JPS62176054A - Lithium battery - Google Patents
Lithium batteryInfo
- Publication number
- JPS62176054A JPS62176054A JP61016715A JP1671586A JPS62176054A JP S62176054 A JPS62176054 A JP S62176054A JP 61016715 A JP61016715 A JP 61016715A JP 1671586 A JP1671586 A JP 1671586A JP S62176054 A JPS62176054 A JP S62176054A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- active material
- amorphous
- electrode active
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 47
- 239000007774 positive electrode material Substances 0.000 claims abstract description 28
- 239000007773 negative electrode material Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 6
- 239000002001 electrolyte material Substances 0.000 claims abstract 2
- 229910000733 Li alloy Inorganic materials 0.000 claims description 5
- 239000001989 lithium alloy Substances 0.000 claims description 5
- 238000003487 electrochemical reaction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 18
- 230000002427 irreversible effect Effects 0.000 abstract description 10
- 239000000843 powder Substances 0.000 abstract description 7
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 3
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 3
- 239000011149 active material Substances 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 8
- -1 polytetrafluoroethylene Polymers 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910011687 LiCu Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000007782 splat cooling Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、充放電可能なリチウム二次電池に関し、特に
大きな充放電容量を与える非晶質物質を正極活物質とし
たリチウム電池に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rechargeable and dischargeable lithium secondary battery, and particularly to a lithium battery using an amorphous material as a positive electrode active material that provides a large charge and discharge capacity. be.
[開示の概要]
本発明は、V2O5 、L i2O.P2O5からなる
三元系酸化物であって、その組成が(V2 O5)X
(L12O)y (P2 O5)Z(但し、x+y+
z=1.0.1≦y/x≦0.5゜0≦Z≦0.3)
で与えられる非晶質物質を正極活物質とし、リチウムま
たはリチウム合金を負極活物質とし、前記正極活物質お
よび前記負極活物質に対して化学的に安定であり、かつ
リチウムイオンが前記正極活物質あるいは前記負極活物
質と電気化学反応をするための移動を行い得る物質を電
解質物質とすることにより、あらかじめLi2Oの形で
添加したリチウムが、非晶1V2C)5中の不可逆なリ
チウムサイトを補償するため、充放電容量のロスの少な
い小型高エネルギー密度のリチウム電池を構成すること
ができ、コイン型電池など種々の分野に利用できる技術
を開示するものである。[Summary of the Disclosure] The present invention provides V2O5, Li2O. A ternary oxide consisting of P2O5, whose composition is (V2O5)X
(L12O)y (P2 O5)Z (However, x+y+
An amorphous material given by z=1.0.1≦y/x≦0.5゜0≦Z≦0.3) is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and the positive electrode active material is By using as an electrolyte substance a substance that is chemically stable with respect to the substance and the negative electrode active material and that allows lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material, Lithium added in advance in the form of Li2O compensates for the irreversible lithium sites in the amorphous 1V2C)5, making it possible to construct a small, high energy density lithium battery with little loss of charge/discharge capacity, and a coin-type battery. It discloses techniques that can be used in various fields such as.
なお、この概要はあくまでも本発明の技術内容に迅速に
アクセスするためにのみ供されるものであって、木発明
の技術的範囲および権利解釈に対しては何の影響も及ぼ
さないものである。Note that this summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the tree invention or the interpretation of rights.
[従来の技術]
従来から、リチウムを負極活物質として用いる二次電池
としては、結晶質の遷移金属酸化物であるv2O5を正
極活物質に用いた電池(J 、Electrochem
、 Soc、 Meeting、 Toronto、M
ayll−16,1975,NO,27)が提案されて
いるが、その充放電特性は十分とは言えなかった。[Prior Art] Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using V2O5, a crystalline transition metal oxide, as a positive electrode active material (J, Electrochem
, Soc, Meeting, Toronto, M
ayll-16, 1975, NO, 27) has been proposed, but its charge and discharge characteristics were not satisfactory.
さらにまた、■2o5にP2O5を加え、溶融径急冷す
ることにより得られる非晶質物質については、特願昭5
9−237778号および特願昭80−41213号に
提案されているが、この物質には(1)リチウムの不可
逆サイトが存在し、第1回目の放電容量(250Ah/
kg)に比へ2回目以降の充放電容量(150Ah/k
g)か大きく低下する。Furthermore, regarding the amorphous material obtained by adding P2O5 to ■2O5 and rapidly cooling the melt diameter,
As proposed in No. 9-237778 and Japanese Patent Application No. 80-41213, this material has (1) irreversible lithium sites, and the first discharge capacity (250Ah/
kg) to the second and subsequent charge/discharge capacity (150Ah/k
g) significantly decreases.
(2)正極活物質の初期開路電圧(3,6V)が高いた
め、電解質の溶媒が酸化1分解されやすく、長期保存性
に問題がある等の問題点があった。(2) Since the initial open-circuit voltage (3.6 V) of the positive electrode active material is high, the electrolyte solvent is easily oxidized and decomposed, causing problems in long-term storage.
[発明が解決しようとする問題点]
そこで、本発明の目的は、上記現状の問題点を改良して
、小型で充放電容量が大きく、優れた電池特性をもつリ
チウム電池を提供することにある。[Problems to be Solved by the Invention] Therefore, an object of the present invention is to improve the above-mentioned current problems and provide a lithium battery that is small, has a large charge/discharge capacity, and has excellent battery characteristics. .
[問題点を解決するための手段]
かかる目的を達成するために、本発明リチウム電池では
、正極活物質として、三元系酸化物(V2OS )X
(Li2O)31 (P2OS )2を用いる。[Means for Solving the Problems] In order to achieve the above object, the lithium battery of the present invention uses a ternary oxide (VOS) as a positive electrode active material.
(Li2O)31 (P2OS)2 is used.
本発明では、v2O5にリチウムを添加した三元系非晶
質酸化物を正極活物質として用いることにより、従来の
リチウム電池より充放電容量が大きく、サイクル性に優
れたリチウム電池を構成できることを確かめ、その認識
の下に木発明を完成した。In the present invention, it was confirmed that by using a ternary amorphous oxide obtained by adding lithium to v2O5 as a positive electrode active material, a lithium battery with higher charge/discharge capacity and better cycleability than conventional lithium batteries could be constructed. With this recognition, he completed the invention of wood.
すなわち、本発明は、V2O5 、 L i2O 。That is, the present invention provides V2O5, L i2O.
P2O5からなる三元系酸化物であって、その組成が(
V2 O5)X (Li2O)y(P2OS )2
(但し、x+y+z=1.0.1≦y/x≦0.5.0
≦Z≦0.3)
で与えられる非晶質物質を正極活物質とし、リチウムま
たはリチウム合金を負極活物質とし、前記正極活物質お
よび前記負極活物質に対して化学的に安定であり、かつ
リチウムイオンが前記正極活物質あるいは前記負極活物
質と電気化学反応をするための穆勅を行い得る物質を電
解質γ物質としたことを特徴とする。A ternary oxide consisting of P2O5, whose composition is (
V2 O5)X (Li2O)y(P2OS)2
(However, x+y+z=1.0.1≦y/x≦0.5.0
≦Z≦0.3) as a positive electrode active material, and lithium or a lithium alloy as a negative electrode active material, which is chemically stable with respect to the positive electrode active material and the negative electrode active material, and The present invention is characterized in that a substance capable of causing an electrochemical reaction between lithium ions and the positive electrode active material or the negative electrode active material is used as an electrolyte γ material.
この正極活物質を用いて正極を形成するには、この混合
物質粉末またはこれとポリテトラフルオロエチレンの如
き結合剤粉末との混合物をニッケル、ステンレス等の支
持体状に圧着成形する。In order to form a positive electrode using this positive electrode active material, this mixed material powder or a mixture of this mixed material powder and a binder powder such as polytetrafluoroethylene is pressure-molded onto a support such as nickel or stainless steel.
あるいは、かかる混合物質粉末に導電性を付与するため
にアセチレンブラックのような導電性粉末を混合し、こ
れに更rポリテトラフルオロエチレンのような結合剤粉
末を所要に応して加え、この混合物を金属容器に入れ、
あるいは前述の混合物をニッケルやステンレス等の支持
体状に圧着成形する等の手段によって正極を形成するこ
とができる。Alternatively, a conductive powder such as acetylene black is mixed in order to impart conductivity to the mixed material powder, and a binder powder such as polytetrafluoroethylene is further added thereto as required. put it in a metal container,
Alternatively, the positive electrode can be formed by pressure-molding the above-mentioned mixture onto a support made of nickel, stainless steel, or the like.
負極活物質としては、リチウムもしくはリチウム合金を
用いる。かかるリチウムもしくはリチウム合金は、一般
のリチウムの場合と同様に、シート状に展延し、または
そのシートをニッケルやステンレス等の導電性網に圧着
して負極として形成することができる。Lithium or a lithium alloy is used as the negative electrode active material. Such lithium or lithium alloy can be formed into a negative electrode by being spread into a sheet or by pressing the sheet onto a conductive net made of nickel, stainless steel, etc., as in the case of general lithium.
さらに、電解質としては、正極活物質および負極活物質
に対して化学的に安定であり、かつ、リチウムイオンが
正極活物質と電気化学反応をするための移動を行い得る
物質を用いる。たとえばプロピレンカーボネート、2−
メチルテトラヒドロフラン、ジオキソレン、テトラヒド
ロフラン、1.2−ジメトキシエタン、エチレンカーボ
ネート、γ−ブチロラクトン、ジメチルスルホキシド、
アセトニトリル、ホルムアミド、ジメチルホルムアミト
、ニトロメタン等の一種以上の非プロトン性存機溶媒と
LiCf104 、 LiAJZC1!、4 。Further, as the electrolyte, a substance is used that is chemically stable with respect to the positive electrode active material and the negative electrode active material, and is capable of moving lithium ions for electrochemical reaction with the positive electrode active material. For example, propylene carbonate, 2-
Methyltetrahydrofuran, dioxolene, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide,
one or more aprotic organic solvents such as acetonitrile, formamide, dimethylformamide, nitromethane and LiCf104, LiAJZC1! , 4.
Li[]F4 、LiCu 、 LiPF6 、LiA
sF6等のリチウム塩との組合せまたはリチウムイオン
を伝導体とする固体電解質あるいは溶融塩など、一般に
リチウムを負極活物質として用いた電池で使用される既
知の電解質を、本発明においても電解質として用いるこ
とができる。Li[]F4, LiCu, LiPF6, LiA
Known electrolytes generally used in batteries using lithium as a negative electrode active material, such as a combination with a lithium salt such as sF6, or a solid electrolyte or molten salt using lithium ions as a conductor, can be used as the electrolyte in the present invention. I can do it.
正極活物質としての前述した非晶質物質は、その組成式
(V2OS )x (Li2O )y(P2OS
)z (但し、)(+y+z=1)において、o、i
≦y/x≦0.5.0≦z<0.3の範囲で混合してか
ら溶融し、急冷処理されたものが好適である。この範囲
外の組成を持つ正極活物質は優れた特性を呈することが
困難であることが確かめられた。The aforementioned amorphous material as a positive electrode active material has the compositional formula (V2OS) x (Li2O)y (P2OS
)z (However, in )(+y+z=1), o, i
Preferably, the materials are mixed in the range of ≦y/x≦0.5.0≦z<0.3, then melted and rapidly cooled. It has been confirmed that it is difficult for a positive electrode active material having a composition outside this range to exhibit excellent characteristics.
[作 用コ
本発明によれは、あらかじめLi2Oの形で添加したリ
チウムが、非晶質■2O5中の不可逆なリチウムサイト
を補償するため、充放電容量のロスの少ない小型高エネ
ルギー示度のリチウム電池を構成することかでき、本発
明電池は、コイン型電池など種々の分野に利用できる。[Function]According to the present invention, lithium added in advance in the form of Li2O compensates for irreversible lithium sites in the amorphous The battery of the present invention can be used in various fields such as a coin type battery.
上述の三元系非晶質酸化物が、従来の二元系非晶質酸化
物、(V2OS )x (P2OS )y (但
し、x+y=1.y≦0.3 ) (特願昭59−2
37778号参照)に比べて良好な電池特性を示す理由
としては、
(1)Li2O(7)添加により、v2O5中のリチウ
ム不可逆サイトが減少あるいは消滅し、そこにトラップ
されて死ぬリチウム量が少なくなるので、負極のリチウ
ムの利用効率が高まる。The above-mentioned ternary amorphous oxide is different from the conventional binary amorphous oxide, (V2OS)x (P2OS)y (where x+y=1.y≦0.3) (Patent application 1982- 2
(Refer to No. 37778) The reasons why the battery exhibits better battery characteristics than those of 37778 are as follows: (1) By adding Li2O(7), the irreversible lithium sites in v2O5 are reduced or eliminated, and the amount of lithium that is trapped there and dies is reduced. Therefore, the utilization efficiency of lithium in the negative electrode increases.
(2)Li2Oの添加により、初期開路電圧が366■
か63.3vにまで低下し、電解質の溶媒の酸化、分解
が防げた。(2) By adding Li2O, the initial open circuit voltage is 366■
The voltage dropped to 63.3v, preventing oxidation and decomposition of the electrolyte solvent.
の2点が考えられる。Two points can be considered.
なお、三元系非晶質材料を製造する方法は前述したよう
な方法にのみ限定されるものではない。Note that the method for producing the ternary amorphous material is not limited to the method described above.
たとえば、L i2O.V2O5 、P2O5を所定量
の割合で混合したものを白金るつぼに入れ、電気炉中に
おいて、750℃で1時間にわたって加熱し、ついで白
金るつぼをすばやく水中に入れて急冷する方法を用いる
こともできる。For example, L i2O. It is also possible to use a method in which a mixture of V2O5 and P2O5 in a predetermined ratio is placed in a platinum crucible, heated in an electric furnace at 750°C for 1 hour, and then the platinum crucible is quickly immersed in water for quenching.
あるいはまた、より急冷速度に優れたロール急冷法によ
っても同様の非晶質物質を得ることができる。Alternatively, a similar amorphous material can be obtained by a roll quenching method which has a higher quenching rate.
[実施例]
以下に図面を参照して、本発明を実施例により詳細に説
明する。[Examples] The present invention will be explained in detail by examples below with reference to the drawings.
なお、本発明は、以下の実施例にのみ限定されるもので
はない。以下の実施例において、電池の作成および測定
はすべてアルゴン雰囲気中で行った。Note that the present invention is not limited only to the following examples. In the following examples, all battery preparations and measurements were performed in an argon atmosphere.
実施例1
本例では、正極活物質としての非晶質物質は、■2O5
に所定量のLi2OおよびP2O5を混合し、750℃
で1時間はど白金るつぼで溶融した後に水中で急冷して
作成した。ここで、非晶質化はX線回折により確認した
。具体例として、(V2OS )09y(P2O5)o
、og(L 12O)0026(V2Os )0.ga
u(P2Os )0.or(L i2 0)o、zt
(V2 0S )0.73 (P2OS )5.o
、(L 12O)0.32 (V2OS )6j?
(P2 O5>a、orの4つの非晶質物質のX線回
折図形を第1図に示す。Example 1 In this example, the amorphous material as the positive electrode active material is ■2O5
Mix a predetermined amount of Li2O and P2O5 and heat to 750°C.
It was prepared by melting it in a platinum crucible for one hour and then rapidly cooling it in water. Here, amorphization was confirmed by X-ray diffraction. As a specific example, (V2OS)09y(P2O5)o
,og(L12O)0026(V2Os)0. ga
u(P2Os)0. or(L i2 0) o, zt
(V20S)0.73 (P2OS)5. o
, (L 12O) 0.32 (V2OS ) 6j?
(Figure 1 shows the X-ray diffraction patterns of four amorphous substances with P2 O5>a, or.
第1図かられかるように、これらX線回折図形は、Cu
Kの線で2O会27°付近に非常にブロードな山を持つ
X線的に無定形なパターンを示しており、非晶質化して
いることがわかる。他の混合比の場合にも、第1図と同
様な結果が得られた。As can be seen from Figure 1, these X-ray diffraction patterns are
The K line shows an X-ray amorphous pattern with a very broad peak around 27°, indicating that it has become amorphous. Results similar to those shown in FIG. 1 were obtained with other mixing ratios.
この物質群の非晶質化の方法としては、水中急冷法のほ
かに、双ロール法、スプラット冷却、真空蒸着、電子ビ
ーム蒸着、スパッタ等の方法も用いることができる。In addition to the underwater quenching method, methods such as the twin roll method, splat cooling, vacuum evaporation, electron beam evaporation, and sputtering can also be used to amorphize this substance group.
第2図は、本発明によるリチウム電池の一具体例である
コイン型電池の断面図である。図中、1はステンレス製
封口板、2はポリプロピレン製ガスケット、3はステン
レス製正極ケース、4はリチウム電池、5はポリプロピ
レン製セパレータ、6は正極合剤ペレットを示す。FIG. 2 is a cross-sectional view of a coin-type battery that is a specific example of a lithium battery according to the present invention. In the figure, 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a stainless steel positive electrode case, 4 is a lithium battery, 5 is a polypropylene separator, and 6 is a positive electrode mixture pellet.
封口板1上に金属リチウム負極4を加圧載置したものを
、ガスケット2の凹部に挿入し、封口板1の開口部にお
いて、リチウム負極4の上に、セパレータ5および正極
合剤ペレット6をこの順序に載置し、電解液としての1
.5 N LiAsF6 / 2−メチルテトラヒ
ドロフラン(2Me THF)を適量注入し含浸させ
た後に、正極ケース3を被せてかしめることにより、直
径23mm、厚さ2mmのコイン型電池を作成した。A metal lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the recess of the gasket 2, and a separator 5 and positive electrode mixture pellets 6 are placed on the lithium negative electrode 4 at the opening of the sealing plate 1. Place it in this order and use 1 as an electrolyte.
.. After injecting and impregnating an appropriate amount of 5 N LiAsF6/2-methyltetrahydrofuran (2Me THF), a positive electrode case 3 was placed and caulked to create a coin-shaped battery with a diameter of 23 mm and a thickness of 2 mm.
正極合剤ペレット6を形成するにあたっては、正極活物
質としての前述の4種類の非晶質物質とアセチレンブラ
ックABおよびポリテトラフルオロエチレンを重量比7
0:2O=5の割合で、檀潰機によってそれぞれ混合し
た。その混合物をロール成形して厚み0.6mmとした
ものをポンチで打抜いて、直径16mmのディスク状正
極(面積2cm2)を得た。In forming the positive electrode mixture pellet 6, the above four types of amorphous materials as positive electrode active materials, acetylene black AB and polytetrafluoroethylene are mixed in a weight ratio of 7.
They were mixed using a sand crusher at a ratio of 0:2O=5. The mixture was roll-formed to a thickness of 0.6 mm and punched out to obtain a disk-shaped positive electrode (area: 2 cm2) with a diameter of 16 mm.
このようにして作成したリチウム電池を用いて、0.5
mへ/cm 2の定電流密度で放電した結果を第3図
に示す。さらにまた、1回目と2回目の放電容量(2V
終止)の比較結果を第1表に示す。Using the lithium battery created in this way, 0.5
FIG. 3 shows the results of discharging at a constant current density of m/cm 2 . Furthermore, the first and second discharge capacities (2V
Table 1 shows the results of the comparison.
これら結果より、リチウムの添加量が多い系はど放電電
位が低く、第1放電容量が小さくなっているが、ドープ
したリチウムが効率的に非晶質物質内の不可逆サイトを
補償し、第2放電容量との差、すなわち不可逆リチウム
量が低減している。These results show that the system with a large amount of lithium added has a low discharge potential and a small first discharge capacity, but the doped lithium efficiently compensates for the irreversible sites in the amorphous material, and the second The difference with the discharge capacity, that is, the amount of irreversible lithium is reduced.
さらに、第4図には、正極活物質1モル当りに、充放電
によって出入りできるリチウム量を0.5 mA/cm
2の充放電電流密度で10サイクル目まで追跡してプ
ロットした結果を示す。Furthermore, in Figure 4, the amount of lithium that can go in and out through charging and discharging per mole of positive electrode active material is set at 0.5 mA/cm.
The results are shown below, which were traced and plotted up to the 10th cycle at a charge/discharge current density of 2.
(V2 O5) (P2 O5) テハ、正極
活物0、qso、0!;
質1モル当りに、0.7モルのリチウムが不可逆サイト
にトラップされて充電がきかないのに対し、(Li2O
)xを添加した系では、その添加量に応じて効率よくリ
チウムの不可逆サイトが埋まっていることがわかる。(V2 O5) (P2 O5) Teha, positive electrode active material 0, qso, 0! ; For every mol of lithium, 0.7 mol of lithium is trapped in irreversible sites and cannot be charged, whereas (Li2O
) It can be seen that in the system to which x is added, the irreversible sites of lithium are filled efficiently depending on the amount added.
実施例2
実施例1と同様にして作成したリチウム電池を用いて、
(1,5mA/ca+ 2の充放電電流密度で、2■〜
3.5v間の電圧規制充放電を行った。その結果得られ
た各非晶質物質の充放電サイクル数と放電容量との関係
を第5図に示−4−0
(Li2O)Xを添加した系では、サイクル寿命および
その安定性に向上がみられ、特に(Li2O)(lo1
6(V2 o5)ilJj4 (P2Os >6.6g
の系では、(V2O3)重量当りに約180Ah /k
gの充放電容量を示しつつ、2(1(lサイクルを経過
した後もなお続行中である。Example 2 Using a lithium battery prepared in the same manner as Example 1,
(At a charge/discharge current density of 1.5mA/ca+2,
Voltage regulated charging and discharging between 3.5V and 3.5V was performed. The relationship between the number of charge/discharge cycles and the discharge capacity of each amorphous material obtained as a result is shown in Figure 5.-4-0 In the system to which (Li2O)X was added, the cycle life and stability were improved. observed, especially (Li2O)(lo1
6(V2 o5)ilJj4 (P2Os >6.6g
In the system, approximately 180Ah/k per (V2O3) weight
It is still continuing even after 2(1(l) cycles have passed, while showing a charge/discharge capacity of 1.3 g.
実施例3 実施例1と同様にして作成した(Li2O)。、0.。Example 3 It was created in the same manner as in Example 1 (Li2O). ,0. .
(V2 O5)5.Hz4 (P2O5 )a、rノ非
晶質物質を正極活物質としたリチウム電池を用いて、0
.5 mA/c+n 2.2mA/cm 2.4mA/
cm 2゜8 mA/cm 2の各放電電流密度で充放
電した結果を第6図に示す。いずれの場合にも、充電は
0.5mA/cm2の電流密度で、2〜3.5v間の電
圧規制の充放電サイクルである。(V2 O5)5. Hz4 (P2O5)a, r using a lithium battery with an amorphous material as the positive electrode active material,
.. 5 mA/c+n 2.2mA/cm 2.4mA/
The results of charging and discharging at various discharge current densities of cm 2°8 mA/cm 2 are shown in FIG. In both cases, charging is a charge-discharge cycle with a voltage regulation between 2 and 3.5 V at a current density of 0.5 mA/cm2.
[発明の効果]
以上説明したように、本発明によれば、あらかじめLi
2Oの形で添加したリチウムが、非晶質V2O3中の不
可逆なリチウムサイトを補償するため、充放電容量のロ
スの少ない小型高エネルギー密度のリチウム電池を構成
することができ、本発明電池は、コイン型電池など種々
の分野に利用できるという利点を有する。[Effects of the Invention] As explained above, according to the present invention, Li
Since the lithium added in the form of 2O compensates for the irreversible lithium sites in the amorphous V2O3, it is possible to construct a small, high energy density lithium battery with little loss of charge/discharge capacity, and the battery of the present invention has the following features: It has the advantage that it can be used in various fields such as coin-type batteries.
第1図は本発明の実施例における正極活物質のX線回折
図形を示す線図、
第2図は本発明の一実施例であるコイン型電池の構成例
を示す断面図、
第3図は本発明の実施例における電池の放電特性を示す
特性図、
第4図および第5図は本発明の実施例における電池の充
放電特性を示す特性図、
第6図は本発明の実施例における電池の電流特性を示す
特性図である。
1・・・ステンレス製封口板、
2・・・ポリプロピレン製ガスケット、3・・・ステン
レス製正極ケース、
4・・・リチウム負極、
5・・・ポリプロピレン製セパレータ、6・・・正極合
剤ベレ・ント。FIG. 1 is a diagram showing the X-ray diffraction pattern of the positive electrode active material in an example of the present invention, FIG. 2 is a cross-sectional view showing an example of the structure of a coin-type battery that is an example of the present invention, and FIG. A characteristic diagram showing the discharge characteristics of the battery in the example of the present invention. Figures 4 and 5 are characteristic diagrams showing the charge and discharge characteristics of the battery in the example of the present invention. Figure 6 is a characteristic diagram showing the discharge characteristics of the battery in the example of the present invention. FIG. 1... Stainless steel sealing plate, 2... Polypropylene gasket, 3... Stainless steel positive electrode case, 4... Lithium negative electrode, 5... Polypropylene separator, 6... Positive electrode mixture bezel. nt.
Claims (1)
系酸化物であって、その組成が (V_2O_5)x(Li_2O)y(P_2O_5)
z(但し、x+y+z=1、0.1≦y/x≦0.5、
0≦z≦0.3) で与えられる非晶質物質を正極活物質とし、リチウムま
たはリチウム合金を負極活物質とし、前記正極活物質お
よび前記負極活物質に対して化学的に安定であり、かつ
リチウムイオンが前記正極活物質あるいは前記負極活物
質と電気化学反応をするための移動を行い得る物質を電
解質物質としたことを特徴とするリチウム電池。[Claims] A ternary oxide consisting of V_2O_5, Li_2O, and P_2O_5, the composition of which is (V_2O_5)x(Li_2O)y(P_2O_5)
z (however, x+y+z=1, 0.1≦y/x≦0.5,
0≦z≦0.3) as a positive electrode active material, and lithium or a lithium alloy as a negative electrode active material, which is chemically stable with respect to the positive electrode active material and the negative electrode active material, A lithium battery characterized in that the electrolyte material is a substance that allows lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61016715A JPS62176054A (en) | 1986-01-30 | 1986-01-30 | Lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61016715A JPS62176054A (en) | 1986-01-30 | 1986-01-30 | Lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62176054A true JPS62176054A (en) | 1987-08-01 |
JPH047070B2 JPH047070B2 (en) | 1992-02-07 |
Family
ID=11923960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61016715A Granted JPS62176054A (en) | 1986-01-30 | 1986-01-30 | Lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62176054A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528033B1 (en) | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
US6579475B2 (en) | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6645452B1 (en) | 2000-11-28 | 2003-11-11 | Valence Technology, Inc. | Methods of making lithium metal cathode active materials |
US6706445B2 (en) | 2001-10-02 | 2004-03-16 | Valence Technology, Inc. | Synthesis of lithiated transition metal titanates for lithium cells |
US6720112B2 (en) | 2001-10-02 | 2004-04-13 | Valence Technology, Inc. | Lithium cell based on lithiated transition metal titanates |
US6908710B2 (en) | 2001-10-09 | 2005-06-21 | Valence Technology, Inc. | Lithiated molybdenum oxide active materials |
-
1986
- 1986-01-30 JP JP61016715A patent/JPS62176054A/en active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6579475B2 (en) | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6932922B2 (en) | 1999-12-10 | 2005-08-23 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6528033B1 (en) | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
US6716372B2 (en) | 2000-01-18 | 2004-04-06 | Valence Technology, Inc. | Lithium-containing materials |
US7060206B2 (en) | 2000-01-18 | 2006-06-13 | Valence Technology, Inc. | Synthesis of metal compounds under carbothermal conditions |
US7276218B2 (en) | 2000-01-18 | 2007-10-02 | Valence Technology, Inc. | Methods of making transition metal compounds useful as cathode active materials |
US6645452B1 (en) | 2000-11-28 | 2003-11-11 | Valence Technology, Inc. | Methods of making lithium metal cathode active materials |
US6960331B2 (en) | 2000-11-28 | 2005-11-01 | Valence Technology, Inc. | Methods of making lithium metal cathode active materials |
US6706445B2 (en) | 2001-10-02 | 2004-03-16 | Valence Technology, Inc. | Synthesis of lithiated transition metal titanates for lithium cells |
US6720112B2 (en) | 2001-10-02 | 2004-04-13 | Valence Technology, Inc. | Lithium cell based on lithiated transition metal titanates |
US6908710B2 (en) | 2001-10-09 | 2005-06-21 | Valence Technology, Inc. | Lithiated molybdenum oxide active materials |
Also Published As
Publication number | Publication date |
---|---|
JPH047070B2 (en) | 1992-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tarascon et al. | Li Metal‐Free Rechargeable Batteries Based on Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes | |
KR100542184B1 (en) | An active material for a battery and a method of preparing the same | |
US5506075A (en) | Non-aqueous electrolyte secondary battery and method of producing the same | |
KR100951516B1 (en) | Lithium transition-metal phosphate powder for rechargeable batteries | |
US6986968B2 (en) | Cathode active material for lithium secondary cell and method for manufacturing the same | |
EP0752728B1 (en) | Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material | |
US5605773A (en) | Lithium manganese oxide compound and method of preparation | |
JPH10507031A (en) | Method for synthesizing alkali metal intercalated manganese oxide material and electrode for electrochemical cell using this material | |
KR100426095B1 (en) | Non-aqueous electrolyte secondary cell | |
EP0734085B1 (en) | Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries | |
US20010031399A1 (en) | Positive active material for rechargeable lithium battery and method of preparing same | |
JPS62176054A (en) | Lithium battery | |
JP2724350B2 (en) | Lithium battery | |
JP3198545B2 (en) | Non-aqueous electrolyte secondary battery | |
EP0728702B1 (en) | Lithium iron oxide, synthesis of the same, and lithium cell utilizing the same | |
JP2559055B2 (en) | Lithium battery | |
JP3130531B2 (en) | Non-aqueous solvent secondary battery | |
JP3858088B2 (en) | Method for producing homogeneously shaped lithium manganese oxide | |
JPH0554887A (en) | Nonaqueous electrolyte secondary battery | |
JPS61116758A (en) | Lithium battery | |
JP3005688B2 (en) | Lithium battery | |
JP3013209B2 (en) | Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof | |
JP2559054B2 (en) | Lithium battery | |
JPH0350385B2 (en) | ||
JPS62176055A (en) | Lithium battery |