物質にLi2PtO3(試料a)を用
い、0.5mA/cm2の電流密度で4.5Vまで初期
充電した後、同様の電流密度で、3.5V−4.5Vの
電圧範囲で充放電した際の容量を表1に示す。なお、電
解液として、プロピレンカーボネート(PC)溶媒にL
iClO4を1モル溶解させた1規定溶液を用いた。
Example 2 Li 2 PtO 3 (sample a) was used as a positive electrode active material, initially charged to 4.5 V at a current density of 0.5 mA / cm 2 , and then 3.5 V-4 at a similar current density. Table 1 shows the capacity when the battery was charged and discharged in a voltage range of 0.5 V. In addition, as an electrolyte, propylene carbonate (PC)
A 1N solution in which 1 mol of iClO 4 was dissolved was used.

【0023】[0023]

【実施例3】正極活物質にLiNaPtO3(試料b)
を用い、試料aと同様、0.5mA/cm2の電流密度
で4.5Vまで初期充電した後、同様の電流密度で、
3.5V−4.5Vの電圧範囲で充放電した際の容量を
表1に示す。なお、電解液として、プロピレンカーボネ
ート(PC)溶媒にLiClO4およびNaClO4
0.5モル溶解させた1規定溶液を用いた。
Example 3 LiNaPtO 3 (sample b) as a positive electrode active material
, And initially charged to 4.5 V at a current density of 0.5 mA / cm 2 , as in sample a, and then at the same current density,
Table 1 shows the capacity when the battery was charged and discharged in a voltage range of 3.5 V to 4.5 V. In addition, a 1N solution in which 0.5 mol of LiClO 4 and NaClO 4 was dissolved in a propylene carbonate (PC) solvent was used as the electrolytic solution.

【0024】[0024]

【実施例4】正極活物質にNa2PtO3(試料c)を用
い、試料aと同様、0.5mA/cm2の電流密度で
4.5Vまで初期充電した後、同様の電流密度で、3.
5V−4.5Vの電圧範囲で充放電した際の容量を表1
に示す。なお、電解液として、プロピレンカーボネート
(PC)溶媒にNaClO4を1モル溶解させた1規定
溶液を用いた。
Example 4 Using Na 2 PtO 3 (sample c) as a positive electrode active material, similarly to sample a, after initial charging to 4.5 V at a current density of 0.5 mA / cm 2 , at the same current density, 3.
Table 1 shows the capacity when charged and discharged in a voltage range of 5V to 4.5V.
Shown in Note that, as the electrolytic solution, a 1 N solution in which 1 mol of NaClO 4 was dissolved in a propylene carbonate (PC) solvent was used.

【0025】本発明により、正極活物質の結晶構造中の
アルカリ金属イオンが脱離・挿入されており、本発明に
より可逆的な非水電解質電池が構成されていることが分
かる。
According to the present invention, the alkali metal ions in the crystal structure of the positive electrode active material are desorbed and inserted, and it can be seen that the present invention constitutes a reversible nonaqueous electrolyte battery.

【0026】[0026]

【表l】 [Table 1]

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
大容量非水電解質二次電池を構成することができ、様々
な分野に利用できるという利点を有する。
As described above, according to the present invention,
A large-capacity nonaqueous electrolyte secondary battery can be formed, and has an advantage that it can be used in various fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるコイン型電池の構成例
を示す断面図。
FIG. 1 is a cross-sectional view illustrating a configuration example of a coin-type battery according to one embodiment of the present invention.

【図2】本発明の一実施例であるLi2PtO3のX線回
折図形を示す図。
FIG. 2 is a view showing an X-ray diffraction pattern of Li 2 PtO 3 which is an example of the present invention.

【図3】本発明の一実施例であるLi2PtO3の第一サ
イクル目の充放電曲線を示す図。
FIG. 3 is a diagram showing a charge / discharge curve of a first cycle of Li 2 PtO 3 which is an example of the present invention.

【図4】本発明の一実施例であるLi2PtO3の充放電
容量のサイクル依存性を示す図。
FIG. 4 is a diagram showing the cycle dependence of the charge / discharge capacity of Li 2 PtO 3 according to one embodiment of the present invention.

【図5】本発明の一実施例であるLi2PtO3の充放電
に伴う構造変化を示す図。
FIG. 5 is a diagram showing a structural change accompanying charge and discharge of Li 2 PtO 3 which is an example of the present invention.

【図6】本発明の一実施例であるLi2PtO3の充放電
容量を示す図。
FIG. 6 is a diagram showing the charge / discharge capacity of Li 2 PtO 3 according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス製封口板 2 ポリプロピレン製ガスケット 3 ステンレス製正極ケース 4 リチウム負極 5 ポリプロピレン製セパレータ 6 正極合剤ペレット 1 Stainless steel sealing plate 2 Polypropylene gasket 3 Stainless steel positive electrode case 4 Lithium negative electrode 5 Polypropylene separator 6 Positive electrode material pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Junichi Yamaki Nippon Telegraph and Telephone Corporation 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式、A2PtO3で与えられるアルカリ
金属(A)含有複酸化物を正極活物質として含み、アル
カリ金属またはアルカリ金属を吸蔵、放出可能な物質を
負極活物質とし、前記アルカリ金属のイオンが前記正極
活物質及ぴ前記負極活物質と電気化学反応をするための
移動を行い得る物質を電解質物質としたことを特徴とす
るアルカリ金属二次電池。
An alkali metal (A) -containing complex oxide represented by the general formula, A 2 PtO 3 , is contained as a positive electrode active material, and an alkali metal or a substance capable of occluding and releasing an alkali metal is used as a negative electrode active material. An alkali metal secondary battery, wherein a substance capable of causing an ion of an alkali metal to undergo an electrochemical reaction with the positive electrode active material and the negative electrode active material is used as an electrolyte material.
【請求項2】前記アルカリ金属(A)含有複酸化物、A
2PtO3がAとしてリチウムもしくはナトリウムの少な
くとも一種類を含んで構成される物質であり、一般式、
Li2-xNaxPtO3(0≦x≦2)で与えられる複酸
化物を正極活物質として含むことを特徴とする請求項1
記載のアルカリ金属二次電池。
2. The alkali metal (A) -containing double oxide, A
2 PtO 3 is a substance constituted by containing at least one of lithium and sodium as A;
2. The method according to claim 1, wherein the composite oxide provided as Li 2-x Na x PtO 3 (0 ≦ x ≦ 2) is contained as a positive electrode active material.
The alkaline metal secondary battery as described in the above.
JP8250996A 1996-09-02 1996-09-02 Alkali metal secondary battery Pending JPH1074519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250996A JPH1074519A (en) 1996-09-02 1996-09-02 Alkali metal secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250996A JPH1074519A (en) 1996-09-02 1996-09-02 Alkali metal secondary battery

Publications (1)

Publication Number Publication Date
JPH1074519A true JPH1074519A (en) 1998-03-17

Family

ID=17216109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250996A Pending JPH1074519A (en) 1996-09-02 1996-09-02 Alkali metal secondary battery

Country Status (1)

Country Link
JP (1) JPH1074519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216249A (en) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 Sodium ion secondary battery
WO2023119786A1 (en) * 2021-12-21 2023-06-29 国立大学法人琉球大学 Layered platinate, layered platinic acid, platinic acid nanosheet, platinum nanosheet and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216249A (en) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 Sodium ion secondary battery
WO2023119786A1 (en) * 2021-12-21 2023-06-29 国立大学法人琉球大学 Layered platinate, layered platinic acid, platinic acid nanosheet, platinum nanosheet and production method thereof

Similar Documents

Publication Publication Date Title
US6066414A (en) Material of negative electrode and nonaqueous-electrolyte secondary battery using the same
KR100451846B1 (en) Positive electrode activated material and non-aqueous electrolyte secondary battery using it
JP2014502006A (en) Lithium ion battery with auxiliary lithium
JPH09134725A (en) Non-aqueous electrolyte secondary battery
JPH09134724A (en) Non-aqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2006156230A (en) Nonaqueous electrolyte secondary battery and its charging method
JP3296204B2 (en) Lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
EP3896760A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
US20200388820A1 (en) Current collector and current collector-electrode assembly for an accumulator operating according to the principle of ion insertion and deinsertion
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH10112316A (en) Nonaqueous electrolyte secondary battery
JPH08287914A (en) Lithium battery
JP3498345B2 (en) Non-aqueous secondary battery
JP3424722B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH07235295A (en) Nonaqueous secondary battery
JP3424725B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and alkali metal non-aqueous electrolyte secondary battery
JPH1074519A (en) Alkali metal secondary battery
JP3928032B2 (en) Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same
KR100378012B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP3301026B2 (en) Lithium battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery