JPH0714607A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0714607A
JPH0714607A JP6063567A JP6356794A JPH0714607A JP H0714607 A JPH0714607 A JP H0714607A JP 6063567 A JP6063567 A JP 6063567A JP 6356794 A JP6356794 A JP 6356794A JP H0714607 A JPH0714607 A JP H0714607A
Authority
JP
Japan
Prior art keywords
carbonate
battery
negative electrode
secondary battery
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6063567A
Other languages
Japanese (ja)
Other versions
JP3557240B2 (en
Inventor
Tokuo Komaru
篤雄 小丸
Shigeru Fujita
茂 藤田
Keiichi Yokoyama
恵一 横山
Akio Hibara
昭男 檜原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Sony Corp
Original Assignee
Mitsui Petrochemical Industries Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd, Sony Corp filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP06356794A priority Critical patent/JP3557240B2/en
Publication of JPH0714607A publication Critical patent/JPH0714607A/en
Application granted granted Critical
Publication of JP3557240B2 publication Critical patent/JP3557240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To maintain charge/discharge reaction by using a mixture of methylethyl carbonate and dimethyl carbonate as a low viscosity solvent of an electrolyte in a nonaqueous electrolyte secondary battery using a carbon material capable of doping/undoping lithium in an negative electrode and a lithium transition composite oxide in a positive electrode. CONSTITUTION:A mixture of methylethyl carbonate and dimetyl carbonate is used as a low viscosity solvent of an electrolyte so as to obtain normal charge/discharge reaction in overcharging and even after leaving under high temperature in a charged state. When the total volume of a nonaqueous solvent is represented by T, the volume of methylethyl carbonate by M, and the volume of dimethyl carbonate by D, a mixing ratio of methylethyl carbonate and dimethyl carbonate to the total volume is specified to 2/10<=(M+D)/T<=8/10, and a mixing ratio methylethyl carbonate and dimethyl carbonate is specified to 1/9<=D/M<=8/2. If D/M is less than 1/9, effect on preventing capacity deterioration can not be obtained sufficiently, and If D/M exceeds 8/2, internal pressure may be increased when the battery is left at high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特にリチウム遷移金属複合酸化物を正極に、リチ
ウムイオンのドープ・脱ドープ可能な炭素材料を負極に
用いたリチウムイオン系の非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a lithium ion system using a lithium transition metal composite oxide as a positive electrode and a lithium ion doping / dedoping carbon material as a negative electrode. The non-aqueous electrolyte secondary battery of.

【0002】[0002]

【従来の技術】従来、一般的な二次電池としては、水溶
液系の電解液を用いるニッケルカドミウム電池や鉛電池
等が広く用いられている。しかし、カメラ一体型VT
R、携帯電話、ラップトップコンピュータ等,新しいポ
ータブル電子機器が近年次々に出現する中、これら電子
機器のさらなる小型軽量化を達成するために携帯可能な
ポータブル電源である二次電池に対してもさらなる高エ
ネルギー密度化の要求がされ、前記ニッケルカドミウム
電池や鉛電池では不十分になってきている。また、カド
ミウムや鉛は、地球環境保護の観点からも好ましくな
く、実際に使用を法規制し始めている国もあることか
ら、これらに代わる材料を用いた二次電池の開発が望ま
れている。
2. Description of the Related Art Conventionally, nickel-cadmium batteries, lead batteries and the like which use an aqueous electrolyte solution have been widely used as general secondary batteries. However, a camera-integrated VT
With the emergence of new portable electronic devices such as R, mobile phones, and laptop computers, etc. in recent years, even for secondary batteries, which are portable power sources that are portable to achieve further size reduction and weight reduction of these electronic devices. There is a demand for higher energy density, and the nickel cadmium battery and the lead battery are becoming insufficient. Further, cadmium and lead are not preferable from the viewpoint of protecting the global environment, and in some countries, the use of cadmium and lead is actually beginning to be regulated. Therefore, it is desired to develop a secondary battery using a material replacing them.

【0003】上述のニッケルカドミウム電池,鉛電池に
代わるものとしては電解質を非水溶媒に溶解してなる非
水電解液を用いた非水電解液電池が注目されている。
As an alternative to the above-mentioned nickel-cadmium battery and lead battery, a non-aqueous electrolyte battery using a non-aqueous electrolyte solution obtained by dissolving an electrolyte in a non-aqueous solvent has been attracting attention.

【0004】ここで、上記非水電解液電池としては、一
次電池仕様のものが既に開発されている。一次電池の場
合、負極は放電するのみで可逆性は必要なく、電池のエ
ネルギー密度は正極の特性で略決まると言える。このた
め、正極に用いる活物質については非常に多くの材料が
提案され評価検討されている。
Here, as the non-aqueous electrolyte battery, one having a primary battery specification has been already developed. In the case of a primary battery, the negative electrode only discharges and does not need reversibility, and it can be said that the energy density of the battery is substantially determined by the characteristics of the positive electrode. Therefore, as the active material used for the positive electrode, a great many materials have been proposed and evaluated.

【0005】しかし、上記非水電解液電池を二次電池仕
様のものとして開発しようとするには、良好なサイクル
特性を達成するために負極活物質の特性が非常に重要と
なってくる。ところが、かかる観点からの検討は数多く
なされているものの、その成果は甚だ少ないと言わざる
を得ない。
However, in order to develop the above non-aqueous electrolyte battery as a secondary battery specification, the characteristics of the negative electrode active material are very important in order to achieve good cycle characteristics. However, although many studies have been conducted from this perspective, the results have to be said to be very small.

【0006】例えば一次電池仕様の非水電解液電池の負
極活物質としてはリチウム金属が用いられているが、こ
のリチウム金属を二次電池の負極材料として使用する場
合の問題点は検討初期段階から指摘されている。
For example, lithium metal is used as a negative electrode active material of a non-aqueous electrolyte battery of primary battery specifications. However, the problem in using this lithium metal as a negative electrode material of a secondary battery is from the initial stage of study. It has been pointed out.

【0007】すなわち、リチウム金属を二次電池の負極
活物質として使用すると、充放電の繰り返しによって負
極でリチウムの溶解析出反応が起こって、リチウムがデ
ンドライト状に析出し、この析出したリチウムがセパレ
ータを貫通して正極に達し、内部ショートが発生する。
このため、電池寿命が短いというものである。特に、こ
のようなリチウム析出は、大電流密度による充電(急速
充電)において顕著である。
That is, when lithium metal is used as a negative electrode active material of a secondary battery, lithium is deposited and dissolved in the negative electrode due to repeated charging and discharging, and lithium is deposited in a dendrite form. It penetrates to reach the positive electrode and an internal short circuit occurs.
Therefore, the battery life is short. In particular, such lithium deposition is remarkable in charging with a large current density (rapid charging).

【0008】ここで、このようなリチウム析出も緩やか
な充放電を行うことで進行を遅延させることができ、こ
れによりサイクル寿命を幾分長くすることは可能であ
る。
[0008] Here, such lithium precipitation can be delayed in progress by performing gentle charging / discharging, whereby the cycle life can be lengthened somewhat.

【0009】しかし、実用電池として使用する上では、
安全性能に優れることも重要な要件となってくる。この
ような点からリチウム金属を負極材料として用いる場合
を見ると、緩やかな充放電を行ったとしても溶解析出の
繰り返し過程で、電流密度によらずに負極上には微粉化
した活性なリチウムが生成する。その状態で内部ショー
トが起こったり、誤って電池が変形するようなショック
を受けたりすると、電池は非常に危険な状態に陥る。す
なわち、最悪の場合、約0.4%の確率で発火,破裂が
起こるという報告もある。(1991年電気化学協会秋
季大会講演要旨集p127)。
However, when used as a practical battery,
Excellent safety performance is also an important requirement. From this point of view, when using lithium metal as a negative electrode material, finely divided active lithium is present on the negative electrode in the repeated process of dissolution and deposition even if gentle charging and discharging are performed, regardless of the current density. To generate. If an internal short circuit occurs in that state or if a shock such as accidentally deforming the battery occurs, the battery falls into a very dangerous state. That is, in the worst case, there is a report that ignition and rupture occur with a probability of about 0.4%. (Proceedings of the 1991 Electrochemical Society Autumn Meeting p127).

【0010】このような問題を解決するために、非水電
解液を改良してリチウム析出形態の改善を試みたり、負
極活物質としてリチウム−アルミニウム等の合金を用い
ることが検討されている。しかし、このような手法によ
っては、大きな成果は得られておらず、例えば合金を負
極材料として用いた場合には、深い充放電時のサイクル
寿命に劣り、しかも合金は硬質のためスパイラル状に巻
けずコイン形のような小型偏平電池に使用されるに留ま
ってしまう。
In order to solve such a problem, it has been considered to improve the non-aqueous electrolytic solution to try to improve the form of lithium deposition or to use an alloy such as lithium-aluminum as the negative electrode active material. However, with such a method, no great results have been obtained.For example, when an alloy is used as a negative electrode material, the cycle life during deep charge and discharge is inferior, and since the alloy is hard, it can be wound in a spiral shape. Instead of being used for small flat batteries such as coin type.

【0011】そこで、さらにリチウムイオンが黒鉛の層
間にドープされ安定化合物として存在できるといったい
わゆるリチウム−黒鉛層間化合物の研究結果から、この
リチウム−黒鉛層間化合物を電池の負極材料へ応用する
ことが試みられている。そして、種々の炭素材料が電気
化学的にリチウムイオンのドープ・脱ドープが可能であ
ることが明らかとなっている。
Therefore, based on the research results of so-called lithium-graphite intercalation compounds in which lithium ions can be doped between graphite layers and exist as a stable compound, it has been attempted to apply this lithium-graphite intercalation compound to a negative electrode material of a battery. ing. It has been clarified that various carbon materials can be electrochemically doped / undoped with lithium ions.

【0012】このような炭素材料を負極に、リチウムコ
バルト複合酸化物等のリチウム複合酸化物を正極に用い
ると、充放電に際してリチウムはイオンの状態で正負極
間を行き来するのみで金属として析出することはない。
したがって、リチウム金属の析出によって生じる安全
性、サイクル寿命、急速充電時等における問題点が克服
可能となる。しかも、この炭素材料を負極活物質とする
負極の作動電圧は0〜1.5Vであるのでリチウム複合
酸化物を正極活物質とする正極の4V以上という高い作
動電圧を犠牲にすることなく、高エネルギー密度を有す
るリチウムイオン二次電池が完成されることとなる。
When such a carbon material is used for the negative electrode and a lithium composite oxide such as a lithium cobalt composite oxide is used for the positive electrode, lithium is deposited as a metal by simply moving between the positive and negative electrodes in an ionic state during charge and discharge. There is no such thing.
Therefore, it is possible to overcome the problems caused by the deposition of lithium metal, such as safety, cycle life, and rapid charging. Moreover, since the operating voltage of the negative electrode using this carbon material as the negative electrode active material is 0 to 1.5 V, the high operating voltage of 4 V or higher of the positive electrode using the lithium composite oxide as the positive electrode active material is not sacrificed, and the operating voltage is high. A lithium ion secondary battery having an energy density will be completed.

【0013】さらに、この他の二次電池仕様の非水電解
液電池としては、充放電電位の卑な金属酸化物を負極活
物質とし、正極活物質,負極活物質とも金属層間化合物
を用いたRC型(Rocking Chair)電池が
提案されている。炭素材料よりも充放電電位が貴な金属
酸化物を負極活物質として使用する場合、上記炭素材料
を負極活物質として使用する場合に比べエネルギー密度
は低くなるものの安全性等の問題はクリアできることか
ら高電圧を必要としないリチウムイオン二次電池系のシ
ステムとして有望視されている。
Further, in other non-aqueous electrolyte batteries of secondary battery specifications, a base metal oxide having a charge / discharge potential was used as a negative electrode active material, and a metal intercalation compound was used for both the positive electrode active material and the negative electrode active material. RC type (Rocking Chain) batteries have been proposed. When using a metal oxide whose charge / discharge potential is higher than that of a carbon material as the negative electrode active material, the energy density is lower than when using the above carbon material as the negative electrode active material, but problems such as safety can be cleared. It is regarded as a promising lithium-ion secondary battery system that does not require high voltage.

【0014】[0014]

【発明が解決しようとする課題】ところで、上述の如く
エネルギー密度、サイクル寿命に優れる二次電池仕様の
非水電解液電池が各種提案されているが、民生用ポータ
ブル電源として使用するにはさらに異常モード,例えば
過充電時や外部短絡時の安全性能や夏期の自動車内のよ
うな高温環境下での放置等を想定した耐環境性能につい
ても問題の無いものでなければならない。
By the way, various types of non-aqueous electrolyte batteries having secondary battery specifications, which are excellent in energy density and cycle life, have been proposed as described above, but they are more abnormal when used as a portable power source for consumer use. Modes, such as safety performance during overcharge and external short-circuit, and environmental resistance performance that is assumed to be left in a high temperature environment such as in a car during the summer, should also have no problems.

【0015】特に、夏期における自動車のダッシュボー
ド上の温度は、最高100℃まで上昇すると言われてい
る。もしそのような場所に電池が置かれたとすると、昼
間の8時間は100℃前後の高温に曝されることにな
る。この場合、電池自身が使用不能になったとしても少
なくとも周囲の環境に対しては安全性,信頼性を確保し
なければならない。
In particular, it is said that the temperature on the dashboard of a car in summer rises up to 100.degree. If the batteries were placed in such a place, they would be exposed to a high temperature of around 100 ° C. for 8 hours during the day. In this case, even if the battery itself becomes unusable, safety and reliability must be secured at least for the surrounding environment.

【0016】このような過充電,高温環境下放置に対す
る安全性能,耐環境性能は例えば電解液に用いる非水溶
媒の選択によって改善される。すなわち、電解液の非水
溶媒は高誘電率溶媒と低粘度溶媒によって構成される
が、従来では高誘電率溶媒として炭酸プロピレン(P
C)が低粘度溶媒としてジメトキシエタン(DME)が
用いられている。このジメトキシエタンの代わりに炭酸
ジエチル(DEC)をもちいた炭酸プロピレンと炭酸ジ
エチルの混合溶媒を非水溶媒として用いると、炭酸プロ
ピレンとジメトキシエタンの混合溶媒を用いる場合に生
じていた高温使用時におけるサイクル寿命の大きな低下
が抑えられるということが特開平4−067998号公
報に記載されている。
The safety performance and the environmental resistance performance against such overcharge, leaving in a high temperature environment, and the like are improved by, for example, selecting a non-aqueous solvent used for the electrolytic solution. That is, the non-aqueous solvent of the electrolytic solution is composed of a high-dielectric constant solvent and a low-viscosity solvent. Conventionally, propylene carbonate (P
C) uses dimethoxyethane (DME) as a low viscosity solvent. When a mixed solvent of propylene carbonate and diethyl carbonate using diethyl carbonate (DEC) is used as the non-aqueous solvent instead of this dimethoxyethane, the cycle at the time of high temperature use that occurs when the mixed solvent of propylene carbonate and dimethoxyethane is used. It is described in Japanese Patent Laid-Open No. 4-067998 that a large decrease in life is suppressed.

【0017】しかしながら、炭酸プロピレンと炭酸ジエ
チルよりなる混合溶媒を用いれば高温使用時におけるサ
イクル寿命の大きな低下は抑えられるものの過充電とな
った場合に大きく温度上昇し、例えば電池内圧応答型の
電流遮断装置が具備されている場合にこの電流遮断装置
が作動した後でも温度上昇が停止せずさらに続行し、比
較的急速に電池が破損するといったトラブルがしばしば
発生する。
However, if a mixed solvent of propylene carbonate and diethyl carbonate is used, a large decrease in cycle life during use at high temperature can be suppressed, but when overcharged, the temperature greatly rises, for example, battery internal pressure response type current interruption. When the device is provided, even after the operation of the current interruption device, the temperature rise does not stop and continues further, and a trouble often occurs that the battery is damaged relatively quickly.

【0018】このようなトラブルの原因は明らかではな
いが、炭酸ジエチルとリチウム金属を密閉容器に入れ6
0℃程度の高温に保存すると、炭酸ジエチルとリチウム
金属とが急激に反応して液が黄色化する。そして、ガス
発生を伴いながら反応熱によりさらに反応が加速し、終
には液が固化するという実験事実から、過充電時の温度
上昇の過程において炭酸ジエチルと炭素負極のドープ可
能量を越えて析出したリチウム金属とが反応を起こした
ことが原因しているものと考えられる。
Although the cause of such trouble is not clear, diethyl carbonate and lithium metal are placed in a closed container.
When stored at a high temperature of about 0 ° C., diethyl carbonate reacts rapidly with lithium metal, causing the liquid to turn yellow. From the experimental fact that the reaction is further accelerated by the heat of reaction while gas is generated, and the liquid solidifies at the end, the precipitation amount exceeds the dopeable amount of diethyl carbonate and the carbon negative electrode in the process of temperature rise during overcharge. It is considered that this is due to the fact that a reaction has occurred with the lithium metal.

【0019】また、炭酸プロピレンと炭酸ジエチルより
なる混合溶媒を用いた非水電解液二次電池では、充電状
態で高温下に保存すると、自己放電が起こって電圧が低
下し再び充放電サイクルを行っても回復させることがで
きない不可逆的な容量劣化が引き起こる場合がある。
Further, in a non-aqueous electrolyte secondary battery using a mixed solvent of propylene carbonate and diethyl carbonate, when stored at a high temperature in a charged state, self-discharge occurs, the voltage is lowered, and the charge / discharge cycle is performed again. However, irreversible capacity deterioration that cannot be recovered may occur.

【0020】この理由は定かではないが、充電状態で高
温下に保存した後の電池は、インピーダンスが高くなっ
ていることから何らかの原因で正極、負極或いは電解液
等が劣化し、これにより電池容量の劣化が起こったもの
と考えられる。
The reason for this is not clear, but the positive electrode, negative electrode, electrolytic solution, etc. of the battery after being stored at a high temperature in a charged state has a high impedance, which causes deterioration of the battery capacity. It is considered that the deterioration of

【0021】このようにこれまでの非水電解液二次電池
は、エネルギー密度,環境保護の点からはニッケルカド
ミウム電池,鉛電池に比べて優れるものの安全性能や耐
環境性能が不十分であり、実用化は遠いものと言わざる
を得ない。
As described above, the conventional non-aqueous electrolyte secondary battery is superior to the nickel-cadmium battery and the lead battery in terms of energy density and environmental protection, but has insufficient safety performance and environmental resistance performance. It must be said that practical application is a long way off.

【0022】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであって、高エネルギー密度,長
サイクル寿命であるとともに安全性能,耐環境性能に優
れた非水電解液二次電池を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and it is a secondary non-aqueous electrolyte solution having high energy density, long cycle life, and excellent safety performance and environmental resistance performance. The purpose is to provide a battery.

【0023】[0023]

【課題を解決するための手段】本発明者らは、上述の目
的を達成するためには低粘度溶媒としてリチウムと反応
性の低い低粘度溶媒を用いることが必要であると考え、
そのような低粘度溶媒を網羅的に検索した結果、炭酸メ
チルエチルと炭酸ジメチルの混合溶媒を見い出すに至っ
た。
In order to achieve the above-mentioned object, the present inventors believe that it is necessary to use a low-viscosity solvent having low reactivity with lithium as the low-viscosity solvent,
As a result of a comprehensive search for such low-viscosity solvents, we have found a mixed solvent of methyl ethyl carbonate and dimethyl carbonate.

【0024】本発明はこのような知見に基づいて完成さ
れたものであって、リチウムイオンのドープ・脱ドープ
が可能な炭素材料を負極活物質とする負極と、リチウム
と遷移金属の複合酸化物を正極活物質とする正極と、非
水溶媒に電解質を溶解してなる非水電解液を有してなる
非水電解液二次電池において、非水溶媒は、炭酸メチル
エチルと炭酸ジメチルを含有することを特徴とするもの
である。
The present invention has been completed based on the above findings, and is a negative electrode using a carbon material capable of doping / dedoping lithium ions as a negative electrode active material, and a composite oxide of lithium and a transition metal. In a non-aqueous electrolyte secondary battery comprising a positive electrode having as a positive electrode active material and a non-aqueous electrolyte solution obtained by dissolving an electrolyte in a non-aqueous solvent, the non-aqueous solvent contains methyl ethyl carbonate and dimethyl carbonate. It is characterized by doing.

【0025】また、負極活物質は、(002)面の面間
隔が0.37nm以上、真密度が1.7g/cm3
下、且つ空気気流中における示差熱分析において観測さ
れる酸化発熱ピークが700℃以下にある炭素材料であ
り、非水溶媒は、炭酸プロピレン、炭酸メチルエチル及
び炭酸ジメチルを含有することを特徴とするものであ
る。
The negative electrode active material has a (002) plane spacing of 0.37 nm or more, a true density of 1.7 g / cm 3 or less, and an oxidation exothermic peak observed in a differential thermal analysis in an air stream. It is a carbon material at 700 ° C. or lower, and the non-aqueous solvent is characterized by containing propylene carbonate, methyl ethyl carbonate and dimethyl carbonate.

【0026】さらに、負極活物質は、(002)面の面
間隔が0.340nm以下、C軸方向の結晶子厚みが1
4.0nm以上、真密度が2.1g/cm3 以上である
炭素材料であり、非水溶媒は、炭酸エチレン、炭酸メチ
ルエチル及び炭酸ジメチルを含有することを特徴とする
ものである。また、さらに、非水溶媒の炭酸メチルエチ
ルと炭酸ジメチルの混合率が、非水溶媒全容量をT、炭
酸メチルエチル容量をM、炭酸ジメチル容量をDとした
ときに、 3/10≦(M+D)/T≦7/10 であることを特徴とするものである。
Further, the negative electrode active material has a (002) plane spacing of 0.340 nm or less and a crystallite thickness in the C-axis direction of 1
It is a carbon material having a true density of 2.1 g / cm 3 or more and 4.0 nm or more, and the non-aqueous solvent is characterized by containing ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate. Further, the mixing ratio of the non-aqueous solvent methyl ethyl carbonate and dimethyl carbonate is 3/10 ≦ (M + D, where T is the total volume of the non-aqueous solvent, M is the methyl ethyl carbonate capacity, and D is the dimethyl carbonate capacity. ) / T ≦ 7/10.

【0027】また、非水溶媒の炭酸メチルエチルと炭酸
ジメチルの混合率が、炭酸メチルエチル容量をM、炭酸
ジメチル容量をDとしたときに、 1/9≦D/M≦8/2 であることを特徴とするものである。また、非水溶媒
に、炭酸ジエチルが1〜20容量%なる割合で添加され
ていることを特徴とするものである。
The mixing ratio of non-aqueous solvent methyl ethyl carbonate and dimethyl carbonate is 1 / 9≤D / M≤8 / 2, where M is the methyl ethyl carbonate capacity and D is the dimethyl carbonate capacity. It is characterized by that. Further, it is characterized in that diethyl carbonate is added to the non-aqueous solvent at a ratio of 1 to 20% by volume.

【0028】本発明の非水電解液二次電池は、電池缶内
に負極,正極.非水電解液が収容されてなる。
The non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode, a positive electrode and a positive electrode in a battery can. It contains a non-aqueous electrolyte.

【0029】負極に用いる負極活物質としては、この種
の二次電池に用いられるものがいずれも使用可能である
が、特に以下に列挙される炭素材料が好適である。
As the negative electrode active material used for the negative electrode, any of those used in this type of secondary battery can be used, but the carbon materials listed below are particularly preferable.

【0030】まず、3000℃程度で熱処理されても黒
鉛化しない炭素材料、すなわち難黒鉛化炭素が挙げられ
る。
First, a carbon material which is not graphitized even when heat-treated at about 3000 ° C., that is, non-graphitizable carbon is mentioned.

【0031】このような難黒鉛化炭素材料を生成するた
めの出発原料としては、フルフリルアルコールあるいは
フルフラールのホモポリマー、コポリマーよりなるフラ
ン樹脂が好適である。それは、このフラン樹脂を炭素化
した炭素材料が、(002)面の面間隔が0.37nm
以上、真密度1.70g/cc以下で示差熱分析(DT
A)で700℃以上に酸化発熱ピークを持たす、電池の
負極材料として非常に良好な特性を示すからである。
A furan resin composed of furfuryl alcohol or furfural homopolymer or copolymer is suitable as a starting material for producing such a non-graphitizable carbon material. The carbon material obtained by carbonizing the furan resin has a (002) plane spacing of 0.37 nm.
Above, the differential thermal analysis (DT) with a true density of 1.70 g / cc or less.
This is because in A), it has an oxidation exothermic peak at 700 ° C. or higher and exhibits very good characteristics as a negative electrode material for batteries.

【0032】また、この他の出発原料としては、特定の
H/C原子比を有する石油ピッチに酸素を含む官能基を
導入(いわゆる酸素架橋)した有機材料も前記フラン樹
脂と同様、炭素化したときに優れた特性の炭素材料とな
ることから使用することが可能である。
As another starting material, an organic material obtained by introducing a functional group containing oxygen into petroleum pitch having a specific H / C atomic ratio (so-called oxygen cross-linking) is carbonized as in the furan resin. It can be used because it sometimes becomes a carbon material with excellent characteristics.

【0033】前記石油ピッチは、コールタール、エチレ
ンボトム油、原油等の高温熱分解で得られるタール類、
アスファルトなどより蒸留(真空蒸留,常圧蒸留,スチ
ーム蒸留)、熱重縮合、抽出、化学重縮合等の操作によ
って得られる。このとき石油ピッチのH/C原子比が重
要で、難黒鉛化炭素とするためにはこのH/C原子比を
0.6〜0.8とする必要がある。
The petroleum pitch is tars obtained by high-temperature thermal decomposition of coal tar, ethylene bottom oil, crude oil, etc.,
It can be obtained from asphalt and the like by operations such as distillation (vacuum distillation, atmospheric distillation, steam distillation), thermal polycondensation, extraction, chemical polycondensation and the like. At this time, the H / C atomic ratio of the petroleum pitch is important, and it is necessary to set the H / C atomic ratio to 0.6 to 0.8 in order to obtain non-graphitizable carbon.

【0034】これら石油ピッチに酸素を含む官能基を導
入する具体的な手段は限定されないが、例えば硝酸,混
酸、硫酸、次亜塩素酸等の水溶液による湿式法、あるい
は酸化性ガス(空気、酸素)による乾式法、さらに硫
酸、硝酸アンモニア、過硫酸アンモニア、塩化第二鉄等
の固体試薬による反応などが用いられる。例えば、上記
手法により石油ピッチに酸素を含む官能基を導入した場
合、炭素化の過程(約400℃)で溶融することなく固
相状態で最終の炭素材料が得られ、それは難黒鉛化炭素
の生成過程に類似する。
The specific means for introducing a functional group containing oxygen into these petroleum pitches is not limited, but for example, a wet method using an aqueous solution of nitric acid, mixed acid, sulfuric acid, hypochlorous acid or the like, or an oxidizing gas (air, oxygen). ), A reaction with a solid reagent such as sulfuric acid, ammonium nitrate, ammonium persulfate, and ferric chloride. For example, when a functional group containing oxygen is introduced into the petroleum pitch by the above method, the final carbon material is obtained in the solid state without melting during the carbonization process (about 400 ° C.), which is difficult to graphitize carbon. Similar to the generation process.

【0035】前述の手法により酸素を含む官能基を導入
した石油ピッチを炭素化して負極材とするが、炭素化の
際の条件は特に問わない。(002)面の面間隔が0.
37nm以上、真密度1.70g/cc以下、示差熱分
析(DTA)で700℃以上に酸化発熱ピークを持たな
いという特性を満足する炭素材料が得られるような炭素
化条件に設定すれば、単位重量あたりのリチウムドープ
量の大きな負極材が得られる。例えば石油ピッチを酸素
架橋した前駆体の酸素含有量が10重量%以上となるよ
うに条件設定することで、生成される炭素材料の(00
2)面間隔を0.37nm以上とすることができる。し
たがって、前記前駆体の酸素含有量は10重量%以上に
することが好ましく、実用的には10〜20重量%の範
囲である。
The petroleum pitch having oxygen-containing functional groups introduced therein is carbonized by the above-mentioned method to form a negative electrode material, but the conditions for carbonization are not particularly limited. The surface spacing of the (002) plane is 0.
If the carbonization conditions are set so that a carbon material satisfying the characteristics of 37 nm or more, true density of 1.70 g / cc or less, and having no oxidation exothermic peak at 700 ° C. or more by differential thermal analysis (DTA) is set, A negative electrode material having a large lithium doping amount per weight can be obtained. For example, by setting conditions such that the oxygen content of the oxygen-crosslinked precursor of petroleum pitch is 10% by weight or more, (00
2) The surface spacing can be 0.37 nm or more. Therefore, the oxygen content of the precursor is preferably 10% by weight or more, and practically in the range of 10 to 20% by weight.

【0036】なお、前記酸素架橋を行う有機材料として
は、H/C原子比が0.6〜0.8であれば良く、以下
の出発原料をピッチ化等の前熱処理を行うことにより得
られたものが使用可能である。
The oxygen-crosslinking organic material may have an H / C atomic ratio of 0.6 to 0.8, and can be obtained by subjecting the following starting materials to preheat treatment such as pitching. It can be used.

【0037】そのような出発原料としては、フェノール
樹脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリイミ
ド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、共役
系樹脂、セルロースおよびその誘導体、等の有機高分子
系化合物や、ナフタレン、フェナントレン、アントラセ
ン、トリフェニレン、ピレン、ペリレン、ペンタフェ
ン、ペンタセンなどの縮合多環炭化水素化合物、その他
誘導体(例えばこれらのカルボン酸、カルボン酸無水
物、カルボン酸イミド等)、前記各化合物の混合物を主
成分とする各種ピッチ、アセナフチレン、インドール、
イソインドール、キノリン、イソキノリン、キノキサリ
ン、フタラジン、カルバゾール、アクリジン、フェナジ
ン、フェナントリジン等の縮合複素環化合物、その誘導
体である。
Examples of such starting materials include organic polymer compounds such as phenol resin, acrylic resin, vinyl halide resin, polyimide resin, polyamideimide resin, polyamide resin, conjugated resin, cellulose and its derivatives, and the like. Condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphene, pentacene, other derivatives (for example, carboxylic acids thereof, carboxylic acid anhydrides, carboxylic acid imides, etc.), and mixtures of the above compounds Various pitches, acenaphthylene, indole,
It is a condensed heterocyclic compound such as isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine and phenanthridine, and derivatives thereof.

【0038】さらに負極活物質としては、3000℃程
度で熱処理されたときに黒鉛化する炭素材料、すなわち
易黒鉛化炭素が挙げられる。
Further, examples of the negative electrode active material include a carbon material which is graphitized when heat-treated at about 3000 ° C., that is, graphitizable carbon.

【0039】易黒鉛化炭素の出発原料となる有機材料と
しては、代表的なものとして石炭やピッチが挙げられ
る。ピッチは、コールタール、エチレンボトム油、原油
等の高温熱分解で得られるタール類、アスファルトなど
より蒸留(真空蒸留、常圧蒸留、スチーム蒸留)、熱重
縮合、抽出、化学重縮合等の操作によって得られるもの
や、その他木材乾留時に生成するピッチ等もある。
Typical examples of the organic material as a starting material for the graphitizable carbon include coal and pitch. Pitch can be used for operations such as distillation (vacuum distillation, atmospheric distillation, steam distillation), thermal polycondensation, extraction, chemical polycondensation, etc. from tars and asphalt obtained by high-temperature pyrolysis of coal tar, ethylene bottom oil, crude oil, etc. And the pitch produced during carbonization of wood.

【0040】また、高分子化合物原料としてはポリ塩化
ビニル樹脂、ポリビニルアセテート、ポリビニルブチラ
ート、3,5−ジメチルフェノール樹脂等がある。
As the polymer compound raw material, there are polyvinyl chloride resin, polyvinyl acetate, polyvinyl butyrate, 3,5-dimethylphenol resin and the like.

【0041】これらの出発原料は、炭素化の途中最高4
00℃程度で液状で存在し、その温度で保持することで
芳香環同士が縮合、多環化して積層配向した状態とな
り、その後500℃程度以上の温度になると固体の炭素
前駆体則ちセミコークスを形成する。このような過程を
液相炭素化過程と呼び、易黒鉛化炭素の典型的な生成過
程である。
These starting materials have a maximum of 4 during the carbonization.
It exists in a liquid state at about 00 ° C, and when kept at that temperature, the aromatic rings are condensed, polycyclic, and become in a layered orientation, and at a temperature of about 500 ° C or higher, a solid carbon precursor, that is, semi-coke. To form. Such a process is called a liquid-phase carbonization process and is a typical formation process of graphitizable carbon.

【0042】前記の石炭、ピッチ、高分子化合物の原料
は、炭素化する際、当然のことながら前述の液相炭素過
程を経るものである。その他、出発原料としてはナフタ
レン、フェナントレン、アントラセン、トリフェニレ
ン、ピレン、ペリレン、ペンタフェン、ペンタセン等の
縮合多環炭化水素化合物、その他誘導体(例えばこれら
のカルボン酸、カルボン酸無水物、カルボン酸イミド
等)、前記各化合物の混合物、アセナフチレン、インド
ール、イソインドール、キノリン、イソキノリン、キノ
キサリン、フタラジン、カルバゾール、アクリジン、フ
ェナジン、フェナントリジン等の縮合複素環化合物、そ
の誘導体も使用可能である。
The above-mentioned raw materials of coal, pitch and polymer compound are, of course, those which have undergone the above-mentioned liquid phase carbon process when carbonized. In addition, as a starting material, condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphene, and pentacene, other derivatives (for example, carboxylic acids thereof, carboxylic acid anhydrides, carboxylic acid imides, etc.), It is also possible to use a mixture of the above compounds, a condensed heterocyclic compound such as acenaphthylene, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine and phenanthridine, and derivatives thereof.

【0043】以上の原料有機材料を用いて炭素材料を得
る場合、例えば、窒素気流中、300〜700℃で炭化
した後、窒素気流中、昇温速度毎分1〜20℃、到達温
度900〜1300℃、到達温度での保持時間0〜5時
間程度の条件で焼成すれば良い。勿論、場合によっては
炭化操作を省略しても良い。
When a carbon material is obtained using the above raw material organic material, for example, after carbonizing at 300 to 700 ° C. in a nitrogen stream, the temperature rising rate is 1 to 20 ° C. per minute in the nitrogen stream, and the reached temperature is 900 to The firing may be performed under the conditions of 1300 ° C. and a holding time of 0 to 5 hours at the ultimate temperature. Of course, in some cases, the carbonization operation may be omitted.

【0044】また、さらに、負極活物質としては、(0
02)面の面間隔が0.340nm以下、C軸方向の結
晶子厚みが14.0nm以上、真密度が2.1g/cm
3 以上である黒鉛系の炭素材料も電極充填性に優れ、高
容量の電池が得られる。
Further, as the negative electrode active material, (0
02) face spacing is 0.340 nm or less, C-axis crystallite thickness is 14.0 nm or more, and true density is 2.1 g / cm.
Graphite-based carbon materials of 3 or more also have excellent electrode filling properties, and high capacity batteries can be obtained.

【0045】前記物性パラメータを示す炭素材料の代表
としては、天然黒鉛が挙げられる。また、有機材料を炭
素化し、さらに高温処理された人造黒鉛も前記物性パラ
メータを示す。人造黒鉛を得るには前記易黒鉛化炭素材
料を前駆体とし、2000℃以上の高温で熱処理される
ことによって得られる。
As a typical carbon material exhibiting the above physical property parameters, natural graphite can be mentioned. Further, artificial graphite obtained by carbonizing an organic material and further treated at high temperature also exhibits the above-mentioned physical property parameters. To obtain artificial graphite, the easily graphitizable carbon material is used as a precursor and heat-treated at a high temperature of 2000 ° C. or higher.

【0046】以上の炭素材料は、粉砕・分級することで
負極材料に供されるが、この粉砕は炭化、か焼、高温熱
処理の前後あるいは昇温過程の間いずれで行っても良
い。
The above carbon material is pulverized and classified to be used as a negative electrode material, but this pulverization may be performed before or after carbonization, calcination, high temperature heat treatment, or during the temperature rising process.

【0047】さらには、前記難黒鉛化炭素材料或いは易
黒鉛化炭素材料の前駆体に対し炭素化する際にリン化合
物を添加することで、リチウムドープ量の大きな特殊な
化合物が得られ、これも負極活物質として使用可能であ
る。
Furthermore, by adding a phosphorus compound to the precursor of the non-graphitizable carbon material or the easily graphitizable carbon material at the time of carbonization, a special compound having a large lithium doping amount can be obtained. It can be used as a negative electrode active material.

【0048】添加するリン化合物としては、五酸化リン
などのリン酸化物や、オルトリン酸等のオキソ酸やその
塩等が挙げられるが、取扱やすさ等の点からリン酸化物
及びリン酸が好適である。リン化合物の添加量は、原料
すなわち有機材料もしくは炭素材料に対してリン換算で
0.2〜30重量%、好ましくは0.5〜15重量%、
また負極材料中に残存するリンの割合は0.2〜9.0
重量%、好ましくは0.3〜5重量%とする。
Examples of the phosphorus compound to be added include phosphorus oxides such as phosphorus pentoxide, oxo acids such as orthophosphoric acid and salts thereof, and the like. Phosphorus oxides and phosphoric acids are preferable from the viewpoint of ease of handling. Is. The phosphorus compound is added in an amount of 0.2 to 30% by weight, preferably 0.5 to 15% by weight, in terms of phosphorus, based on the raw material, that is, the organic material or the carbon material.
The proportion of phosphorus remaining in the negative electrode material is 0.2 to 9.0.
%, Preferably 0.3 to 5% by weight.

【0049】この化合物は炭素、酸素、リンを主成分と
するもの(以後C−P−O化合物と称する)であり、リ
ンの存在状態としては、31P核−固体NMRスペクトル
において、オルトリン酸(0ppm)基準で±100p
pmの範囲にピークを有し、且つX線光電子分光法測定
において、炭素原子1s軌道スペクトルの炭素と炭素の
結合エネルギーを284.6eVとしたときに、リン原
子2p軌道スペクトルが135.0eV以下にピークを
有するものが良好な特性を示す。
This compound is mainly composed of carbon, oxygen and phosphorus (hereinafter referred to as C--P--O compound), and the presence state of phosphorus is shown by 31 P nucleus-solid NMR spectrum in orthophosphoric acid ( 0ppm) ± 100p standard
In the X-ray photoelectron spectroscopy measurement, when the binding energy between carbon and carbon in the carbon atom 1s orbital spectrum is set to 284.6 eV, the phosphorus atom 2p orbital spectrum becomes 135.0 eV or less. Those having a peak show good characteristics.

【0050】リン化合物の添加時期は、基本的には既に
炭素材料となっているものに添加してもC−P−O化合
物を形成するが、残存するリンの量が少なくなり、結果
としてリチウムドープ量はあまり増えない。したがっ
て、出来る限り出発原料からリン化合物を添加するほう
が好ましい。
When the phosphorus compound is added, basically, a C--P--O compound is formed even if it is added to a material that has already become a carbon material, but the amount of remaining phosphorus decreases, and as a result, lithium is added. Dope does not increase much. Therefore, it is preferable to add the phosphorus compound from the starting material as much as possible.

【0051】また、焼成して得られたC−P−O化合物
は粉砕・分級して負極材料に供されるが、この粉砕は焼
成の前後あるいは昇温過程の間いずれで行っても良い。
The C--P--O compound obtained by firing is ground and classified to be used as the negative electrode material. This grinding may be performed before or after firing or during the temperature rising process.

【0052】一方、正極に用いる正極活物質としては、
一般式LiX MO2 (但し、MはCo,Ni、Mnの少
なくとも1種を表す。)で表されるリチウム複合金属酸
化物やLiを含んだ層間化合物等である。このうち、特
にLiCoO2 を使用した場合に高いエネルギー密度を
示す。
On the other hand, as the positive electrode active material used for the positive electrode,
Examples thereof include lithium composite metal oxides represented by the general formula Li X MO 2 (where M represents at least one of Co, Ni, and Mn), an intercalation compound containing Li, and the like. Among them, particularly when LiCoO 2 is used, a high energy density is exhibited.

【0053】また、本発明の非水電解液電池は、高容量
を達成することを狙ったものであるので、前記正極は、
定常状態(例えば5回程度充放電を繰り返した後)で負
極活物質1g当たり250mAh以上の充放電容量相当
分のLiを含むことが必要で300mAh以上の充放電
容量相当分のLiを含むことが望ましく、350mAh
以上の充放電容量相当分のLiを含むことがより好まし
い。なお、Liはかならずしも正極からすべて供給され
る必要はなく、要は電池内に負極活物質1g当たり25
0mAh以上の充放電容量相当分のLiが存在すれば良
い。なお、このLiの量は、電池の放電容量を測定する
ことによって換算することができる。
Since the non-aqueous electrolyte battery of the present invention is aimed at achieving a high capacity, the positive electrode is
In a steady state (for example, after repeating charging / discharging about 5 times), it is necessary to include Li corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of the negative electrode active material, and to include Li equivalent to a charge / discharge capacity of 300 mAh or more. Desirably 350mAh
It is more preferable to include Li corresponding to the above charge / discharge capacity. In addition, it is not always necessary to supply Li entirely from the positive electrode.
It suffices if Li corresponding to the charge / discharge capacity of 0 mAh or more exists. The amount of Li can be converted by measuring the discharge capacity of the battery.

【0054】以上の負極,正極は非水溶媒に電解質が溶
解されてなる非水電解液とともに電池缶に収容されるこ
とで充放電反応を行うものとなる。
The above negative electrode and positive electrode perform a charge / discharge reaction by being housed in a battery can together with a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent.

【0055】ここで、電池が過充電,高温下放置等を経
ても負極,正極が正常な充放電反応を維持できるように
するには、用いる非水溶媒の選定が重要となる。つま
り、電解液の非水溶媒は高誘電率溶媒と低粘度溶媒によ
って構成されるが、炭酸ジエチル等,低粘度溶媒として
用いられているものの中には、過充電によって温度が上
昇すると負極上に析出したリチウムと温度上昇を伴いな
がら反応して電池破損を誘発したり、電池を充電状態で
高温環境下に放置した場合に劣化を来し、電池の容量劣
化を生じさせるからである。
Here, the selection of the non-aqueous solvent to be used is important in order that the negative electrode and the positive electrode can maintain a normal charge / discharge reaction even after the battery is overcharged and left under high temperature. In other words, the non-aqueous solvent of the electrolytic solution is composed of a high-dielectric constant solvent and a low-viscosity solvent, but among those used as low-viscosity solvents such as diethyl carbonate, when the temperature rises due to overcharging, the This is because the deposited lithium reacts with the temperature rise to induce battery damage, or when the battery is left in a charged state in a high temperature environment, it deteriorates, resulting in deterioration of the battery capacity.

【0056】そこで、本発明においては、過充電、さら
には充電状態での高温環境下放置を経ても正常な充放電
反応が維持できる安全性能,耐環境性能に優れた電池を
獲得するために、電解液に用いる低粘度溶媒として炭酸
メチルエチルと炭酸ジメチルの混合溶媒を使用する。
Therefore, in the present invention, in order to obtain a battery having excellent safety performance and environmental resistance, which can maintain a normal charge / discharge reaction even after being overcharged and left in a high temperature environment in a charged state, A mixed solvent of methyl ethyl carbonate and dimethyl carbonate is used as the low-viscosity solvent used for the electrolytic solution.

【0057】まず、炭酸メチルエチルは、リチウム金属
との反応性が極めて低い非水溶媒である。したがって、
このような炭酸メチルエチルを用いることにより、過充
電時の温度上昇によってリチウム金属と低粘度溶媒が反
応することによって生じる電池破損が防止される。しか
し、炭酸プロピレン等の高誘電率溶媒と炭酸メチルエチ
ルのみで非水溶媒を構成した場合には、充電状態で高温
放置した場合に電圧が徐々に低下して再び充放電サイク
ルを行っても回復させることができない不可逆的な容量
劣化が引き起こる。
First, methyl ethyl carbonate is a non-aqueous solvent having extremely low reactivity with lithium metal. Therefore,
By using such methyl ethyl carbonate, battery damage caused by reaction between lithium metal and low-viscosity solvent due to temperature rise during overcharge can be prevented. However, when a non-aqueous solvent is composed only of a high-dielectric-constant solvent such as propylene carbonate and methyl ethyl carbonate, the voltage gradually decreases when the battery is left at a high temperature in the charged state, and the voltage recovers even if the charge / discharge cycle is performed again. Irreversible capacity deterioration that cannot be caused occurs.

【0058】そこで、さらに本発明では非水溶媒に第2
の低粘度溶媒として炭酸ジメチルを混合する。非水溶媒
に高誘電率溶媒,炭酸メチルエチルとともに炭酸ジメチ
ルを混合すると、上述の充電状態で高温放置された場合
に生じる電圧低下が抑えられ、過充電さらには充電状態
での高温環境下放置を経ても正常な充放電反応が維持で
きる非水電解液二次電池が得られることとなる。
Therefore, in the present invention, a second non-aqueous solvent is used.
Dimethyl carbonate is mixed as a low viscosity solvent. When non-aqueous solvent is mixed with high-dielectric constant solvent, methyl ethyl carbonate, and dimethyl carbonate, the voltage drop that occurs when the battery is left at high temperature in the above-mentioned charged state is suppressed, and overcharge, and even when left in a high-temperature environment in the charged state. It is possible to obtain a non-aqueous electrolyte secondary battery that can maintain a normal charge / discharge reaction even after passing through.

【0059】なお、非水溶媒に使用する高誘電率溶媒と
しては、炭酸プロピレン,炭酸エチレン等通常用いられ
ているものが使用可能であるが、負極活物質に用いる炭
素材料によって適宜選択することが好ましい。例えば、
黒鉛系の炭素材料を負極活物質として用いる場合には炭
酸プロピレンを高誘電率溶媒とすると溶媒の分解が生じ
ることから炭酸エチレンを高誘電率溶媒とすることが好
ましい。黒鉛系以外の炭素材料を負極活物質として用い
る場合には、炭酸プロピレンが好適である。
As the high dielectric constant solvent used for the non-aqueous solvent, propylene carbonate, ethylene carbonate or the like which is commonly used can be used, but it can be appropriately selected depending on the carbon material used for the negative electrode active material. preferable. For example,
When a graphite-based carbon material is used as the negative electrode active material, ethylene carbonate is preferably used as the high dielectric constant solvent because propylene carbonate is used as the high dielectric constant solvent because the solvent is decomposed. When a carbon material other than graphite is used as the negative electrode active material, propylene carbonate is suitable.

【0060】ここで、炭酸メチルエチルと炭酸ジメチル
の混合率は、非水溶媒の全容量をT,炭酸メチルエチル
容量をM,炭酸ジメチル容量をDとしたときに、 2/10≦(M+D)/T≦8/10 より望ましくは、 3/10≦(M+D)/T≦7/10 と設定することが好ましい。
Here, the mixing ratio of methyl ethyl carbonate and dimethyl carbonate is 2/10 ≦ (M + D), where T is the total volume of the non-aqueous solvent, M is the methyl ethyl carbonate volume, and D is the dimethyl carbonate volume. / T ≦ 8/10 More desirably, it is preferable to set 3/10 ≦ (M + D) / T ≦ 7/10.

【0061】さらに、低粘度溶媒となる炭酸メチルエチ
ルと炭酸ジメチルの混合率は、 1/9≦D/M≦8/2 と設定することが好ましい。D/Mが1/9未満である
と炭酸ジメチルによる容量劣化防止効果が十分に得られ
ず、D/Mが8/2を越え、炭酸ジメチルの混合率が高
くなり過ぎた場合には炭酸ジメチルの沸点が90℃と比
較的低いことから高温環境下に放置した場合に電池内圧
が高くなる虞れがある。
Further, the mixing ratio of methyl ethyl carbonate and dimethyl carbonate, which are low-viscosity solvents, is preferably set to 1 / 9≤D / M≤8 / 2. When D / M is less than 1/9, the capacity deterioration preventing effect by dimethyl carbonate cannot be sufficiently obtained, and when D / M exceeds 8/2 and the mixing ratio of dimethyl carbonate becomes too high, dimethyl carbonate Since the boiling point of is relatively low at 90 ° C., the internal pressure of the battery may increase when left in a high temperature environment.

【0062】また、上記非水溶媒には炭酸ジエチルを添
加して耐環境性能の向上を図るようにしても良い。すな
わち、夏期における自動車のダッシュボード上に電池が
放置されるような条件では、沸点の低い炭酸メチルエチ
ル(沸点108℃)と炭酸ジメチル(沸点90℃)の混
合溶媒では電池内圧の上昇を抑えることができない。し
かし、より沸点の高い炭酸ジエチル(沸点126℃)を
添加することで電池内圧の上昇を抑制することが可能と
なる。
Further, diethyl carbonate may be added to the non-aqueous solvent to improve the environmental resistance performance. That is, under the condition that the battery is left on the dashboard of the automobile in the summer, a mixed solvent of methyl ethyl carbonate (boiling point 108 ° C) and dimethyl carbonate (boiling point 90 ° C) having a low boiling point suppresses the rise in the internal pressure of the battery. I can't. However, the addition of diethyl carbonate having a higher boiling point (boiling point 126 ° C.) makes it possible to suppress the rise in the internal pressure of the battery.

【0063】前記高誘電率溶媒,炭酸メチルエチル,炭
酸ジメチルの混合溶媒に対しては、炭酸ジエチルを1〜
20容量%添加することが好ましく、3〜15容量%添
加することがさらに好ましい。本発明に規定する範囲を
逸脱して炭酸ジエチルを多量に添加すると、過充電時の
安全性が損なわれたり、充電状態で高温環境下に放置し
た後の容量劣化が大きくなる。したがって、この炭酸ジ
エチルの添加量は必要最小限に留めるべきである。
For the mixed solvent of the high dielectric constant solvent, methyl ethyl carbonate and dimethyl carbonate, 1 to 1 of diethyl carbonate is added.
It is preferable to add 20% by volume, more preferably 3 to 15% by volume. If a large amount of diethyl carbonate is added outside the range specified in the present invention, the safety during overcharging will be impaired, and the capacity deterioration after leaving the battery in a charged state in a high temperature environment will increase. Therefore, the amount of diethyl carbonate added should be kept to the minimum necessary.

【0064】上記非水溶媒に溶解される電解質として
は、この種の電池に用いられるものであればいずれでも
良いが、特にLiPF6 が好適であり、LiClO4
LiAsF6 ,LiBF4 も使用可能である。これら電
解質は、非水溶媒中に0.1〜3mol/lなる濃度で
溶解させることができるが、0.5〜2mol/lなる
濃度で溶解することが好ましい。
As the electrolyte dissolved in the above non-aqueous solvent, any electrolyte can be used as long as it is used in this type of battery, but LiPF 6 is particularly preferable, and LiClO 4 ,
LiAsF 6 and LiBF 4 can also be used. These electrolytes can be dissolved in the non-aqueous solvent at a concentration of 0.1 to 3 mol / l, but are preferably dissolved at a concentration of 0.5 to 2 mol / l.

【0065】[0065]

【作用】リチウムのドープ・脱ドープが可能な炭素材料
を負極活物質に、リチウム遷移金属複合酸化物を正極に
用いる非水電解液二次電池において、電解液の非水溶媒
として高誘電率溶媒、炭酸メチルエチル、炭酸ジメチル
の混合溶媒を用いると、炭酸メチルエチルは金属リチウ
ムとの反応性が低いので、過充電となって温度上昇した
場合でも負極上に析出した金属リチウムと反応せず、低
粘度溶媒と金属リチウムとが反応することによって生じ
る電池破損が防止される。また、充電状態で高温環境下
放置された場合に生じる電圧低下が炭酸ジメチルによっ
て抑えられ、充放電サイクルを行っても回復させること
ができない不可逆的な容量低下が防止される。
[Function] In a non-aqueous electrolyte secondary battery using a carbon material capable of doping / dedoping lithium as a negative electrode active material and a lithium transition metal composite oxide as a positive electrode, a high dielectric constant solvent is used as a non-aqueous solvent of the electrolytic solution. , When using a mixed solvent of methyl ethyl carbonate and dimethyl carbonate, since methyl ethyl carbonate has low reactivity with metallic lithium, it does not react with metallic lithium deposited on the negative electrode even when overcharged and the temperature rises, Battery damage caused by the reaction between the low-viscosity solvent and metallic lithium is prevented. In addition, the voltage drop that occurs when the battery is left in a charged state in a high temperature environment is suppressed by dimethyl carbonate, and an irreversible capacity drop that cannot be recovered even when a charge / discharge cycle is performed is prevented.

【0066】また、前記高誘電率溶媒、炭酸メチルエチ
ル,炭酸ジメチルの混合溶媒に、さらに沸点の高い炭酸
ジエチルを一定量添加すると、夏期における自動車のダ
ッシュボード上に電池が放置された場合のような、かな
りの高温環境に電池が曝されて場合でも電池内圧の上昇
が抑えられ、電池の信頼性が向上する。
Further, when a certain amount of diethyl carbonate having a higher boiling point is added to the mixed solvent of the high dielectric constant solvent, methyl ethyl carbonate and dimethyl carbonate, a battery is left on the dashboard of an automobile in the summer season. Even when the battery is exposed to a considerably high temperature environment, the increase in the internal pressure of the battery is suppressed, and the reliability of the battery is improved.

【0067】[0067]

【実施例】本発明の好適な実施例について実験結果に基
づいて説明する。
EXAMPLES Preferred examples of the present invention will be described based on experimental results.

【0068】作製した電池の構造 後述の各実施例において作製した電池の構造を図1に示
す。
Structure of Battery Produced FIG. 1 shows the structure of the battery produced in each Example described later.

【0069】この非水電解液二次電池は、図1に示すよ
うに、負極集電体9に負極活物質を塗布してなる負極1
と、正極集電体10に正極活物質を塗布してなる正極2
とを、セパレータ3を介して巻回し、この巻回体の上下
に絶縁体4を載置した状態で電池缶5に収納してなるも
のである。前記電池缶5には電池蓋7が封口ガスケット
6を介してかしめることによって取付けられ、それぞれ
負極リード11及び正極リード12を介して負極1ある
いは正極2と電気的に接続され、電池の負極あるいは正
極として機能するように構成されている。
As shown in FIG. 1, this non-aqueous electrolyte secondary battery has a negative electrode 1 formed by coating a negative electrode current collector 9 with a negative electrode active material.
And a positive electrode 2 obtained by applying a positive electrode active material to the positive electrode current collector 10.
Are wound around the separator 3, and the insulator 4 is placed on the upper and lower sides of the wound body and housed in the battery can 5. A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively. It is configured to function as a positive electrode.

【0070】そして、本実施例の電池では、前記正極リ
ード12は電池遮断用薄板8に溶接されて取り付けら
れ、この電流遮断用薄板8を介して電池蓋7との電気的
接続が図られている。このような構成を有する電池にお
いて、電池内部の圧力が上昇すると、前記電流遮断等薄
板8が押し上げられた変形する。すると、正極リード1
2が電流遮断用薄板8と溶接された部分を残して切断さ
れ、電流が遮断される。
In the battery of this embodiment, the positive electrode lead 12 is welded and attached to the battery breaking thin plate 8 and is electrically connected to the battery lid 7 through the current breaking thin plate 8. There is. In the battery having such a structure, when the pressure inside the battery rises, the thin plate 8 for current interruption is pushed up and deformed. Then, the positive electrode lead 1
2 is cut off except for the portion welded to the current breaking thin plate 8 to cut off the current.

【0071】実施例1〜実施例5 先ず、負極1を次のようにして作製した。出発原料であ
る石油ピッチに酸素を含む官能基10〜20重量%導入
して酸素架橋させた後、不活性ガス気流中で炭素化して
炭素前駆体を得た。この炭素前駆体を温度1200℃で
焼成して、ガラス状炭素に近い性質を持った炭素材料を
生成した。この炭素材料についてX線回折測定を行った
結果、(002)面の面間隔が0.381nm、C軸方
向の結晶子厚さが1.2nmであった。また空気気流中
に於ける示差熱分析を行った結果、659℃に発熱ピー
クが認められた。さらに、ピクノメータ法によって測定
された真比重が1.54g/cm3 、レーザ回折法で測
定された50%累積粒径が23.5μmであった。
Examples 1 to 5 First, the negative electrode 1 was produced as follows. After introducing 10 to 20% by weight of a functional group containing oxygen into a petroleum pitch as a starting material for oxygen crosslinking, carbonization was performed in an inert gas stream to obtain a carbon precursor. This carbon precursor was fired at a temperature of 1200 ° C. to produce a carbon material having properties close to those of glassy carbon. As a result of X-ray diffraction measurement of this carbon material, the (002) plane spacing was 0.381 nm, and the crystallite thickness in the C-axis direction was 1.2 nm. As a result of differential thermal analysis in an air stream, an exothermic peak was recognized at 659 ° C. Further, the true specific gravity measured by the pycnometer method was 1.54 g / cm 3 , and the 50% cumulative particle size measured by the laser diffraction method was 23.5 μm.

【0072】このようにして得られた炭素材料の粉末を
90重量部、結着材となるポリフッ化ビニリデン(PV
DF)10重量部を混合して負極合剤を調製し、該負極
合剤を溶剤となるN−メチルピロリドンに分散させて負
極合剤スラリー(ペースト状)を調製した。
90 parts by weight of the powder of the carbon material thus obtained is used as a binder, polyvinylidene fluoride (PV).
10 parts by weight of DF) was mixed to prepare a negative electrode mixture, and the negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to prepare a negative electrode mixture slurry (paste form).

【0073】この負極合剤スラリーを、厚さ10μmの
帯状の銅箔製の負極集電体の両面に塗布して乾燥させた
後、圧縮成型して帯状負極1を作製した。なお、帯状負
極1の合剤厚さは両面共に80μmで同一とし、電極の
幅は41.5mm、長さは700mmである。
This negative electrode mixture slurry was applied to both surfaces of a strip-shaped negative electrode collector made of copper foil having a thickness of 10 μm, dried, and then compression molded to prepare strip-shaped negative electrode 1. The material thickness of the strip-shaped negative electrode 1 was 80 μm on both sides, and the width was 41.5 mm and the length was 700 mm.

【0074】正極2は次のようにして作製した。炭酸リ
チウム0.5モルと炭酸コバルト1モルを混合し、90
0℃の空気中で5時間焼成してLiCoO2 を得た。得
られたLiCoO2 についてX線回折測定を行った結
果、JCPDSファイルに登録されたLiCoO2 のピ
ークと良く一致していた。この材料を粉砕し、50%累
積粒径が15μmのLiCoO2 粉末を得た。このLi
CoO2 の粉末95重量部と炭酸リチウム粉末5重量部
からなる混合物を91重量部、導電材となるグラファイ
ト6重量部、結着剤となるポリフッ化ビニリデン3重量
部を混合して正極合剤を調製し、N−メチルピロリドン
に分散させて正極合剤スラリー(ペースト状)を調製し
た。
The positive electrode 2 was manufactured as follows. 90 mol of lithium carbonate and 1 mol of cobalt carbonate are mixed,
LiCoO 2 was obtained by firing in air at 0 ° C. for 5 hours. As a result of X-ray diffraction measurement of the obtained LiCoO 2 , it was in good agreement with the peak of LiCoO 2 registered in the JCPDS file. This material was pulverized to obtain LiCoO 2 powder having a 50% cumulative particle size of 15 μm. This Li
91 parts by weight of a mixture of 95 parts by weight of CoO 2 powder and 5 parts by weight of lithium carbonate powder, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to form a positive electrode mixture. It was prepared and dispersed in N-methylpyrrolidone to prepare a positive electrode mixture slurry (paste form).

【0075】この正極合剤スラリーを、厚さ20μmの
帯状のアルミニウム箔製の正極集電体の両面に均一に塗
布し、乾燥させた後、圧縮成型して帯状正極2を作製し
た。なお、上記帯状正極2の合剤厚さは両面共に80μ
mで同一とし、電極の幅は40.5mm、長さは650
mmである。
This positive electrode mixture slurry was uniformly applied to both sides of a 20 μm-thick belt-shaped positive electrode current collector made of aluminum foil, dried and then compression-molded to prepare a belt-shaped positive electrode 2. The mixture thickness of the strip-shaped positive electrode 2 is 80 μm on both sides.
The width of the electrode is 40.5 mm and the length is 650.
mm.

【0076】このようにして作製された帯状負極1,帯
状正極2及び厚さ25μm,幅44mmの微多孔性ポリ
プロピレンフィルムよりなるセパレータ3を、負極、セ
パレータ、正極、セパレータの順に積層してから多数回
巻回し、外径20mmの渦巻型電極を作製した。
The strip-shaped negative electrode 1, the strip-shaped positive electrode 2, and the separator 3 made of a microporous polypropylene film having a thickness of 25 μm and a width of 44 mm, which were produced in this manner, were laminated in the order of the negative electrode, the separator, the positive electrode, and the separator, and then a large number of them were prepared. The spirally wound electrode was manufactured by winding the electrode in an outer diameter of 20 mm.

【0077】この渦巻型電極体を、ニッケルめっきが施
された鉄製電池缶5に収納した。そして渦巻式電極の上
下両面には絶縁板4を配置し、アルミニウム製正極リー
ド12を正極集電体から導出して電池蓋7に、ニッケル
製負極リード11を負極集電体から導出して電池缶5に
溶接した。
The spirally wound electrode body was housed in a nickel-plated iron battery can 5. The insulating plates 4 are arranged on the upper and lower surfaces of the spiral electrode, the aluminum positive electrode lead 12 is led out from the positive electrode current collector, and the nickel negative electrode lead 11 is led out from the negative electrode current collector to the battery. Welded to can 5.

【0078】そして渦巻式電極が収納された電池缶5の
中に、炭酸プロピレン(PC),炭酸メチルエチル(M
EC)及び炭酸ジメチル(DMC)が各種混合比率で混
合された混合溶媒にLiPF6 が1mol/lなる濃度
で溶解された電解液を注入した後、アスファルトで表面
を塗布した絶縁封口ガスケット6を介して電池缶5をか
しめることにより、電流遮断機構を有する安全弁装置8
並びに電池蓋7を固定し、電池内の気密性を保持し、直
径20mm、高さ50mmの円筒型非水電解液二次電池
を作製した。
Then, propylene carbonate (PC) and methylethyl carbonate (M
EC) and dimethyl carbonate (DMC) were mixed at various mixing ratios, and an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was injected into a mixed solvent, and then the surface was coated with asphalt to form an insulating sealing gasket 6. Safety valve device 8 with current cutoff mechanism by caulking battery can 5
Further, the battery lid 7 was fixed, the airtightness inside the battery was maintained, and a cylindrical non-aqueous electrolyte secondary battery having a diameter of 20 mm and a height of 50 mm was produced.

【0079】なお、電池缶5に注入した電解液の非水溶
媒の容量混合率を表1に示す。
Table 1 shows the volume mixing ratio of the non-aqueous solvent in the electrolytic solution injected into the battery can 5.

【0080】[0080]

【表1】 [Table 1]

【0081】比較例1 電解液の非水溶媒としてPCとMECがPC:MEC=
5:5なる容量混合率で混合された混合溶媒を用いるこ
と以外は実施例1と同様にして非水電解液二次電池を作
製した。
Comparative Example 1 PC and MEC were used as the non-aqueous solvent of the electrolytic solution PC: MEC =
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the mixed solvent mixed at a volume mixing ratio of 5: 5 was used.

【0082】比較例2 電解液の非水溶媒としてPCとDECがPC:DEC=
5:5なる容量混合率で混合された混合溶媒を用いるこ
と以外は実施例1と同様にして非水電解液二次電池を作
製した。
Comparative Example 2 PC and DEC were used as the non-aqueous solvent of the electrolytic solution PC: DEC =
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the mixed solvent mixed at a volume mixing ratio of 5: 5 was used.

【0083】〔溶媒のリチウム金属との反応性の検討〕
このようにして作製された非水電解液二次電池に用いた
低粘度溶媒のリチウム金属との反応性を調べるために以
下の実験を行った。
[Study of Reactivity of Solvent with Lithium Metal]
The following experiment was conducted in order to investigate the reactivity of the low-viscosity solvent used in the thus-prepared non-aqueous electrolyte secondary battery with lithium metal.

【0084】先ず、DEC,DMC,MECをそれぞれ
テフロン製容器に入れ、これら溶媒にリチウム金属片を
投入した。そして、溶媒,リチウム金属片が入れられた
テフロン製容器を水が入らないように密閉して高温槽内
に各種温度で放置した。放置中における溶媒とリチウム
金属片の反応状況を表2に示す。
First, DEC, DMC, and MEC were placed in Teflon containers, and lithium metal pieces were placed in these solvents. Then, the Teflon container containing the solvent and the lithium metal piece was sealed so that water did not enter, and left in a high temperature tank at various temperatures. Table 2 shows the reaction status between the solvent and the lithium metal piece during standing.

【0085】[0085]

【表2】 [Table 2]

【0086】リチウム金属片は、表面に自然酸化膜があ
るのでただちに反応を起こすということはないが、DE
C中に投入された場合には温度80℃下とある程度高温
環境下であると10分でDECとの反応が始まる。ま
た、DEC中に投入された状態で、温度60℃下、1週
間保存すると、DECと反応して終には消滅する。また
リチウム金属片が投入されたDECは褐色に固化する。
Since the lithium metal piece has a natural oxide film on the surface, it does not react immediately, but DE
When it is put into C, the reaction with DEC starts in 10 minutes if the temperature is 80 ° C. and it is in a high temperature environment to some extent. Further, when stored in DEC at a temperature of 60 ° C. for 1 week, it reacts with DEC and disappears at the end. Further, the DEC charged with the lithium metal pieces solidifies to brown.

【0087】一方、DMC,MECにリチウム金属片を
投入した場合には、DECにリチウム金属片を投入した
場合のような反応は生じない。
On the other hand, when the lithium metal pieces are put into the DMC and MEC, the reaction as in the case where the lithium metal pieces are put into the DEC does not occur.

【0088】このことからDECは、非水電解液二次電
池の低粘度溶媒として使用した場合に該電池が過充電状
態になると負極上に析出したリチウム金属と反応する可
能性が大きく、不適当であることがわかった。
From the above, DEC is unsuitable when used as a low-viscosity solvent for a non-aqueous electrolyte secondary battery, when the battery is overcharged, there is a high possibility that it will react with lithium metal deposited on the negative electrode. I found out.

【0089】〔DMC添加の検討〕次に、非水溶媒にD
MCを混合する効果を調べるために作製された非水電解
液二次電池について、充放電サイクルを繰り返し行った
ときの11サイクル目充電直後の開回路電圧、内部抵抗
(交流1kHz)及び11サイクル充電後、充電状態で
温度90℃下40時間保存した後の開回路電圧、内部抵
抗(交流1kHz)を測定した。また、保存前の電池内
圧と保存後の電池内圧比及び保存前の充放電10サイク
ル目の容量に対する保存後の充放電2サイクル目の容量
の比率(容量回復率)を求めた。これら結果を表3に、
電解液中のDMC容量混合率と保存後の開回路電圧の関
係を図2に、DMC容量混合率と保存後の内部抵抗の関
係を図3に、DMC容量混合率と容量回復率の関係を図
4に、DMC容量混合率と保存前と保存後の電池内圧比
の関係を図5に示す。
[Study on Addition of DMC] Next, D was added to the non-aqueous solvent.
About the non-aqueous electrolyte secondary battery made to investigate the effect of mixing MC, the open circuit voltage, the internal resistance (AC 1 kHz) and the 11th cycle charge immediately after the 11th cycle charging when the charge / discharge cycle was repeated. Then, the open circuit voltage and the internal resistance (AC 1 kHz) were measured after the battery was stored in a charged state at a temperature of 90 ° C. for 40 hours. Further, the ratio of the battery internal pressure before storage and the battery internal pressure after storage, and the ratio of the capacity of the second charge / discharge cycle after storage to the capacity of the 10th charge / discharge cycle before storage (capacity recovery rate) were determined. These results are shown in Table 3,
The relationship between the DMC capacity mixing ratio in the electrolytic solution and the open circuit voltage after storage is shown in Fig. 2, the relationship between the DMC capacity mixing ratio and the internal resistance after storage is shown in Fig. 3, and the relationship between the DMC capacity mixing ratio and the capacity recovery ratio is shown. FIG. 4 shows the relationship between the DMC capacity mixing ratio and the battery internal pressure ratio before and after storage.

【0090】なお、充放電サイクルは、充電電流1A,
上限電圧4.2V(定電圧)の条件で定電流充電を行っ
た後、抵抗6.2Ω,終止電圧2.75Vの条件で放電
することによって行った。
The charging / discharging cycle consists of a charging current of 1 A,
Constant current charging was performed under conditions of an upper limit voltage of 4.2 V (constant voltage), and then discharging was performed under conditions of a resistance of 6.2Ω and a final voltage of 2.75 V.

【0091】[0091]

【表3】 [Table 3]

【0092】表3及び図2〜図4を見てわかるように、
電解液中のDMC容量混合率が大きくなる程、保存後の
内部抵抗は低下し、開路電圧は高くなり、容量回復率は
上昇する。このことから、非水溶媒にDMCを添加する
ことによって電池を充電状態で高温環境下に放置するこ
とによって生じる容量劣化が防止されることがわかっ
た。
As can be seen from Table 3 and FIGS.
As the DMC capacity mixing ratio in the electrolytic solution increases, the internal resistance after storage decreases, the open circuit voltage increases, and the capacity recovery ratio increases. From this, it was found that the addition of DMC to the non-aqueous solvent prevents the capacity deterioration caused by leaving the battery in a charged state in a high temperature environment.

【0093】しかし、図5を見てわかるように、電解液
中のDMC容量混合率があまり大きくなると、DMCは
沸点が比較的低いことから高温環境下放置後の電池内圧
が高くなる。すなわち、DMCは電解液中のMEC容量
をM、DMC容量をDとしたときに9/1≦D/M≦2
/8となるように添加することが好ましいことがわかっ
た。
However, as can be seen from FIG. 5, when the mixing ratio of DMC in the electrolytic solution becomes too large, the boiling point of DMC is relatively low, and the internal pressure of the battery becomes high after being left in a high temperature environment. That is, DMC is 9/1 ≦ D / M ≦ 2, where MEC capacity in the electrolytic solution is M and DMC capacity is D.
It was found that it is preferable to add it so as to be / 8.

【0094】〔DEC添加の検討〕次に、非水溶媒にD
ECを添加する効果を調べるために、PC:MEC:D
MC=4:3:3なる組成の非水溶媒にさらにDECを
1〜30容量%の範囲で添加すること以外は実施例4と
同様にして電池を作製した(実施例4−A〜実施例4−
F)。
[Study on Addition of DEC] Next, D was added to the non-aqueous solvent.
To investigate the effect of adding EC, PC: MEC: D
Batteries were produced in the same manner as in Example 4 except that DEC was further added to the non-aqueous solvent having a composition of MC = 4: 3: 3 in the range of 1 to 30% by volume (Examples 4-A to Examples). 4-
F).

【0095】そして、DECを添加した電池及び実施例
4の電池,比較例2の電池について、夏期における自動
車のダッシュボード上に放置されたことを想定し、充電
状態で温度105℃下、8時間電池を保存し、電池内圧
の上昇を測定するとともに外観を観察した。なお、充電
は、充電電流1A,上限電圧4.2V(定電圧)の定電
流充電であり、2.5時間行った。
Assuming that the battery containing DEC, the battery of Example 4, and the battery of Comparative Example 2 were left on the dashboard of the automobile in the summer, the battery was charged and the temperature was 105 ° C. for 8 hours. The battery was stored, the increase in the battery internal pressure was measured, and the appearance was observed. The charging was constant current charging with a charging current of 1 A and an upper limit voltage of 4.2 V (constant voltage), and the charging was performed for 2.5 hours.

【0096】また、上述と同様にして充放電サイクルを
繰り返し行ったときの11サイクル目充電直後の開回路
電圧、内部抵抗(交流1kHz)及び11サイクル充電
後、充電状態で温度90℃下40時間保存した後の開回
路電圧、内部抵抗(交流1kHz)を測定した。また、
保存前の電池内圧と保存後の電池内圧比及び保存前の充
放電10サイクル目の容量に対する保存後の充放電2サ
イクル目の容量の比率(容量回復率)を求めた。
Further, when the charge / discharge cycle was repeated in the same manner as described above, the open circuit voltage immediately after the 11th cycle charging, the internal resistance (AC 1 kHz), and the 11th cycle charging, the temperature was 90 ° C. for 40 hours in the charged state. The open circuit voltage after storage and the internal resistance (AC 1 kHz) were measured. Also,
The ratio of the battery internal pressure before storage and the battery internal pressure after storage, and the ratio of the capacity of the second charge / discharge cycle after storage to the capacity of the 10th charge / discharge cycle before storage (capacity recovery rate) were determined.

【0097】温度105℃8時間保存試験の結果を表4
に、温度90℃40時間保存試験の結果を表5にそれぞ
れ示す。
The results of the storage test at a temperature of 105 ° C. for 8 hours are shown in Table 4.
Table 5 shows the results of the storage test at a temperature of 90 ° C. for 40 hours.

【0098】[0098]

【表4】 [Table 4]

【0099】[0099]

【表5】 [Table 5]

【0100】表4からわかるように、温度105℃下で
8時間保存した後の電池内圧は、非水溶媒へのDEC添
加量が大きくなる程低くなる。このことから、非水溶媒
にDECを添加することは、高温保存中におけるガス発
生を抑える上で有効であることがわかる。
As can be seen from Table 4, the internal pressure of the battery after storage at a temperature of 105 ° C. for 8 hours becomes lower as the amount of DEC added to the non-aqueous solvent increases. From this, it is understood that adding DEC to the non-aqueous solvent is effective in suppressing gas generation during high temperature storage.

【0101】しかし、表5を見ると、温度90℃下40
時間保存後の電池特性については、DEC添加量が大き
くなると、開回路電圧の低下、内部抵抗の上昇、容量回
復率の低下が生じてくる。これらのことから、DECは
余り多く添加するのは好ましくなく、1〜20容量%の
範囲内で添加するのが適当であることがわかる。
However, referring to Table 5, the temperature is 90 ° C. and the temperature is 40 ° C.
Regarding the battery characteristics after storage for a long time, when the amount of DEC added increases, the open circuit voltage decreases, the internal resistance increases, and the capacity recovery rate decreases. From these facts, it is understood that it is not preferable to add too much DEC, and it is appropriate to add it in the range of 1 to 20% by volume.

【0102】実施例6 人造黒鉛KS−75(ロンザ社製:(002)面の面間
隔=0.3358nm、C軸結晶子厚み=25.4n
m,ラマンスペクトルG値=8.82,真比重=2.2
3,平均粒径28.4μm)を負極の炭素材料として用
い、EC,MEC,DMCがEC:MEC:DMC=
5:2:3なる容量混合率で混合されてなる混合溶媒を
電解液の非水溶媒として用いる以外は実施例1と同様に
して非水電解液電池を作製した。
Example 6 Artificial graphite KS-75 (manufactured by Lonza Co., Ltd .: (002) plane spacing = 0.3358 nm, C-axis crystallite thickness = 25.4 n)
m, Raman spectrum G value = 8.82, true specific gravity = 2.2
EC, MEC, DMC = EC: MEC: DMC =
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that a mixed solvent mixed at a volume mixing ratio of 5: 2: 3 was used as the non-aqueous solvent of the electrolytic solution.

【0103】比較例3 ECとMECがEC:MEC=5:5なる容量混合率で
混合されてなる混合溶媒を電解液の非水溶媒として用い
る以外は実施例2と同様にして非水電解液二次電池を作
製した。
Comparative Example 3 Nonaqueous electrolytic solution was prepared in the same manner as in Example 2 except that a mixed solvent prepared by mixing EC and MEC at a volume mixing ratio of EC: MEC = 5: 5 was used as the nonaqueous solvent of the electrolytic solution. A secondary battery was produced.

【0104】このようにして作製された非水電解液二次
電池について、上述と同様にして充放電サイクルを繰り
返し行ったときの11サイクル目充電直後の開回路電
圧、内部抵抗(交流1kHz)及び11サイクル充電
後、充電状態で温度90℃下40時間保存した後の開回
路電圧、内部抵抗(交流1kHz)を測定した。また、
保存前の電池内圧と保存後の電池内圧比及び保存前の充
放電10サイクル目の容量に対する保存後の充放電2サ
イクル目の容量の比率(容量回復率)を求めた。これら
結果を表6に示す。
With respect to the non-aqueous electrolyte secondary battery thus manufactured, the open circuit voltage, the internal resistance (AC 1 kHz) and the internal resistance (AC 1 kHz) immediately after the 11th cycle when the charge and discharge cycle was repeated in the same manner as described above. After 11 cycles of charging, the open circuit voltage and the internal resistance (AC 1 kHz) were measured after the battery was stored in a charged state at a temperature of 90 ° C. for 40 hours. Also,
The ratio of the battery internal pressure before storage and the battery internal pressure after storage, and the ratio of the capacity of the second charge / discharge cycle after storage to the capacity of the 10th charge / discharge cycle before storage (capacity recovery rate) were determined. The results are shown in Table 6.

【0105】[0105]

【表6】 [Table 6]

【0106】表6からわかるように、電解液にDMCを
混合した実施例6の非水電解液二次電池は、電解液にD
MCを混合していない比較例3の非水電解液二次電池に
比べて保存後の内部抵抗が低く、開路電圧、容量回復率
が高い。このことから、負極に黒鉛系の炭素材料を用
い、高誘電率溶媒としてECを用いた場合でも、DMC
を電解液に混合することによって電池を充電状態で高温
環境下に放置することによって生じる容量劣化が防止さ
れることがわかった。
As can be seen from Table 6, the non-aqueous electrolyte secondary battery of Example 6 in which DMC was mixed in the electrolytic solution contained D in the electrolytic solution.
Compared with the non-aqueous electrolyte secondary battery of Comparative Example 3 in which MC was not mixed, the internal resistance after storage was low, the open circuit voltage and the capacity recovery rate were high. From this, even when a graphite-based carbon material is used for the negative electrode and EC is used as the high dielectric constant solvent, DMC
It has been found that the mixing of the above with the electrolytic solution prevents the capacity deterioration caused by leaving the battery in a charged state in a high temperature environment.

【0107】以上、本発明を適用した具体的な実施例に
ついて説明したが、本発明がこれらの実施例に限定され
るものではなく、本発明の要旨を逸脱しない範囲で種々
の変更が可能である。
Specific examples to which the present invention is applied have been described above, but the present invention is not limited to these examples, and various modifications can be made without departing from the gist of the present invention. is there.

【0108】[0108]

【発明の効果】以上の説明からも明らかなように、本発
明では、リチウムのドープ・脱ドープが可能な炭素材料
を負極活物質に、リチウム遷移金属複合酸化物を正極に
用いる非水電解液二次電池において、電解液の低粘度溶
媒として炭酸メチルエチルと炭酸ジメチルの混合溶媒を
用いるので、過充電,充電状態での高温環境下放置を経
ても正常な充放電反応が維持でき、高エネルギー密度,
長サイクル寿命を有するとともに安全性能,耐環境性能
に優れた非水電解液二次電池を得ることが可能である。
As is apparent from the above description, in the present invention, a non-aqueous electrolyte solution using a carbon material capable of doping / dedoping lithium as a negative electrode active material and a lithium transition metal composite oxide as a positive electrode. In a secondary battery, a mixed solvent of methyl ethyl carbonate and dimethyl carbonate is used as a low-viscosity solvent for the electrolytic solution, so that a normal charge / discharge reaction can be maintained even after being overcharged and left in a high temperature environment in a charged state, and high energy consumption can be maintained. density,
It is possible to obtain a non-aqueous electrolyte secondary battery that has a long cycle life and excellent safety and environmental resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した非水電解液二次電池の一構成
例を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing one structural example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図2】非水電解液二次電池について、電解液のDMC
混合率と充電状態で高温環境下放置した後の開回路電圧
の関係を示す特性図である。
FIG. 2 is a non-aqueous electrolyte secondary battery, DMC of the electrolyte
It is a characteristic view which shows the relationship between a mixing ratio and an open circuit voltage after leaving it in a charged state in a high temperature environment.

【図3】非水電解液二次電池について、電解液のDMC
混合率と充電状態で高温環境下放置した後の内部抵抗の
関係を示す特性図である。
FIG. 3 is a non-aqueous electrolyte secondary battery, DMC of the electrolyte
It is a characteristic view which shows the relationship between a mixing rate and an internal resistance after leaving it in a charged state in a high temperature environment.

【図4】非水電解液二次電池について、電解液のDMC
混合率と容量回復率の関係を示す特性図である。
FIG. 4 is a non-aqueous electrolyte secondary battery, DMC of the electrolyte
It is a characteristic view which shows the relationship between a mixing rate and a capacity recovery rate.

【図5】非水電解液二次電池について、電解液のDMC
混合率と高温環境下保存前後の電池内圧比の関係を示す
特性図である。
FIG. 5: DMC of the electrolytic solution for the non-aqueous electrolytic solution secondary battery
FIG. 6 is a characteristic diagram showing a relationship between a mixing ratio and a battery internal pressure ratio before and after storage in a high temperature environment.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 8・・・安全板 9・・・負極集電体 10・・正極集電体 11・・負極リード 12・・正極リード 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Sealing gasket 7 ... Battery lid 8 ... Safety plate 9 ... Negative electrode Current collector 10 ... Positive electrode current collector 11 ... Negative electrode lead 12 ... Positive electrode lead

フロントページの続き (72)発明者 横山 恵一 千葉県袖ケ浦市長浦字拓二号580番32 三 井石油化学工業株式会社内 (72)発明者 檜原 昭男 千葉県袖ケ浦市長浦字拓二号580番32 三 井石油化学工業株式会社内Front page continued (72) Inventor Keiichi Yokoyama 580-2 32, Takuji Nagaura, Sodegaura-shi, Chiba Mitsui Petrochemical Industry Co., Ltd. Within Mitsui Petrochemical Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンのドープ・脱ドープが可
能な炭素材料を負極活物質とする負極と、リチウムと遷
移金属の複合酸化物を正極活物質とする正極と、非水溶
媒に電解質を溶解してなる非水電解液を有してなり、 且つ、非水溶媒は、炭酸メチルエチルと炭酸ジメチルを
含有することを特徴とする非水電解液二次電池。
1. A negative electrode using a carbon material capable of doping / dedoping lithium ions as a negative electrode active material, a positive electrode using a composite oxide of lithium and a transition metal as a positive electrode active material, and an electrolyte dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution obtained by, and the non-aqueous solvent containing methyl ethyl carbonate and dimethyl carbonate.
【請求項2】 負極活物質は、(002)面の面間隔が
0.37nm以上、真密度が1.7g/cm3 以下、且
つ空気気流中における示差熱分析において観測される酸
化発熱ピークが700℃以下にある炭素材料であり、 非水溶媒は、炭酸プロピレン、炭酸メチルエチル及び炭
酸ジメチルを含有することを特徴とする請求項1記載の
非水電解液二次電池。
2. The negative electrode active material has a (002) plane spacing of 0.37 nm or more, a true density of 1.7 g / cm 3 or less, and an oxidation exothermic peak observed in a differential thermal analysis in an air stream. The non-aqueous electrolyte secondary battery according to claim 1, which is a carbon material at 700 ° C. or lower, and the non-aqueous solvent contains propylene carbonate, methyl ethyl carbonate, and dimethyl carbonate.
【請求項3】 負極活物質は、(002)面の面間隔が
0.340nm以下、C軸方向の結晶子厚みが14.0
nm以上、真密度が2.1g/cm3 以上である炭素材
料であり、 非水溶媒は、炭酸エチレン、炭酸メチルエチル及び炭酸
ジメチルを含有することを特徴とする請求項1記載の非
水電解液二次電池。
3. The negative electrode active material has a (002) plane spacing of 0.340 nm or less and a crystallite thickness in the C-axis direction of 14.0.
2. The non-aqueous electrolysis according to claim 1, wherein the non-aqueous solvent is a carbon material having a nanometer or more and a true density of 2.1 g / cm 3 or more, and the non-aqueous solvent contains ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate. Liquid secondary battery.
【請求項4】 非水溶媒の炭酸メチルエチルと炭酸ジメ
チルの混合率が、非水溶媒全容量をT、炭酸メチルエチ
ル容量をM、炭酸ジメチル容量をDとしたときに、 3/10≦(M+D)/T≦7/10 であることを特徴とする請求項2記載の非水電解液二次
電池。
4. The mixing ratio of methyl ethyl carbonate and dimethyl carbonate as the non-aqueous solvent is 3/10 ≦ (where T is the total volume of the non-aqueous solvent, M is the methyl ethyl carbonate volume, and D is the dimethyl carbonate volume. The non-aqueous electrolyte secondary battery according to claim 2, wherein M + D) / T ≦ 7/10.
【請求項5】 非水溶媒の炭酸メチルエチルと炭酸ジメ
チルの混合率が、炭酸メチルエチル容量をM、炭酸ジメ
チル容量をDとしたときに、 1/9≦D/M≦8/2 であることを特徴とする請求項4記載の非水電解液二次
電池。
5. The mixing ratio of non-aqueous solvent methyl ethyl carbonate and dimethyl carbonate is 1/9 ≦ D / M ≦ 8/2 where M is methyl ethyl carbonate capacity and D is dimethyl carbonate capacity. The non-aqueous electrolyte secondary battery according to claim 4, wherein
【請求項6】 非水溶媒に、炭酸ジエチルが1〜20容
量%なる割合で添加されていることを特徴とする請求項
2または請求項3記載の非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 2, wherein diethyl carbonate is added to the non-aqueous solvent at a ratio of 1 to 20% by volume.
JP06356794A 1993-04-28 1994-03-31 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3557240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06356794A JP3557240B2 (en) 1993-04-28 1994-03-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12307693 1993-04-28
JP5-123076 1993-04-28
JP06356794A JP3557240B2 (en) 1993-04-28 1994-03-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0714607A true JPH0714607A (en) 1995-01-17
JP3557240B2 JP3557240B2 (en) 2004-08-25

Family

ID=26404696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06356794A Expired - Lifetime JP3557240B2 (en) 1993-04-28 1994-03-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3557240B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000038021A (en) * 1998-12-03 2000-07-05 김순택 Organic electrolyte and secondary lithium battery employing the same
WO2007142121A1 (en) 2006-06-02 2007-12-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US7438994B2 (en) 2005-08-17 2008-10-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2017017281A (en) * 2015-07-06 2017-01-19 太陽誘電株式会社 Electric double layer capacitor
JP2019033003A (en) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104468A (en) * 1990-08-21 1992-04-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH04171674A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Nonaqueous-electrolyte secondary battery
JPH04337247A (en) * 1991-05-14 1992-11-25 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH0513088A (en) * 1990-12-12 1993-01-22 Sanyo Electric Co Ltd Nonaqueous electrolytic liquid battery
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH0613109A (en) * 1992-03-31 1994-01-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH06290809A (en) * 1993-03-31 1994-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH0745304A (en) * 1993-08-02 1995-02-14 Japan Storage Battery Co Ltd Organic electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104468A (en) * 1990-08-21 1992-04-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH04171674A (en) * 1990-11-05 1992-06-18 Matsushita Electric Ind Co Ltd Nonaqueous-electrolyte secondary battery
JPH0513088A (en) * 1990-12-12 1993-01-22 Sanyo Electric Co Ltd Nonaqueous electrolytic liquid battery
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it
JPH04337247A (en) * 1991-05-14 1992-11-25 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH0613109A (en) * 1992-03-31 1994-01-21 Sony Corp Nonaqueous electrolyte secondary battery
JPH06290809A (en) * 1993-03-31 1994-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH0745304A (en) * 1993-08-02 1995-02-14 Japan Storage Battery Co Ltd Organic electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000038021A (en) * 1998-12-03 2000-07-05 김순택 Organic electrolyte and secondary lithium battery employing the same
US7438994B2 (en) 2005-08-17 2008-10-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2007142121A1 (en) 2006-06-02 2007-12-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
EP2360771A1 (en) 2006-06-02 2011-08-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
EP2461415A1 (en) 2006-06-02 2012-06-06 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
EP2790258A1 (en) 2006-06-02 2014-10-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US9231276B2 (en) 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP2017017281A (en) * 2015-07-06 2017-01-19 太陽誘電株式会社 Electric double layer capacitor
JP2019033003A (en) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3557240B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US5561005A (en) Secondary battery having non-aqueous electrolyte
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP2002280079A (en) Battery
JP3709628B2 (en) Non-aqueous electrolyte secondary battery
JP2003157900A (en) Battery
JP4150202B2 (en) battery
JP2002270230A (en) Battery
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
JP2003123843A (en) Cell and manufacturing method of the same
JP3552377B2 (en) Rechargeable battery
JP3421877B2 (en) Non-aqueous electrolyte secondary battery
JP3557240B2 (en) Non-aqueous electrolyte secondary battery
JP2002280080A (en) Method of charging secondary battery
WO2002073731A1 (en) Battery
JP2004363076A (en) Battery
JPH07335262A (en) Nonaqueous electrolyte secondary battery
JPH0613109A (en) Nonaqueous electrolyte secondary battery
JP2003151627A (en) Battery
JP2004356092A (en) Battery
JP2001148241A (en) Non-aqueous electrolyte battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JP2003045487A (en) Battery
JPH09283178A (en) Nonaqueous electrolyte secondary battery
JP4195122B2 (en) Non-aqueous electrolyte secondary battery
JPH07320785A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term