JPS62176055A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPS62176055A
JPS62176055A JP61016716A JP1671686A JPS62176055A JP S62176055 A JPS62176055 A JP S62176055A JP 61016716 A JP61016716 A JP 61016716A JP 1671686 A JP1671686 A JP 1671686A JP S62176055 A JPS62176055 A JP S62176055A
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61016716A
Other languages
Japanese (ja)
Other versions
JPH047071B2 (en
Inventor
Shigeto Okada
重人 岡田
Yoji Sakurai
庸司 櫻井
Hideaki Otsuka
大塚 秀昭
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61016716A priority Critical patent/JPS62176055A/en
Publication of JPS62176055A publication Critical patent/JPS62176055A/en
Publication of JPH047071B2 publication Critical patent/JPH047071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make a battery compact, and to increase charge-discharge capacity and battery performance by using a binary system oxide to which TiO2 is added in an amorphous form as a positive active material. CONSTITUTION:A double oxide crystal or an amorphous material of a binary system oxide compising amorphous V2O5 and TiO2 and having (V2O5)x(TiO2)y (where, x+y=1, 0.1<=y<=0.5) is used as a positive active material 6. Lithium or lithium alloy is used as an active material of a negative electrode 4. A substance which is chemically stable to positive and negative active materials and allows a lithium ion to move to electrochemically react with the both active materials is used as an electrolyte material. Thereby, a battery is made compact, and charge-discharge capacity is increased, and battery performance is also made good.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、小型にして充放電用量の大きなリチウム二次
電池、詳細にはリチウムを負極活物質とし、(V2O5
)x (Ti02  )yを正極活動物質として用いる
充放電可能なリチウム電池に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a lithium secondary battery that is small in size and has a large charge/discharge capacity, specifically, a lithium secondary battery that uses lithium as a negative electrode active material,
The present invention relates to a chargeable and dischargeable lithium battery using )x (Ti02)y as a positive electrode active material.

[開示の概要] 本発明は、V2O5とTiO2から成る二元系酸化物で
あって、その組成が、 (V20s ) x (Ti02 ) y(但しx+y
 −1,0,1≦y≦0.5)で与えられる複酸化物材
料を正極活物質とし、リチウムまたはリチウム合金を負
極活物質とし、前記正極活物質および前記負極活物質に
対して化学的に安定であり、かつリチウムイオンが前記
正極活物質あるいは前記負極活物質と電気化学反応をす
るための移動をおこないつる物質を電解質物質とするこ
とにより、充放電容量のロスの少ない小型高エネルギー
密度のリチウム電池を構成することかでき、コイン型電
池など種々の分野に利用できる技術を開示するものであ
る。
[Summary of the Disclosure] The present invention provides a binary oxide consisting of V2O5 and TiO2, the composition of which is (V20s) x (Ti02) y (where x+y
-1,0,1≦y≦0.5) is used as a positive electrode active material, lithium or a lithium alloy is used as a negative electrode active material, and chemically applied to the positive electrode active material and the negative electrode active material. By using a vine material as an electrolyte material, which is stable and allows lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material, it is a compact, high energy density material with little loss of charge/discharge capacity. The present invention discloses a technology that can be used in various fields such as coin-type batteries and can be used to construct lithium batteries.

なお、この概要はあくまでも本発明の技術内容に迅速に
アクセスするためにのみ供されるものであって、本発明
の技術的範囲および権利解釈に対しては何の影響も及ぼ
さないものである。
Note that this summary is provided solely for the purpose of quickly accessing the technical content of the present invention, and does not have any influence on the technical scope of the present invention or the interpretation of rights.

[従来の技術] 従来から、リチウムを負極活物質として用いる高エネル
ギー密度電池に関して多くの提案がなされている。例え
ば、正極活物質として黒鉛および、弗素のインターカレ
ーション化合物、負極活物質としてリチウム合金をそれ
ぞれ使用した電池が知られている(たとえば、米国特許
第3,514,337号明細書参考)。さらにまた、弗
化黒鉛を正極活物質に用いたリチウム電池や、二酸化マ
ンガンを正極活物質として用いたリチウム電池が既に市
販されている。
[Prior Art] Many proposals have been made regarding high energy density batteries that use lithium as a negative electrode active material. For example, batteries are known that use graphite and a fluorine intercalation compound as a positive electrode active material, and a lithium alloy as a negative electrode active material (for example, see US Pat. No. 3,514,337). Furthermore, lithium batteries using fluorinated graphite as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available.

しかし、これらの電池は一次電池であり、充電できない
欠点があった。
However, these batteries are primary batteries and have the disadvantage that they cannot be recharged.

リチウムを負極活物質として用いる二次電池については
、正極活物質として、チタン、ハフニウム、ニオビウム
、タンタル、バナジウムの硫化物、セレン化物、テルル
化物を用いた電池(たとえば、米国特許第4,009,
052号明細書参考)、あるいは酸化クロム、セレン化
ニオビウム等を用いた電池(J、Electroche
m、Soc、、124(7)、968 and325、
 (1977))等が提案されているが、これらの電池
はその電池特性および経済性が必ずしも充分であるとは
いえなかった。
Regarding secondary batteries using lithium as a negative electrode active material, batteries using titanium, hafnium, niobium, tantalum, vanadium sulfides, selenides, and tellurides as positive electrode active materials (for example, U.S. Pat. No. 4,009,
052 specification), or batteries using chromium oxide, niobium selenide, etc. (J, Electroche
m, Soc,, 124(7), 968 and 325,
(1977)), but these batteries could not necessarily be said to have sufficient battery characteristics and economical efficiency.

また、非晶質物質を正極活物質に用いたリチウム電池に
ついては、MoS2 、Mo53 、v2s5の場合(
J、Electroanal、 chem、、118,
229(1981))やLiV30Bの場合(J、 N
on−Crystalline 5olids、44゜
297 (1981))等が提案されている。
In addition, for lithium batteries using amorphous materials as positive electrode active materials, in the case of MoS2, Mo53, and v2s5 (
J,Electroanal,chem,, 118,
229 (1981)) and LiV30B (J, N
on-Crystalline 5olids, 44°297 (1981)), etc. have been proposed.

しかし、いずれの提案も、大電流密度での放電や充放電
特性の点で問題があった。
However, both proposals had problems in terms of discharge at high current density and charge/discharge characteristics.

結晶質のP2O5を正極活物質として用いることは、 
 J、Electrochem、Soc、  Meet
ing、Toronto、Mayll−16,1975
,No、27)で提案されている。またP2O5にP2
O5を加え、溶融後に急冷することにより得られる非晶
質物質については、特願昭59−237778号に提案
されている。
Using crystalline P2O5 as a positive electrode active material
J, Electrochem, Soc, Meet
ing, Toronto, Mayll-16, 1975
, No., 27). Also, P2O5 and P2
An amorphous material obtained by adding O5 and rapidly cooling after melting is proposed in Japanese Patent Application No. 59-237778.

しかし、いずれにあっても、容量が小さく、充放電特性
も充分とはいえなかった。
However, in either case, the capacity was small and the charge/discharge characteristics were not sufficient.

[発明が解決しようとする問題点] そこで、本発明の目的は、上記現状の問題点を改良して
、小型で充放電容量が大きく、優れた電池特性をもつリ
チウム電池を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to improve the above-mentioned current problems and provide a lithium battery that is small, has a large charge/discharge capacity, and has excellent battery characteristics. .

[問題点を解決するための手段] かかる目的を達成するために、本発明リチウム電池では
、正極活物質として、(V2 O5)X(TiO2)y
を用いる。
[Means for Solving the Problems] In order to achieve the above object, the lithium battery of the present invention uses (V2O5)X(TiO2)y as a positive electrode active material.
Use.

本発明では、P2O5にT i O2を添加した二元系
酸化物を正極活物質として用いることにより、従来のリ
チウム電池より充放電容量が大きく、サイクル性に優れ
たリチウム電池を構成できることを確かめ、その認識の
下に本発明を完成した。
In the present invention, it was confirmed that by using a binary oxide in which TiO2 is added to P2O5 as a positive electrode active material, a lithium battery with higher charge/discharge capacity and excellent cycleability than conventional lithium batteries can be constructed. The present invention was completed based on this understanding.

すなわち、本発明は、 P2O5と TiO2から成る
二元系酸化物であって、その組成が一般式、(P2O5
)X (Tt02  )y (但しx*y −1,0,1≦y≦0.5)で与えられ
る複酸化物の結晶もしくは非晶質材料を正極活物質とし
、リチウムまたはリチウム合金を負極活物質とし、正極
活物質および負極活物質に対して化学的に安定であり、
かつリチウムイオンが正極活物質あるいは負極活物質と
電気化学反応をするための移動をおこないうる物質を電
解質物質としたことを特徴とする。
That is, the present invention provides a binary oxide consisting of P2O5 and TiO2, whose composition has the general formula (P2O5
)X (Tt02 )y (where x*y -1,0,1≦y≦0.5) is used as the positive electrode active material, and lithium or lithium alloy is used as the negative electrode active material. chemically stable with respect to the positive electrode active material and negative electrode active material,
The present invention is characterized in that the electrolyte material is a substance that allows lithium ions to move for electrochemical reaction with the positive electrode active material or the negative electrode active material.

この正極活物質を用いて正極を形成するには、この混合
物質粉末またはこれとポリテトラフルオロエチレンの如
き結合剤粉末との混合物をニッケル、ステンレス等の支
持体状に圧着成形する。
In order to form a positive electrode using this positive electrode active material, this mixed material powder or a mixture of this mixed material powder and a binder powder such as polytetrafluoroethylene is pressure-molded onto a support such as nickel or stainless steel.

あるいは、かかる混合物質粉末に導電性を付与するため
にアセチレンブラックのような導電性粉末を混合し、こ
れに更にポリテトラフルオロエチレンのような結合剤粉
末を所要に応じて加え、この混合物を金属容器に入れ、
あるいは前述の混合物をニッケルやステンレス等の支持
体状に圧着成形する等の手段によって正極を形成するこ
とかできる。
Alternatively, a conductive powder such as acetylene black is mixed in order to impart conductivity to the mixed material powder, and a binder powder such as polytetrafluoroethylene is further added as required, and this mixture is mixed with a conductive powder such as acetylene black to impart conductivity. Put it in a container,
Alternatively, the positive electrode can be formed by pressure-molding the above-mentioned mixture onto a support such as nickel or stainless steel.

負極活物質としては、リチウムもしくはリチウム合金を
用いる。かかるリチウムもしくはリチウム合金は、一般
のリチウムの場合と同様に、シート状に展延し、または
そのシートをニッケルやステンレス等の導電性網に圧着
して負極として形成することができる。
Lithium or a lithium alloy is used as the negative electrode active material. Such lithium or lithium alloy can be formed into a negative electrode by being spread into a sheet or by pressing the sheet onto a conductive net made of nickel, stainless steel, etc., as in the case of general lithium.

さらに、電解質としては、正極活物質および負極活物質
に対して化学的に安定であり、かつ、リチウムイオンが
正極活物質と電気化学反応をするための移動を行い得る
物質を用いる。たとえばプロピレンカーボネート、2−
メチルテトラヒドロフラン、ジオキソレン、テトラヒド
ロフラン、1.2−ジメトキシエタン、エチレンカーボ
ネート、γ−ブチロラクトン、ジメチルスルホキシド、
アセトニトリル、ホルムアミド、ジメチルホルムアミド
、ニトロメタン等の一種以上の非プロトン性有機溶媒と
 LiCIL04 、  Li/1CA4 。
Further, as the electrolyte, a substance is used that is chemically stable with respect to the positive electrode active material and the negative electrode active material, and is capable of moving lithium ions for electrochemical reaction with the positive electrode active material. For example, propylene carbonate, 2-
Methyltetrahydrofuran, dioxolene, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide,
LiCIL04, Li/1CA4 and one or more aprotic organic solvents such as acetonitrile, formamide, dimethylformamide, nitromethane, etc.

LiBF4 、LICi!、、 LiPF6 、LiA
sF6等のリチウム塩との組合せまたはリチウムイオン
を伝導体とする固体電解質あるいは溶融塩など、一般に
リチウムを負極活物質として用いた電池で使用される既
知の電解質を、本発明においても電解質として用いるこ
とができる。
LiBF4, LICi! ,, LiPF6, LiA
Known electrolytes generally used in batteries using lithium as a negative electrode active material, such as a combination with a lithium salt such as sF6, or a solid electrolyte or molten salt using lithium ions as a conductor, can be used as the electrolyte in the present invention. I can do it.

また、電池構成上、必要に応じて微孔性セパレータを用
いるときなどには、多孔質ポリプロピレン等より成る薄
膜を使用してもよい。
Further, when a microporous separator is used as required in the battery configuration, a thin film made of porous polypropylene or the like may be used.

正極活物質としての前述した非晶質物質は、その組成式
、 (V205  )X  (Ti02  )y   (但
し、x+y−1)において、0.1≦y≦0.5の範囲
で混合した後に焼成処理されたものが好適である。かか
る焼成温度は600℃〜680℃の範囲とし、TiO2
添加量の多い系はど高くする。また、実施例の項で後述
するように、この混合酸化物を溶融径急冷処理すること
によって得られる非晶質物質も同様に良好な電池特性を
示す。しかし、この範囲外の組成を持つ正極活物質は優
れた特性を呈することが困難となる。
The above-mentioned amorphous material as a positive electrode active material has a composition formula of (V205) Those that have been treated are preferred. The firing temperature is in the range of 600°C to 680°C, and TiO2
The price will be higher for systems with a large amount of additives. Furthermore, as will be described later in the Examples section, an amorphous material obtained by subjecting this mixed oxide to melt diameter quenching also exhibits good battery characteristics. However, it is difficult for a positive electrode active material having a composition outside this range to exhibit excellent characteristics.

[作 用コ 本発明によれば、充放電容量のロスの少ない小型高エネ
ルギー密度のリチウム電池を構成することができ、本発
明電池は、コイン型電池など種々の分野に利用できる。
[Function] According to the present invention, it is possible to construct a small, high energy density lithium battery with little loss of charge/discharge capacity, and the battery of the present invention can be used in various fields such as coin-type batteries.

[実施例コ 以下に図面を参照して、本発明を実施例により詳細に説
明する。
[Examples] The present invention will be explained in detail by examples below with reference to the drawings.

なお、本発明は、以下の実施例にのみ限定されるもので
はない。以下の実施例において、電池の作成および測定
はすべてアルゴン雲囲気中で行った。
Note that the present invention is not limited only to the following examples. In the following examples, all cell preparations and measurements were performed under an argon cloud.

実施例1 第1図は、本発明によるリチウム電池の一具体例である
コイン型電池の断面図である。図中、1はステンレス製
封口板、2はポリプロピレン製ガスケット、3はステン
レス製正極ケース、4はリチウム負極、5はポリプロピ
レン製セパレータ、6は正極合剤ベレットを示す。
Example 1 FIG. 1 is a sectional view of a coin-type battery that is a specific example of a lithium battery according to the present invention. In the figure, 1 is a stainless steel sealing plate, 2 is a polypropylene gasket, 3 is a stainless steel positive electrode case, 4 is a lithium negative electrode, 5 is a polypropylene separator, and 6 is a positive electrode mixture pellet.

まず、封口板l上に金属リチウム負極4を加圧載置した
ものを、ガスケット2の凹部に挿入し、封口板1の開口
部において、リチウム負極4の上に、セパレータ5およ
び正極合剤ペレット6をこの順序に載置し、電解液とし
ての1.5 N −LiAsF6 / 2−メチルテト
ラヒドロフラン(2Me  THF)を適量注入し含浸
させた後に、正極ケース3を被せてかしめることにより
、直径23mm、厚さ2+nmのコイン型電池を作成し
た。
First, a metal lithium negative electrode 4 placed under pressure on a sealing plate l is inserted into the recess of the gasket 2, and the separator 5 and positive electrode mixture pellets are placed on the lithium negative electrode 4 at the opening of the sealing plate 1. 6 in this order, and after injecting and impregnating an appropriate amount of 1.5 N -LiAsF6/2-methyltetrahydrofuran (2Me THF) as an electrolyte, cover the positive electrode case 3 and swage it to a diameter of 23 mm. , a coin-type battery with a thickness of 2+nm was created.

正極活物質は、■205とT i 02とをTiO2の
モル%が10%から50%の範囲になるように混合し、
大気中で、600〜680℃の温度で24時間焼成し、
もしくは30モル%以下のP2O5を添加してから、約
800℃で溶融径急冷処理することにより、それぞれ上
述した正極活物質の結晶および非晶質物質を得た。
The positive electrode active material is prepared by: (1) mixing 205 and T i 02 so that the mol% of TiO2 is in the range of 10% to 50%;
Baked in the air at a temperature of 600 to 680°C for 24 hours,
Alternatively, after adding 30 mol % or less of P2O5, the melt diameter quenching treatment was performed at about 800° C. to obtain the above-mentioned crystalline and amorphous positive electrode active materials, respectively.

作成した正極活物質を、混合粉砕機を用いて約70分間
にわたフて粉砕したのち、アセチレンブラック八Bおよ
びテトラフJレオロエチレンと重量比で70:25:5
の割合で混合した。その混合物をロール成型して厚み0
.6mmとしたものをポンチで打ち抜いて、正極合剤ベ
レット6を得た。
The prepared positive electrode active material was pulverized for about 70 minutes using a mixing pulverizer, and then mixed with acetylene black 8B and tetraph J rheoloethylene in a weight ratio of 70:25:5.
mixed in the ratio of The mixture is roll-formed to a thickness of 0.
.. A 6 mm diameter piece was punched out to obtain a positive electrode mixture pellet 6.

以上のようにして作成したリチウム電池を用いて、0.
5mA /cm2の電流密度で定電流放電した結果を正
極活動物質としての、種々の組成のv2o5 )x (
Ti02  )y  (但しx+y =1,0.1≦y
≦0.5)で与えられる複酸化物の結晶材料および非晶
質材料の場合について第1表に示す。
Using the lithium battery created as described above, 0.
The results of constant current discharge at a current density of 5 mA/cm2 were used as positive electrode active materials for various compositions of v2o5 )x (
Ti02)y (however, x+y =1, 0.1≦y
Table 1 shows the case of a crystalline material and an amorphous material of a double oxide given by ≦0.5).

第1表0 、5mA/ Cm2での放電容量(2V終止
)単位:^h 7kg また、第1表のうちから、代表例として、(V2 O5
)o、7r(T i 02 1o、2(の複酸化物の結
晶質および非晶質材料を正極活物質としたときの放電曲
線を第2図に示す。
Table 1 Discharge capacity at 0,5mA/Cm2 (2V end) Unit: ^h 7kg Also, from Table 1, as a representative example, (V2 O5
)o, 7r(T i 02 1o, 2) FIG. 2 shows a discharge curve when crystalline and amorphous materials of the double oxide of (T i 02 1o, 2) are used as the positive electrode active material.

実施例26 実施例1と同様にして作成したリチウム電池を用いて、
0.5m^/cm2の定電流密度で、2v〜3.5o間
の電圧規制充放電試験を行った。5回目のサイクルにお
ける放電容量を種々の結晶材料および非晶質材料の場合
について第2表に示す。
Example 26 Using a lithium battery prepared in the same manner as Example 1,
A voltage regulated charge/discharge test between 2v and 3.5o was conducted at a constant current density of 0.5m^/cm2. The discharge capacity at the fifth cycle is shown in Table 2 for various crystalline and amorphous materials.

第2表0.5m八へcm2での放電容量(2V終止)単
位:Ah 7kg また、第2表のうちから代表例として、(”205  
)(+、74;(T i 02  )、、、117)結
晶質および非晶質材料を正極活物質としたときのサイク
ル特性を第3図に示す。
Table 2 Discharge capacity (2V final) in cm2 to 0.5m8 Unit: Ah 7kg Also, as a representative example from Table 2, ("205
) (+, 74; (T i 02 ), , 117) The cycle characteristics when crystalline and amorphous materials are used as positive electrode active materials are shown in FIG.

第1表に示したように、単純放電容量に関しては結晶材
料の方が優れているが、サイクル性に関しては非晶質材
料の方が優れている。特に、結晶質材料および非晶質材
料のいずれ共、T i 02モ1分率0.25mo1%
の場合に過電圧が低く、最もよいサイクル特性を示すこ
とがわかる。
As shown in Table 1, crystalline materials are better in terms of simple discharge capacity, but amorphous materials are better in terms of cycleability. In particular, for both the crystalline material and the amorphous material, the Ti02 mo1 fraction is 0.25 mo1%.
It can be seen that the overvoltage is low and the best cycle characteristics are exhibited in the case of .

[発明の効果] 以上説明したように、本発明によれば、充放電量のロス
の少ない小型高エネルギー密度のリチウム電池を構成す
ることができ、本発明電池は、コイン型電池など種々の
分野に利用できるという利点を有する。
[Effects of the Invention] As explained above, according to the present invention, it is possible to construct a small, high energy density lithium battery with little loss in charge/discharge capacity, and the battery of the present invention can be used in various fields such as coin-type batteries. It has the advantage that it can be used for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるコイン型電池の構成例
を示す断面図、 第2図は本発明の一実施例における電池の放電特性を示
す特性図、 第3図は本発明の一実施例における電池の充放電特性を
示す特性図である。 1・・・ステンレス製封口板、 2・・・ポリプロピレン製ガスケット、3・・・ステン
レス製正極ケース、 4・・・リチウム負極、 5・・・ポリプロピレン製セパレータ、6・・・正極合
剤ペレット。
FIG. 1 is a cross-sectional view showing a configuration example of a coin-type battery according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the discharge characteristics of a battery according to an embodiment of the present invention, and FIG. FIG. 2 is a characteristic diagram showing the charging and discharging characteristics of a battery in one example. DESCRIPTION OF SYMBOLS 1... Stainless steel sealing plate, 2... Polypropylene gasket, 3... Stainless steel positive electrode case, 4... Lithium negative electrode, 5... Polypropylene separator, 6... Positive electrode mixture pellet.

Claims (1)

【特許請求の範囲】 V_2O_5とTiO_2から成る二元系酸化物であつ
て、その組成が、 (V_2O_5)x(TiO_2)y (但しx+y=1、0.1≦y≦0.5) で与えられる複酸化物材料を正極活物質とし、リチウム
またはリチウム合金を負極活物質とし、前記正極活物質
および前記負極活物質に対して化学的に安定であり、か
つリチウムイオンが前記正極活物質あるいは前記負極活
物質と電気化学反応をするための移動をおこないうる物
質を電解質物質としたことを特徴とするリチウム電池。
[Claims] A binary oxide consisting of V_2O_5 and TiO_2, the composition of which is given by (V_2O_5)x(TiO_2)y (where x+y=1, 0.1≦y≦0.5). The positive electrode active material is a double oxide material, and the negative electrode active material is lithium or lithium alloy, which is chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions are A lithium battery characterized in that an electrolyte material is a substance that can move to perform an electrochemical reaction with a negative electrode active material.
JP61016716A 1986-01-30 1986-01-30 Lithium battery Granted JPS62176055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016716A JPS62176055A (en) 1986-01-30 1986-01-30 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016716A JPS62176055A (en) 1986-01-30 1986-01-30 Lithium battery

Publications (2)

Publication Number Publication Date
JPS62176055A true JPS62176055A (en) 1987-08-01
JPH047071B2 JPH047071B2 (en) 1992-02-07

Family

ID=11923988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016716A Granted JPS62176055A (en) 1986-01-30 1986-01-30 Lithium battery

Country Status (1)

Country Link
JP (1) JPS62176055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
GB2269265B (en) * 1992-08-01 1995-10-11 Atomic Energy Authority Uk Electrochemical cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
US5441832A (en) * 1992-08-01 1995-08-15 United Kingdom Atomic Energy Authority Electrochemical cell
GB2269265B (en) * 1992-08-01 1995-10-11 Atomic Energy Authority Uk Electrochemical cell

Also Published As

Publication number Publication date
JPH047071B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
CA2270656C (en) Nonaqueous electrolyte battery and charging method therefor
US5605773A (en) Lithium manganese oxide compound and method of preparation
US6083475A (en) Method for making lithiated metal oxide
JP3426869B2 (en) Non-aqueous electrolyte secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JP2000243455A (en) Lithium secondary battery
JP2000156224A (en) Nonaqueous electrolyte battery
JPH10120421A (en) Lithium-iron oxide, its production and lithium cell
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
JPH03110765A (en) Organic electrolyte battery
JPS62176055A (en) Lithium battery
JPH08180875A (en) Lithium secondary battery
JPS62176054A (en) Lithium battery
JPH0381268B2 (en)
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH0212768A (en) Lithium secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JP2559055B2 (en) Lithium battery
JPS62195854A (en) Lithium cell
JPS61206168A (en) Lithium secondary battery
JPH0350385B2 (en)
JPH09293515A (en) Electrode material and lithium secondary battery
JPH04121962A (en) Battery member
JPH03263768A (en) Secondary battery
JPH04328260A (en) Nonaqueous solvent secondary battery