JPH0613109A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0613109A
JPH0613109A JP5060754A JP6075493A JPH0613109A JP H0613109 A JPH0613109 A JP H0613109A JP 5060754 A JP5060754 A JP 5060754A JP 6075493 A JP6075493 A JP 6075493A JP H0613109 A JPH0613109 A JP H0613109A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
solvent
mec
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060754A
Other languages
Japanese (ja)
Inventor
Tokuo Komaru
篤雄 小丸
Shigeru Fujita
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5060754A priority Critical patent/JPH0613109A/en
Priority to US08/131,957 priority patent/US5437945A/en
Publication of JPH0613109A publication Critical patent/JPH0613109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To achieve a high energy density, a long life and high reliability in a wide range of temperature for use by using mixed solvent of propylene carbonate(PC) and methyl ethyl carbonate(MEC) as nonaqueous electrolyte. CONSTITUTION:A nonaqueous secondary battery is formed with a negative plate 1 of carbon material, a positive plate 2 of lithium composite oxide. As nonaqueous solvent, PC/MEC mixed low-viscocity solvent is used so that the nonaqueous electrolyte secondary battery shows a high energy density, a long life and high reliability in a wide range of temperature for use without increasing its inner pressure under high temperature circumstances and solidifying its electrolyte under low temperature circumstances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特にリチウム複合酸化物を正極に、炭素質材料を
負極に用いた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode and a carbonaceous material as a negative electrode.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR、携帯電話、
ラップトップコンピュータ等の新しいポータブル電子機
器が次々に出現し、ますますその小型軽量化が図られ、
それに伴って、携帯可能なポータブル電源として二次電
池が脚光を浴び、さらに高いエネルギー密度を得るため
活発な研究開発がなされている。
2. Description of the Related Art Recently, a VTR with a built-in camera, a mobile phone,
New portable electronic devices such as laptop computers have appeared one after another, and their size and weight have been further reduced.
Along with this, a secondary battery has been spotlighted as a portable power source, and active research and development has been conducted to obtain higher energy density.

【0003】そのような中、鉛電池,ニッケルカドミウ
ム電池等の水系電解液二次電池よりも高いエネルギー密
度を有する二次電池として、リチウムイオン二次電池が
提案され、実用化が始まっている。
Under such circumstances, a lithium ion secondary battery has been proposed and put into practical use as a secondary battery having a higher energy density than that of an aqueous electrolyte secondary battery such as a lead battery and a nickel cadmium battery.

【0004】ところで、リチウム二次電池用の有機電解
液としては、低粘度溶媒だけでは充放電効率が低いた
め、高誘電率溶媒であるPC(プロピレンカーボネー
ト)等との混合が必要不可欠である。また、PCを混合
すると、低粘度溶媒のみの単一成分系よりも高い電気伝
導度が得られるというメリットもある。このことから、
従来よりリチウム二次電池用の有機電解液には、PCと
DME(1,2−ジメトキシエタン)とを混合してなる
混合溶媒が使用されている。
By the way, as an organic electrolytic solution for a lithium secondary battery, since a low-viscosity solvent alone has a low charge / discharge efficiency, it is indispensable to mix with a high dielectric constant solvent such as PC (propylene carbonate). In addition, when PC is mixed, there is an advantage that higher electric conductivity can be obtained as compared with a single component system containing only a low viscosity solvent. From this,
Conventionally, a mixed solvent formed by mixing PC and DME (1,2-dimethoxyethane) has been used as an organic electrolytic solution for a lithium secondary battery.

【0005】ところが、PC,DME混合溶媒を使用す
る非水電解液二次電池は、DMEの沸点が低いため、使
用環境温度が100℃程度にまで上昇すると、内圧検知
型の電流遮断装置が誤動作し充放電が出来ない状態にな
ってしまうという事態が起こる。このため、たとえば夏
季に車内で使用することができない。また、DMEはリ
チウム複合酸化物に対する安定性が低いため、電池を充
電状態で保存すると、回復しない容量劣化が起こる。
However, since the non-aqueous electrolyte secondary battery using a mixed solvent of PC and DME has a low boiling point of DME, the internal pressure detection type current interruption device malfunctions when the operating environment temperature rises to about 100 ° C. However, a situation occurs in which charging and discharging cannot be performed. For this reason, it cannot be used in a car, for example, in the summer. In addition, since DME has low stability with respect to a lithium composite oxide, if the battery is stored in a charged state, irreversible capacity deterioration occurs.

【0006】DME以外の低粘度溶媒については、特開
平2−148665号公報において炭素数nが1〜3の
低分子量炭酸エステルが提案されており、この炭酸エス
テルを単独でリチウム二次電池の有機溶媒に用いると、
リチウム金属負極のサイクル寿命が向上することが述べ
られている。しかし、この場合、サイクル寿命は、25
0サイクル程度であり、既存のニッケルカドミウム二次
電池のサイクル寿命が約500回であるのに比べてかな
り低く、実用電池として満足のいくものではなかった。
As a low-viscosity solvent other than DME, JP-A-2-148665 proposes a low-molecular-weight carbonic acid ester having a carbon number n of 1 to 3, and the carbonic acid ester alone is used as an organic solvent for a lithium secondary battery. When used as a solvent,
It is stated that the cycle life of the lithium metal negative electrode is improved. However, in this case, the cycle life is 25
The cycle life was about 0, which was considerably lower than the cycle life of the existing nickel-cadmium secondary battery of about 500 times, and was not satisfactory as a practical battery.

【0007】一方、上記低分子量炭酸エステルをPCと
混合して用いると、サイクル特性が改善され、特に、負
極として炭素質材料を使用する非水電解液二次電池にお
いては、約1000回以上ものサイクル寿命が得られ
る。
On the other hand, when the above-mentioned low molecular weight carbonic acid ester is mixed with PC, the cycle characteristics are improved, and especially in a non-aqueous electrolyte secondary battery using a carbonaceous material as the negative electrode, about 1000 times or more. Cycle life is obtained.

【0008】たとえば、低分子量炭酸エステルの内、沸
点の高いDEC(ジエチルカーボネート)とPCの混合
溶媒では、DMEとPCの混合溶媒を使用する場合に比
べて環境温度上昇による電池内圧上昇が起き難く、正極
に対する安定性も改善される。しかし、充放電サイクル
前と後の容量の比率で示される容量保持率が比較的小さ
く、サイクル寿命が短くなるといった問題もある。
For example, among low molecular weight carbonic acid esters, a mixed solvent of DEC (diethyl carbonate) and PC having a high boiling point is unlikely to cause an increase in internal pressure of the battery due to an increase in environmental temperature as compared with the case where a mixed solvent of DME and PC is used. The stability with respect to the positive electrode is also improved. However, there is also a problem that the capacity retention ratio, which is indicated by the ratio of the capacity before and after the charge / discharge cycle, is relatively small and the cycle life is shortened.

【0009】DMC(ジメチルカーボネート)とPCの
混合溶媒についても検討されており、この混合溶媒を用
いると、サイクル寿命や正極に対する安定性が改善され
ることが確認されている。ところが、DMCとPCの混
合溶媒は、沸点が低く、また凝固点も高いため、電池の
使用温度範囲が狭くなるといった欠点がある。
A mixed solvent of DMC (dimethyl carbonate) and PC has also been investigated, and it has been confirmed that the use of this mixed solvent improves the cycle life and stability to the positive electrode. However, since the mixed solvent of DMC and PC has a low boiling point and a high freezing point, it has a drawback that the operating temperature range of the battery is narrowed.

【0010】[0010]

【発明が解決しようとする課題】このように、従来の非
水電解液二次電池においては、有機溶媒が十分に適当で
なかったために、使用温度が制限される,十分なサイク
ル寿命が得られないといった不都合が生じている。
As described above, in the conventional non-aqueous electrolyte secondary battery, since the organic solvent is not adequately suitable, the operating temperature is limited and the sufficient cycle life is obtained. There is an inconvenience that there is no.

【0011】そこで本発明は、このような従来の実情を
鑑みて提案されたものであって、幅広い使用温度範囲に
おいて高エネルギー密度、長寿命、高信頼性が得られる
非水電解液二次電池を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and a non-aqueous electrolyte secondary battery which can obtain high energy density, long life and high reliability in a wide operating temperature range. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するに
ために、本発明者らが非水電解液二次電池の低粘度溶媒
として適当な有機溶媒を探索したところ、DMCの一方
のメチル基をエチル基に置き換えたMEC(メチルエチ
ルカーボネート)を見い出した。MECは、沸点や凝固
点がDMCとDECのほぼ中間の値であるとともに正負
極に対する安定性もDECより優れており、PCと混合
して用いることにより非水電解液二次電池の非水溶媒と
して好適なものとなる。
In order to achieve the above object, the inventors of the present invention searched for an appropriate organic solvent as a low-viscosity solvent for a non-aqueous electrolyte secondary battery, and found that one methyl group of DMC was used. MEC (methyl ethyl carbonate) was found in which the groups were replaced by ethyl groups. MEC has a boiling point and a freezing point almost in between those of DMC and DEC, and is superior in stability to positive and negative electrodes than DEC. By using it in combination with PC, MEC can be used as a non-aqueous solvent for non-aqueous electrolyte secondary batteries. It will be suitable.

【0013】本発明の非水電解液二次電池はこのような
知見に基づいて完成されたものである。すなわち、本発
明の非水電解液二次電池は、リチウムイオンをドープ・
脱ドープ可能な炭素質材料よりなる負極と、LiX MO
2 (但し、Mはコバルト、ニッケル、マンガンの少なく
とも1種を表す。)よりなる正極と、非水溶媒に電解質
が溶解されてなる電解液を有してなる非水電解液二次電
池において、上記非水溶媒がプロピレンカーボネートと
メチルエチルカーボネートの混合溶媒であることを特徴
とするものである。
The non-aqueous electrolyte secondary battery of the present invention has been completed based on such findings. That is, the non-aqueous electrolyte secondary battery of the present invention is doped with lithium ions.
An anode made of a carbonaceous material that can be dedoped, and Li X MO
2 (where M represents at least one of cobalt, nickel and manganese), and a non-aqueous electrolyte secondary battery comprising an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, The non-aqueous solvent is a mixed solvent of propylene carbonate and methyl ethyl carbonate.

【0014】また、上記非水溶媒がプロピレンカーボネ
ートとメチルエチルカーボネートが7:3〜3:7なる
体積比で混合されてなる混合溶媒であることを特徴とす
るものである。さらに、非水溶媒に電解質としてLiP
6 が0.6〜1.8mol/lなる濃度で溶解されて
いることを特徴とするものである。
Further, the non-aqueous solvent is a mixed solvent in which propylene carbonate and methyl ethyl carbonate are mixed in a volume ratio of 7: 3 to 3: 7. Furthermore, LiP is used as an electrolyte in a non-aqueous solvent.
It is characterized in that F 6 is dissolved at a concentration of 0.6 to 1.8 mol / l.

【0015】本発明の非水電解液二次電池において使用
される正極材料は、一般式LiX MO2 (ただしMはC
o,Ni、Mnの少なくとも1種を表す。)で表される
リチウム複合金属酸化物やLiを含んだ層間化合物等で
ある。このうち、特にLiCoO2 を使用した場合に高
いエネルギー密度を示す。
The positive electrode material used in the non-aqueous electrolyte secondary battery of the present invention has a general formula of Li X MO 2 (where M is C
represents at least one of o, Ni, and Mn. ) And a lithium compound metal oxide represented by the above) or an intercalation compound containing Li. Among them, particularly when LiCoO 2 is used, a high energy density is exhibited.

【0016】また負極の炭素質材料は、この種の二次電
池に用いられるものはいずれも使用可能であるが、特に
以下に列挙される炭素質材料が好適である。
As the carbonaceous material for the negative electrode, any of those used for this type of secondary battery can be used, but the carbonaceous materials listed below are particularly preferable.

【0017】まず第一に、有機材料を焼成等の手法によ
り炭素化して得られる炭素材料である。
First, there is a carbon material obtained by carbonizing an organic material by a method such as firing.

【0018】出発原料となる有機材料としては、フェノ
ール樹脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリ
イミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、
ポリアセチレン、ポリ(p−フェニレン)等の共役系樹
脂、セルロースおよびその誘導体、任意の有機高分子系
化合物を使用することが出来る。
As the organic material as a starting material, phenol resin, acrylic resin, vinyl halide resin, polyimide resin, polyamideimide resin, polyamide resin,
Conjugated resins such as polyacetylene and poly (p-phenylene), cellulose and its derivatives, and any organic polymer compounds can be used.

【0019】その他、ナフタレン、フェナントレン、ア
ントラセン、トリフェニレン、ピレン、ペリレン、ペン
タフェン、ペンタセンなどの縮合多環炭化水素化合物、
その他誘導体(例えばこれらのカルボン酸、カルボン酸
無水物、カルボン酸イミド等)、前記各化合物の混合物
を主成分とする各種ピッチ、アセナフチレン、インドー
ル、イソインドール、キノリン、イソキノリン、キノキ
サリン、フタラジン、カルバゾール、アクリジン、フェ
ナジン、フェナントリジン等の縮合複素環化合物、その
誘導体も使用可能である。
In addition, condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphene and pentacene,
Other derivatives (for example, these carboxylic acids, carboxylic acid anhydrides, carboxylic acid imides, etc.), various pitches containing a mixture of the respective compounds as a main component, acenaphthylene, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, Fused heterocyclic compounds such as acridine, phenazine and phenanthridine, and their derivatives can also be used.

【0020】また、特にフルフリルアルコールあるいは
フルフラールのホモポリマー、コポリマーよりなるフラ
ン樹脂も好適である。このフラン樹脂を炭化した炭素質
材料は、(002)面の面間隔が3.70Å以上、真密
度1.70g/cc以下かつDTA(示差熱分析)で7
00℃以上に酸化発熱ピークを持たず、電池の負極材料
として非常に良好な特性を示す。
Furan resins which are homopolymers or copolymers of furfuryl alcohol or furfural are also particularly suitable. The carbonaceous material obtained by carbonizing this furan resin has a (002) plane spacing of 3.70 Å or more, a true density of 1.70 g / cc or less, and a DTA (differential thermal analysis) of 7
It does not have an oxidation exothermic peak at 00 ° C. or higher and shows very good characteristics as a negative electrode material for batteries.

【0021】これら有機材料を焼成する温度としては、
出発原料によっても異なり、通常は500〜3000℃
とされる。
The temperature for firing these organic materials is as follows:
Depends on the starting material, usually 500-3000 ° C
It is said that

【0022】あるいは、特定のH/C原子比を有する石
油ピッチに酸素を含む官能基を導入(いわゆる酸素架
橋)したものも前記フラン樹脂と同様、炭素化したとき
に優れた特性を発揮することから、前記有機材料として
使用することが可能である。前記石油ピッチは、コール
タール、エチレンボトム油、原油等の高温熱分解で得ら
れるタール類、アスファルトなどより蒸留(真空蒸留、
常圧蒸留、スチーム蒸留)、熱重縮合、抽出、化学重縮
合等の操作によって得られる。
Alternatively, a petroleum pitch having a specific H / C atomic ratio to which a functional group containing oxygen is introduced (so-called oxygen cross-linking) exhibits excellent characteristics when carbonized, like the furan resin. Therefore, it can be used as the organic material. The petroleum pitch is distilled from tars obtained by high-temperature thermal decomposition of coal tar, ethylene bottom oil, crude oil, asphalt, etc. (vacuum distillation,
It can be obtained by operations such as atmospheric distillation, steam distillation), thermal polycondensation, extraction, and chemical polycondensation.

【0023】このとき、石油ピッチのH/C原子比が重
要で、難黒鉛化炭素とするためにはこのH/C原子比を
0.6〜0.8とする必要がある。
At this time, the H / C atomic ratio of petroleum pitch is important, and it is necessary to set the H / C atomic ratio to 0.6 to 0.8 in order to obtain non-graphitizable carbon.

【0024】これらの石油ピッチに酸素を含む官能基を
導入する具体的な手段は限定されないが、例えば硝酸、
混酸、硫酸、次亜塩素酸等の水溶液による湿式法、ある
いは酸化性ガス(空気、酸素)による乾式法、さらに硫
黄、硝酸アンモニア、過硫酸アンモニア、塩化第二鉄等
の固体試薬による反応などが用いられる。例えば、上記
の手法により石油ピッチに酸素を導入した場合、炭素化
の過程(400℃以上)で溶融することなく固相状態で
最終の炭素質材料が得られ、それは難黒鉛化炭素の生成
過程に類似する。
The specific means for introducing a functional group containing oxygen into these petroleum pitches is not limited, but for example nitric acid,
Wet method using an aqueous solution of mixed acid, sulfuric acid, hypochlorous acid, etc., or dry method using oxidizing gas (air, oxygen), and reaction with solid reagents such as sulfur, ammonium nitrate, ammonium persulfate, ferric chloride, etc. Used. For example, when oxygen is introduced into the petroleum pitch by the above method, the final carbonaceous material is obtained in the solid state without melting during the carbonization process (400 ° C or higher), which is the process of forming non-graphitizable carbon. Similar to.

【0025】前述の手法により酸素を含む官能基を導入
した石油ピッチを炭素化して負極材とするが、炭素化の
際の条件は問わず、(002)面の面間隔が3.70Å
以上、真密度1.70g/cc以下かつDTAで700
℃以上に酸化発熱ピークを持たないという特性を満足す
る炭素質材料が得られるように設定すれば、単位重量あ
たりのリチウムドープ量の大きなものが得られる。これ
は、例えば石油ピッチを酸素架橋した前駆体の酸素含有
量を10重量%以上とすることで、(002)面の面間
隔を3.70Å以上とすることが出来る。したがって、
前記前駆体の酸素含有量は10重量%以上にすることが
好ましく、実用的には10〜20重量%の範囲である。
The petroleum pitch having oxygen-containing functional groups introduced therein is carbonized by the above-mentioned method to be used as a negative electrode material, and the (002) plane spacing is 3.70Å regardless of the conditions for carbonization.
Above, true density 1.70g / cc or less and DTA 700
If a carbonaceous material satisfying the characteristic of not having an oxidation exothermic peak above 0 ° C. is obtained, a large amount of lithium doped per unit weight can be obtained. For example, when the oxygen content of the precursor obtained by oxygen-crosslinking petroleum pitch is 10% by weight or more, the interplanar spacing of (002) planes can be 3.70 Å or more. Therefore,
The oxygen content of the precursor is preferably 10% by weight or more, and practically in the range of 10 to 20% by weight.

【0026】以上の原料有機材料を用いて炭素質材料を
得る場合、例えば、窒素気流中、300〜700℃で炭
化した後、窒素気流中、昇温速度毎分1〜20℃、到達
温度900〜1300℃、到達温度での保持時間0〜5
時間程度の条件で焼成すれば良い。勿論、場合によって
は炭化操作を省略しても良い。
When a carbonaceous material is obtained by using the above raw material organic material, for example, after carbonizing at 300 to 700 ° C. in a nitrogen stream, the temperature rising rate is 1 to 20 ° C. per minute in the nitrogen stream, and the reached temperature is 900. ~ 1300 ℃, holding time at ultimate temperature 0-5
It suffices to bake under conditions of time. Of course, in some cases, the carbonization operation may be omitted.

【0027】さらには、前記フラン樹脂や石油ピッチ等
を炭素化する際にリン化合物、或いはホウ素化合物を添
加することで、リチウムドープ量の大きな特殊な負極化
合物も使用可能である。
Furthermore, by adding a phosphorus compound or a boron compound when carbonizing the furan resin or petroleum pitch, a special negative electrode compound having a large lithium doping amount can be used.

【0028】リン化合物としては、五酸化リンなどのリ
ンの酸化物や、オルトリン酸等のオキソ酸やその塩等が
挙げられるが、取扱やすさ等の点からリン酸化物及びリ
ン酸が好適である。添加するリン化合物の量は、有機材
料もしくは炭素質材料に対してリン換算で0.2〜30
重量%、好ましくは0.5〜15重量%、また負極材料
中に残存するリンの割合は0.2〜9.0重量%、好ま
しくは0.3〜5重量%とする。
Examples of the phosphorus compound include phosphorus oxides such as phosphorus pentoxide, oxo acids such as orthophosphoric acid and salts thereof, and the like. Phosphorus oxides and phosphoric acids are preferable from the viewpoint of easy handling. is there. The amount of the phosphorus compound added is 0.2 to 30 in terms of phosphorus with respect to the organic material or the carbonaceous material.
% By weight, preferably 0.5 to 15% by weight, and the proportion of phosphorus remaining in the negative electrode material is 0.2 to 9.0% by weight, preferably 0.3 to 5% by weight.

【0029】ホウ素化合物としては、ホウ素の酸化物或
いはホウ酸を水溶液の形で添加することができる。添加
するホウ素化合物の量は、有機材料もしくは炭素質材料
に対してホウ素換算で0.2〜30重量%、好ましくは
0.5〜15重量%、また負極材料中に残存するホウ素
の割合は0.2〜9.0重量%、好ましくは0.3〜5
重量%とする。
As the boron compound, boron oxide or boric acid can be added in the form of an aqueous solution. The amount of the boron compound added is 0.2 to 30% by weight, preferably 0.5 to 15% by weight, in terms of boron based on the organic material or the carbonaceous material, and the proportion of boron remaining in the negative electrode material is 0. 0.2 to 9.0% by weight, preferably 0.3 to 5
Weight%

【0030】本発明の非水電解液二次電池は、以上のよ
うな負極材料よりなる負極と正極材料よりなる正極が非
水溶媒に電解質が溶解されてなる電解液とともに電池缶
内に収納されて構成される。
The non-aqueous electrolyte secondary battery of the present invention is housed in a battery can together with the above-mentioned negative electrode made of a negative electrode material and a positive electrode made of a positive electrode material together with an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent. Consists of

【0031】ここで、本発明においては、電解質が溶解
される非水溶媒として、低粘度溶媒のMECと高誘電率
溶媒のPCよりなる混合溶媒を使用する。MECとPC
よりなる混合溶媒は、沸点や凝固点が適正であるととも
に正極に対する安定性が高い。したがって、このような
混合溶媒を使用することにより、幅広い使用温度範囲に
おいて高エネルギー密度、長サイクル寿命が得られるこ
ととなる。
In the present invention, a mixed solvent composed of MEC, which is a low viscosity solvent, and PC, which is a high dielectric constant solvent, is used as the non-aqueous solvent in which the electrolyte is dissolved. MEC and PC
The mixed solvent consisting of the above has an appropriate boiling point and freezing point and is highly stable with respect to the positive electrode. Therefore, by using such a mixed solvent, high energy density and long cycle life can be obtained in a wide temperature range of use.

【0032】なお、MECとPCよりなる混合溶媒にお
いて、PCとMECとはPC:MEC(体積比)が7:
3〜3:7となるように混合されていることが好まし
い。PCとMECの混合率が上記範囲外である場合に
は、電解液の導電率が低くなり、電池特性が不十分とな
る可能性が高い。
In the mixed solvent consisting of MEC and PC, PC and MEC have a PC: MEC (volume ratio) of 7:
It is preferable that they are mixed so as to be 3 to 3: 7. When the mixing ratio of PC and MEC is out of the above range, the conductivity of the electrolytic solution becomes low, and the battery characteristics are likely to be insufficient.

【0033】また、上記非水溶媒には電解質が溶解され
るが、電解質としては、LiPF6、LiClO4 、L
iAsF6 、LiBF4 、LiB(C6 5 4 、CH
3 SO3 Li、CF3 SO3 Li、LiCl、LiBr
等が使用される。これら電解質の電解液中に溶解される
濃度には適正範囲があり、例えばLiPF6 の場合は、
0.6〜1.8mol/lの濃度で電解液中に溶解する
ことが望ましい。電解液中に溶解されるLiPF6 の濃
度が上記範囲を外れる場合には、やはり電解液の導電率
が不十分となり、充放電効率が不足する虞れがある。
An electrolyte is dissolved in the above non-aqueous solvent, and as the electrolyte, LiPF 6 , LiClO 4 , L
iAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH
3 SO 3 Li, CF 3 SO 3 Li, LiCl, LiBr
Etc. are used. There is an appropriate range for the concentration of these electrolytes dissolved in the electrolytic solution. For example, in the case of LiPF 6 ,
It is desirable to dissolve it in the electrolytic solution at a concentration of 0.6 to 1.8 mol / l. When the concentration of LiPF 6 dissolved in the electrolytic solution is out of the above range, the electric conductivity of the electrolytic solution may be insufficient and the charge / discharge efficiency may be insufficient.

【0034】[0034]

【作用】本発明の非水電解液二次電池においては、電解
液の高誘電率溶媒としてPCを、低粘度溶媒としてME
Cを使用する。ここで、低粘度溶媒として使用するME
Cは沸点や凝固点がDMCとDECのほぼ中間の値を示
し、電解液の低粘度溶媒として適正であるとともに正負
極に対する安定性がDECよりも優れている。したがっ
て、上記非水電解液二次電池は、高温環境下で使用した
場合にも電池内圧がほとんど上昇せず、また低温環境下
で使用した場合にも電解液が凍結せず、幅広い使用温度
範囲において高エネルギー密度、長寿命が得られる。
In the non-aqueous electrolyte secondary battery of the present invention, PC is used as the high dielectric constant solvent of the electrolyte and ME is used as the low viscosity solvent.
Use C. Here, ME used as a low-viscosity solvent
C has a boiling point and a freezing point almost in the middle of those of DMC and DEC, is suitable as a low-viscosity solvent for an electrolytic solution, and is superior in stability to positive and negative electrodes to DEC. Therefore, the non-aqueous electrolyte secondary battery, the battery internal pressure hardly rises even when used in a high temperature environment, and the electrolyte does not freeze even when used in a low temperature environment, and has a wide operating temperature range. In, high energy density and long life can be obtained.

【0035】なお、MECとPCの混合溶媒を非水溶媒
として使用するに際して、MECとPCの混合率,電解
質の溶解濃度を適正化すると電解液の導電率が向上し、
より充放電効率に優れた非水電解液二次電池となる。
When the mixed solvent of MEC and PC is used as the non-aqueous solvent, the conductivity of the electrolytic solution is improved if the mixing ratio of MEC and PC and the dissolved concentration of the electrolyte are optimized.
The non-aqueous electrolyte secondary battery has more excellent charge / discharge efficiency.

【0036】[0036]

【実施例】以下、本発明を具体的な実施例について実験
結果に沿って説明する。
EXAMPLES The present invention will be described below with reference to concrete examples according to experimental results.

【0037】実施例1 本実施例は、電解液としてPCとMECとを1:1の体
積比で混合した混合溶媒にLiPF6 を溶解させたもの
を、負極材料として難黒鉛化炭素材料を、正極材料とし
てLiCoO2 を用いた非水電解液二次電池の例であ
る。本実施例で作製した非水電解液二次電池の構成を図
1に示す。
Example 1 In this example, LiPF 6 was dissolved in a mixed solvent in which PC and MEC were mixed at a volume ratio of 1: 1 as an electrolytic solution, and a non-graphitizable carbon material was used as a negative electrode material. It is an example of a non-aqueous electrolyte secondary battery using LiCoO 2 as a positive electrode material. The structure of the non-aqueous electrolyte secondary battery produced in this example is shown in FIG.

【0038】まず、負極1を次のようにして作製した。
H/C原子比が0.6〜0.8の範囲から適当に選んだ
石油ピッチを粉砕し、空気気流中で酸化処理して炭素前
駆体を得た。このとき、炭素前駆体のキノリン不溶分
(JIS遠心法:K2425−1983)は80%であ
り、また酸素含有率(有機元素分析法による)は15.
4重量%であった。
First, the negative electrode 1 was manufactured as follows.
A petroleum pitch appropriately selected from the range of H / C atomic ratio of 0.6 to 0.8 was crushed and subjected to oxidation treatment in an air stream to obtain a carbon precursor. At this time, the quinoline insoluble content (JIS centrifugal method: K2425-1983) of the carbon precursor was 80%, and the oxygen content rate (by organic element analysis method) was 15.
It was 4% by weight.

【0039】この炭素前駆体を窒素気流中で1000℃
に昇温して熱処理することによって軟黒鉛化炭素材料を
得た後、粉砕し、平均粒径10μmの炭素材料粉末とし
た。なおこのとき得られた難黒鉛化炭素材料についてX
線回折測定を行った結果、(002)面の面間隔は3.
76Åであり真比重は1.58であった。
This carbon precursor was heated at 1000 ° C. in a nitrogen stream.
A soft graphitized carbon material was obtained by heating to a temperature of 10 ° C. and then pulverized to obtain a carbon material powder having an average particle size of 10 μm. Regarding the non-graphitizable carbon material obtained at this time, X
As a result of line diffraction measurement, the spacing between (002) planes was 3.
It was 76Å and the true specific gravity was 1.58.

【0040】この炭素材料粉末90重量部を、バインダ
ーであるポリフッ化ビニリデン10重量部と混合して負
極混合物を調製し、この負極混合物を溶剤N−メチル−
2−ピロリドンに分散させてスラリー状にし、負極スラ
リーを調製した。
90 parts by weight of the carbon material powder was mixed with 10 parts by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture, and the negative electrode mixture was mixed with the solvent N-methyl-.
A negative electrode slurry was prepared by dispersing it in 2-pyrrolidone to form a slurry.

【0041】そして、このようにして得られた負極スラ
リーを負極集電体となる厚さ10μmの帯状銅箔の両面
に均一に塗布し、乾燥させた後、ロールプレス機で圧縮
成形し、帯状負極1を作製した。
The negative electrode slurry thus obtained was evenly applied on both sides of a strip-shaped copper foil having a thickness of 10 μm to be a negative electrode current collector, dried and then compression-molded by a roll press machine to form a strip-shaped strip. A negative electrode 1 was produced.

【0042】次に、正極2を以下のようにして作製し
た。炭酸リチウムと炭酸コバルトを0.5モル:1モル
なる比率で混合し、900℃、5時間、空気中で焼成し
てLiCoO2 を得た。このようにして得られたLiC
oO2 91重量部を、導電材であるグラファイト6重量
部及びバインダーであるポリフッ化ビニリデン3重量部
と混合して正極混合物を調製し、この正極混合物を溶剤
N−メチル−2−ピロリドンに分散させてスラリー状に
し、正極スラリーを調製した。
Next, the positive electrode 2 was produced as follows. Lithium carbonate and cobalt carbonate were mixed in a ratio of 0.5 mol: 1 mol, and the mixture was baked in air at 900 ° C. for 5 hours to obtain LiCoO 2 . LiC thus obtained
91 parts by weight of oO 2 was mixed with 6 parts by weight of graphite as a conductive material and 3 parts by weight of polyvinylidene fluoride as a binder to prepare a positive electrode mixture, and the positive electrode mixture was dispersed in a solvent N-methyl-2-pyrrolidone. To prepare a positive electrode slurry.

【0043】そして、このようにして得られた正極スラ
リーを正極集電体となる厚さ20μmの帯状アルミ箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状正極2を作製した。
Then, the positive electrode slurry thus obtained was uniformly applied to both sides of a strip-shaped aluminum foil having a thickness of 20 μm to be a positive electrode current collector, dried and then compression-molded by a roll press machine to form a strip. A positive electrode 2 was produced.

【0044】次いで、図1で示すように、帯状負極1、
帯状正極2及び微孔性ポリプロピレンフィルムよりなる
セパレータ3を、それぞれ渦巻電極素子とした場合に直
径20mm、高さ50mmの電池缶5中に適切に納まる
寸法となるようにあらかじめ長さ及び幅を調節してお
き、渦巻式電極を作製した。
Then, as shown in FIG. 1, the strip-shaped negative electrode 1,
When the strip-shaped positive electrode 2 and the separator 3 made of a microporous polypropylene film are used as spiral electrode elements, the length and width are adjusted in advance so that they can be properly accommodated in the battery can 5 having a diameter of 20 mm and a height of 50 mm. Then, a spiral electrode was manufactured.

【0045】このようにして作製された渦巻式電極をニ
ッケルメッキを施した鉄製電池缶5に収納し、収納され
た渦巻式電極の上下両面に絶縁板4を配置した。そし
て、正極集電体10からアルミニウム製正極リード12
を導出し、負極集電体9からはニッケル製負極リード1
1を導出して電池缶5に溶接した。
The spiral electrode thus manufactured was housed in a nickel-plated iron battery can 5, and insulating plates 4 were arranged on both upper and lower surfaces of the housed spiral electrode. Then, from the positive electrode current collector 10 to the aluminum positive electrode lead 12
From the negative electrode current collector 9 to the nickel negative electrode lead 1
1 was drawn out and welded to the battery can 5.

【0046】そして、PC50容量%とMEC50容量
%の混合溶媒にLiPF6 を1mol/lなる割合で溶
解させて電解液を調製し、この電解液を電池缶5の中に
注入した。次いで、アスファルトを塗布した絶縁ガスケ
ット6を介して電池缶5をかしめることで、電池蓋7を
固定し、直径20mm、高さ50mmの円筒形非水電解
液電池(実施例電池1)を作製した。
Then, LiPF 6 was dissolved in a mixed solvent of 50% by volume of PC and 50% by volume of MEC at a ratio of 1 mol / l to prepare an electrolytic solution, and this electrolytic solution was injected into the battery can 5. Then, the battery can 5 is caulked via the insulating gasket 6 coated with asphalt to fix the battery lid 7, and to manufacture a cylindrical non-aqueous electrolyte battery (Example battery 1) having a diameter of 20 mm and a height of 50 mm. did.

【0047】比較例1 PC50容量%とDEC50容量%の混合溶媒にLiP
6 を1mol/lなる割合で溶解させてなる電解液を
使用する以外は実施例1と同様にして円筒形非水電解液
電池(比較例電池1)を作製した。
Comparative Example 1 LiP was added to a mixed solvent of 50% by volume of PC and 50% by volume of DEC.
A cylindrical non-aqueous electrolyte battery (Comparative Example Battery 1) was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving F 6 at a ratio of 1 mol / l was used.

【0048】比較例2 PC50容量%とDMC50容量%の混合溶媒にLiP
6 を1mol/lなる割合で溶解させてなる電解液を
使用する以外は実施例1と同様にして円筒形非水電解液
電池(比較例電池2)を作製した。
Comparative Example 2 LiP was added to a mixed solvent of 50% by volume of PC and 50% by volume of DMC.
A cylindrical non-aqueous electrolyte battery (Comparative Example Battery 2) was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving F 6 at a rate of 1 mol / l was used.

【0049】以上のように作製された実施例電池1、比
較例電池1、比較例電池2について、温度60℃条件
下、4.1Vでフロート充電し、フロート時間と電池内
圧の関係を調べた。その結果を図2に示す。
The example battery 1, the comparative battery 1, and the comparative battery 2 manufactured as described above were float-charged at 4.1 V under the condition of a temperature of 60 ° C., and the relationship between the float time and the battery internal pressure was examined. . The result is shown in FIG.

【0050】図2からわかるように、実施例電池1及び
比較例電池1に比べて比較例電池2は電池内圧の上昇が
大きい。したがって、このことから、非水溶媒としてP
CとDMCの混合溶媒を使用すると、高温環境下で使用
するには不適当となることがわかった。
As can be seen from FIG. 2, the internal pressure of the comparative example battery 2 is larger than that of the example battery 1 and the comparative example battery 1. Therefore, from this, P as a non-aqueous solvent
It was found that the use of a mixed solvent of C and DMC is unsuitable for use in a high temperature environment.

【0051】次に、各電池について、充電電圧最大4.
1V、充電電流1Aで2.5hで充電を行い、6.2o
hmの定抵抗で終止電圧2.75Vまで放電を行う充放
電サイクルを繰り返し行い、充放電サイクルに伴うエネ
ルギー密度の変化を調べた。その結果を図3に示す。
Next, for each battery, the maximum charging voltage is 4.
Charged for 2.5h at 1V and charging current 1A, 6.2o
A charge / discharge cycle in which discharging was performed to a final voltage of 2.75 V with a constant resistance of hm was repeated, and changes in energy density with the charge / discharge cycle were examined. The result is shown in FIG.

【0052】図3からわかるように、実施例電池1及び
比較例電池2は、充放電サイクルに伴うエネルギー密度
の減少が少なく、良好なサイクル特性を示しているのに
対し、比較例電池1はサイクル劣化が大きい。すなわ
ち、PCとDECの混合溶媒を使用する非水電解液二次
電池は、サイクル特性が不十分である。
As can be seen from FIG. 3, the battery of Example 1 and the battery of Comparative Example 2 show a good cycle characteristic with a small decrease in energy density with charge / discharge cycles, while the battery of Comparative Example 1 has a good cycle characteristic. Cycle deterioration is large. That is, the non-aqueous electrolyte secondary battery using the mixed solvent of PC and DEC has insufficient cycle characteristics.

【0053】次に、各電池について、温度−20℃環境
下、6.2ohmの定抵抗で放電を行い、放電時間と電
圧の関係を調べた。その結果を図4に示す。図4から、
実施例電池1は他の電池に比べて、放電時の電圧降下が
小さく、低温環境下においても優れた特性を発揮するこ
とがわかる。
Next, each battery was discharged at a constant resistance of 6.2 ohm in a temperature -20 ° C. environment, and the relationship between discharge time and voltage was examined. The result is shown in FIG. From FIG.
It can be seen that the battery of Example 1 has a smaller voltage drop during discharge than other batteries and exhibits excellent characteristics even in a low temperature environment.

【0054】これらの結果から、非水電解液二次電池の
非水溶媒としては、PCとMECの混合溶媒が好適であ
り、PCとMECの混合溶媒を使用することにより、広
い温度範囲において高エネルギー密度,長寿命が得られ
るようになることがわかった。
From these results, a mixed solvent of PC and MEC is suitable as the non-aqueous solvent of the non-aqueous electrolyte secondary battery, and by using the mixed solvent of PC and MEC, the mixed solvent of PC and MEC has a high temperature in a wide temperature range. It was found that energy density and long life could be obtained.

【0055】なお、参考のため、各電池に使用した電解
液について、各種温度における電導度を表1にまた凍結
状態を表2に示す。
For reference, the conductivity of the electrolytic solution used in each battery at various temperatures is shown in Table 1, and the frozen state is shown in Table 2.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】表2より、PCとMECを使用する電解液
およびPCとDECを使用する電解液は、−50℃とし
た場合にも凍結せず液体状態を維持しているのに対し、
PCとDMCを使用する電解液は、−30℃で凍結す
る。一方、表1に示す導電率を見ると、PCとDECを
使用する電解液は、導電率が他の電解液に比べて低くな
っている。
From Table 2, the electrolytic solution using PC and MEC and the electrolytic solution using PC and DEC do not freeze even when kept at −50 ° C., while maintaining a liquid state.
Electrolytes using PC and DMC freeze at -30 ° C. On the other hand, looking at the electrical conductivity shown in Table 1, the electrolytic solution using PC and DEC has a lower electrical conductivity than the other electrolytic solutions.

【0059】すなわち、PCとMECを使用する電解液
は、低温特性,導電率のいずれにおいても優れているこ
とがわかる。
That is, it is understood that the electrolytic solution using PC and MEC is excellent in both low temperature characteristics and conductivity.

【0060】実施例2 直径18mm,高さ65mmの電池缶中に適切に収まる
大きさとしたこと以外は実施例1と同様の構成の渦巻式
電極を作製した。作製された渦巻式電極をニッケルメッ
キを施した鉄製電池缶に収納し、収納された渦巻式電極
の上下両面に絶縁板を配置した。そして、正極集電体か
らアルミニウム製正極リードを導出し、負極集電体から
はニッケル製リードを導出して電池缶に溶接した。
Example 2 A spiral electrode having the same structure as in Example 1 was prepared except that the size was set so that the battery can properly fit in a battery can having a diameter of 18 mm and a height of 65 mm. The produced spiral electrode was housed in a nickel-plated iron battery can, and insulating plates were arranged on both upper and lower surfaces of the housed spiral electrode. Then, the aluminum positive electrode lead was led out from the positive electrode collector and the nickel lead was led out from the negative electrode collector and welded to the battery can.

【0061】そして、PC30容量%とMEC70容量
%の混合溶媒にLiPF6 を各種濃度で溶解させてなる
電解液を調製し、この電解液を電池缶の中に注入した。
アスファルトを塗布した絶縁ガスケットを介して電池缶
をかしめることで、電池蓋を固定し、直径18mm,高
さ50mmの円筒形非水電解液電池を作製した。なお、
混合溶媒に溶解させたLiPF6 の濃度は、0.5,
0.6,0.8,1.0,1.2,1.4,1.6,
1.8,2.0mol/lである。
Then, an electrolytic solution was prepared by dissolving LiPF 6 at various concentrations in a mixed solvent of 30% by volume of PC and 70% by volume of MEC, and this electrolytic solution was injected into a battery can.
The battery lid was fixed by caulking the battery can through an insulating gasket coated with asphalt, and a cylindrical nonaqueous electrolyte battery having a diameter of 18 mm and a height of 50 mm was produced. In addition,
The concentration of LiPF 6 dissolved in the mixed solvent was 0.5,
0.6, 0.8, 1.0, 1.2, 1.4, 1.6,
1.8 and 2.0 mol / l.

【0062】実施例3 PC40容量%とMEC60容量%の混合溶媒にLiP
6 を各種濃度で溶解させてなる電解液を使用すること
以外は実施例2と同様にして円筒形非水電解液二次電池
(実施例電池3)を作製した。
Example 3 LiP was added to a mixed solvent of 40% by volume of PC and 60% by volume of MEC.
A cylindrical non-aqueous electrolyte secondary battery (Example battery 3) was produced in the same manner as in Example 2 except that an electrolytic solution prepared by dissolving F 6 at various concentrations was used.

【0063】実施例4 PC50容量%とMEC50容量%の混合溶媒にLiP
6 を各種濃度で溶解させてなる電解液を使用すること
以外は実施例2と同様にして円筒形非水電解液二次電池
(実施例電池4)を作製した。
Example 4 LiP was added to a mixed solvent of 50% by volume of PC and 50% by volume of MEC.
A cylindrical non-aqueous electrolyte secondary battery (Example battery 4) was produced in the same manner as in Example 2 except that an electrolytic solution prepared by dissolving F 6 at various concentrations was used.

【0064】実施例5 PC60容量%とMEC40容量%の混合溶媒にLiP
6 を各種濃度で溶解させてなる電解液を使用すること
以外は実施例2と同様にして円筒形非水電解液二次電池
(実施例電池5)を作製した。
Example 5 LiP was added to a mixed solvent of 60% by volume of PC and 40% by volume of MEC.
A cylindrical non-aqueous electrolyte secondary battery (Example battery 5) was produced in the same manner as in Example 2 except that an electrolytic solution prepared by dissolving F 6 at various concentrations was used.

【0065】実施例6 PC70容量%とMEC30容量%の混合溶媒にLiP
6 を各種濃度で溶解させてなる電解液を使用すること
以外は実施例2と同様にして円筒形非水電解液二次電池
(実施例電池6)を作製した。
Example 6 LiP was added to a mixed solvent of 70% by volume of PC and 30% by volume of MEC.
A cylindrical non-aqueous electrolyte secondary battery (Example battery 6) was produced in the same manner as in Example 2 except that an electrolytic solution prepared by dissolving F 6 at various concentrations was used.

【0066】比較例3 PC50容量%とDEC50容量%の混合溶媒にLiP
6 を1mol/lなる割合で溶解させてなる電解液を
使用すること以外は実施例2と同様にして円筒形非水電
解液電池(比較例電池3)を作製した。
Comparative Example 3 LiP was added to a mixed solvent of 50% by volume of PC and 50% by volume of DEC.
A cylindrical non-aqueous electrolyte battery (Comparative Example Battery 3) was produced in the same manner as in Example 2 except that an electrolytic solution prepared by dissolving F 6 at a ratio of 1 mol / l was used.

【0067】以上のように作製された電池について、充
電状態で温度90℃環境下40時間放置した後の電池内
圧,温度−20℃環境下での放電容量比及び導電率,充
放電効率を測定した。なお、充放電効率は、充電電流1
A,電圧4.2Vの条件で定電圧充電を2.5時間行っ
た後、放電負荷6.2Ω,カットオフ電圧2.75Vの
条件で放電を行う充放電サイクルを繰り返し行い、2サ
イクル目の容量に対する100サイクル目の容量の比
(2サイクル目容量/100サイクル目容量)を求める
ことによって測定した。
With respect to the battery manufactured as described above, the internal pressure of the battery after being left in a charged state at a temperature of 90 ° C. for 40 hours, the discharge capacity ratio and the conductivity at a temperature of -20 ° C., and the charge / discharge efficiency were measured. did. The charge / discharge efficiency is 1 charge current.
A, constant voltage charging was performed under the conditions of voltage 4.2V for 2.5 hours, and then discharge was repeated under conditions of discharge load 6.2Ω and cutoff voltage 2.75V. It was measured by determining the ratio of the capacity at the 100th cycle to the capacity (2nd cycle capacity / 100th cycle capacity).

【0068】放電容量比は、初期充電を行った後、上述
の条件で充放電サイクルを3サイクル行い、さらに4サ
イクル目の充電を行った後、温度−20℃環境下、電流
700mAの条件で定電流放電を行ったときの放電容量
を測定することによって求めた。電池内圧は、初期充電
を行った後、上述の条件で充放電サイクルを3サイクル
行い、さらに4サイクル目の充電を行った後、この充電
状態で温度90℃環境下、40時間放置した後に測定し
た。
Regarding the discharge capacity ratio, after the initial charging, the charging / discharging cycle was repeated 3 times under the above-mentioned conditions, and after the charging for the 4th cycle, the current was 700 mA under the environment of temperature -20 ° C. It was determined by measuring the discharge capacity when constant current discharge was performed. The internal pressure of the battery is measured after the initial charging, the charging / discharging cycle under the above-mentioned conditions for 3 cycles, and the charging for the 4th cycle. did.

【0069】温度−20℃環境下における電解液中の電
解質濃度と放電容量比の関係を図5に、電解液中の電解
質濃度と充電状態で温度90℃環境下に放置した後の電
池内圧の関係を図6に示す。電解液のMEC混合率と導
電率の関係を図7(図中、mol/lで示す濃度はLi
PF6 濃度である。)に、電解液中の電解質濃度と導電
率の関係を図8,図9に示す。なお図8は導電率を温度
22℃環境下で測定した場合であり、図9は導電率を温
度−20℃環境下で測定した場合である。また、電解液
中の電解質濃度と充放電効率の関係を図10に示す。
FIG. 5 shows the relationship between the electrolyte concentration in the electrolytic solution and the discharge capacity ratio under the environment of temperature −20 ° C. and the concentration of the electrolyte in the electrolytic solution and the internal pressure of the battery after being left in the charged state under the environment of temperature 90 ° C. The relationship is shown in FIG. FIG. 7 shows the relationship between the MEC mixing rate and the conductivity of the electrolytic solution (in the figure, the concentration shown in mol / l is Li
PF 6 concentration. 8) and 9 show the relationship between the electrolyte concentration in the electrolytic solution and the electrical conductivity. Note that FIG. 8 shows the case where the conductivity was measured under the temperature of 22 ° C. environment, and FIG. 9 shows the case where the conductivity was measured under the temperature −20 ° C. environment. Further, FIG. 10 shows the relationship between the electrolyte concentration in the electrolytic solution and the charge / discharge efficiency.

【0070】先ず、図5からわかるように、電解液の非
水溶媒としてMECとPCの混合溶媒を用いる実施例電
池2〜実施例電池6は、いずれも非水溶媒としてDEC
とPCの混合溶媒を用いる比較例電池3に比べて温度−
20℃環境下における放電容量比が大きく低温特性に優
れている。
First, as can be seen from FIG. 5, the batteries of Examples 2 to 6 using the mixed solvent of MEC and PC as the non-aqueous solvent of the electrolytic solution were all DEC as the non-aqueous solvent.
Temperature as compared to Comparative Example Battery 3 using a mixed solvent of PC and PC
The discharge capacity ratio under the environment of 20 ° C is large and the low temperature characteristics are excellent.

【0071】また、図6を見ると、実施例電池2〜実施
例電池6は、比較的高温特性に優れるとされる上記比較
例電池3と比べて、電池内圧の上昇が同程度に止まって
おり、十分実用的な高温特性を有していることがわか
る。
Further, as shown in FIG. 6, in the case of Example battery 2 to Example battery 6, the internal pressure of the battery stops increasing to the same extent as in Comparative battery 3 which is said to have relatively high temperature characteristics. Therefore, it can be seen that the high temperature characteristics are sufficiently practical.

【0072】このことは、上述の図2,図4によって示
される傾向と一致するものであり、このことからもME
CとPCの混合溶媒を電解液の非水溶媒として用いるこ
とは、広い温度範囲において良好な特性を示す電池を得
る上で有効であることが支持される。
This is in agreement with the tendency shown by FIGS. 2 and 4 described above, and from this also, ME
It is supported that the use of the mixed solvent of C and PC as the non-aqueous solvent of the electrolytic solution is effective in obtaining a battery showing good characteristics in a wide temperature range.

【0073】次に、図7を見ると、非水溶媒としてME
CとPCの混合溶媒を用いる電解液においては、導電率
がMEC混合率に依存して変化し、MECの低混合率側
ではMEC混合率の増大に伴って増加し、逆にMECの
高混合率側ではMEC混合率の増大に伴って減少するこ
とがわかる。つまり、MECとPCの混合溶媒を非水溶
媒として使用する電解液には、導電率が大きくなるME
Cの適正混合率範囲があり、MEC混合率を30〜70
重量%とすることにより、電池の電解液として実用的な
導電率が得られるものとなることがわかる。
Next, referring to FIG. 7, ME was used as the non-aqueous solvent.
In an electrolytic solution using a mixed solvent of C and PC, the conductivity changes depending on the MEC mixing ratio, increases on the low mixing ratio side of MEC as the MEC mixing ratio increases, and conversely increases the MEC mixing ratio. It can be seen that on the rate side, it decreases as the MEC mixing rate increases. In other words, in an electrolyte solution that uses a mixed solvent of MEC and PC as a non-aqueous solvent, the conductivity of ME increases.
There is a proper mixing ratio range of C, and the MEC mixing ratio is 30 to 70.
It can be seen that by setting the content by weight%, a practical conductivity can be obtained as the electrolytic solution of the battery.

【0074】また、図8,図9を見ると、非水溶媒とし
てMECとPCの混合溶媒を用いる電解液において導電
率は、電解質の濃度によっても変化し、電解質の低濃度
側では電解質濃度の増大に伴って増加し、逆に電解質の
高濃度側では電解質濃度の増大に伴って減少することが
わかる。
Further, referring to FIGS. 8 and 9, in the electrolytic solution using the mixed solvent of MEC and PC as the non-aqueous solvent, the conductivity also changes depending on the concentration of the electrolyte, and on the low concentration side of the electrolyte, the conductivity of It can be seen that it increases with an increase, and conversely, it decreases with an increase in the electrolyte concentration on the high concentration side of the electrolyte.

【0075】また、さらに図10を見てわかるように、
電解液の非水溶媒としてMECとPCの混合溶媒を用い
る電池では、充放電効率がやはり電解液中に溶解される
電解質の溶解濃度に依存して変化し、電解質の低濃度側
では電解質濃度の増大に伴って増加し、逆に電解質の高
濃度側では電解質濃度の増大に伴って減少することがわ
かる。
Further, as can be seen from FIG. 10,
In a battery using a mixed solvent of MEC and PC as the non-aqueous solvent of the electrolytic solution, the charging / discharging efficiency also changes depending on the dissolved concentration of the electrolyte dissolved in the electrolytic solution, and the electrolyte concentration on the low concentration side of the electrolyte changes It can be seen that it increases with an increase, and conversely, it decreases with an increase in the electrolyte concentration on the high concentration side of the electrolyte.

【0076】つまり、電解液の非水溶媒としてMECと
PCの混合溶媒を用いる電池では、導電率,充放電効率
が高くなる電解質の適正濃度範囲があり、電解質濃度を
0.6〜1.8mol/lとすることにより、実用的な
導電率,充放電効率が得られるものとなることがわか
る。
That is, in the battery using the mixed solvent of MEC and PC as the non-aqueous solvent of the electrolytic solution, there is an appropriate concentration range of the electrolyte in which the electric conductivity and the charging / discharging efficiency are high, and the electrolyte concentration is 0.6 to 1.8 mol. It can be seen that by setting it as / l, practical conductivity and charge / discharge efficiency can be obtained.

【0077】以上、本発明を適用した具体的な実施例に
ついて説明したが、本発明は上記実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲で種々の変
更が可能である。なお、上記実施例の混合する溶媒とし
て、プロピレンカーボネートの代わりにエチレンカーボ
ネート、γ−ブチロラクトン、テトラヒドロフラン、2
−メチルテトラヒドロフラン、1,3−ジオキソラン、
4メチル1,3ジオキソラン、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル、ジメチル
スルホキシド等を使用した場合にもほぼ同様の効果が得
られた。
The specific embodiments to which the present invention is applied have been described above, but the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. . In addition, as a solvent to be mixed in the above examples, instead of propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2
-Methyltetrahydrofuran, 1,3-dioxolane,
Similar effects were obtained when 4-methyl 1,3 dioxolane, sulfolane, methyl sulfolane, acetonitrile, propionitrile, dimethyl sulfoxide, etc. were used.

【0078】[0078]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は、リチウム複合酸化物よりな
る正極と、炭素質材料よりなる負極と、非水溶媒に電解
質を溶解してなる電解液とを有してなる非水電解液二次
電池に用いる非水溶媒として、MECとPCの混合溶媒
を使用するので、高温環境下で使用した場合にも電池内
圧がほとんど上昇せず、低温環境下で使用した場合にも
電解液が凝固せず、幅広い使用温度範囲において高エネ
ルギー密度、長寿命、高信頼性が得られる。したがっ
て、例えば夏季の車中等の条件下においても使用可能で
あり、極めて実用的なものであると言える。
As is apparent from the above description, the non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode made of a lithium composite oxide, a negative electrode made of a carbonaceous material, and an electrolyte in a non-aqueous solvent. Since the mixed solvent of MEC and PC is used as the non-aqueous solvent used for the non-aqueous electrolyte secondary battery having the dissolved electrolyte, the battery internal pressure is almost constant even when used in a high temperature environment. It does not rise and the electrolyte does not solidify even when used in a low temperature environment, and high energy density, long life, and high reliability can be obtained over a wide temperature range. Therefore, it can be said that it can be used even under the condition of, for example, a vehicle in the summer and is extremely practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した非水電解液二次電池の1例を
示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図2】非水電解液二次電池のフロート時間と電池内圧
の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a float time and a battery internal pressure of a non-aqueous electrolyte secondary battery.

【図3】非水電解液二次電池の充放電サイクル数とエネ
ルギー密度の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and energy density of a non-aqueous electrolyte secondary battery.

【図4】非水電解液二次電池の温度−20℃環境下にお
ける放電時間と電圧の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a discharge time and a voltage of a non-aqueous electrolyte secondary battery under a temperature −20 ° C. environment.

【図5】温度−20℃環境下における電解液中のLiP
6 濃度と放電容量比の関係を示す特性図である。
FIG. 5: LiP in electrolyte at a temperature of -20 ° C.
It is a characteristic diagram showing the relationship of F 6 concentration and the discharge capacity ratio.

【図6】電解液中のLiPF6 濃度と充電状態で温度9
0℃環境下に放置したときの電池内圧の関係を示す特性
図である。
FIG. 6 shows a LiPF 6 concentration in the electrolytic solution and a temperature of 9 in a charged state.
It is a characteristic view which shows the relationship of the battery internal pressure when left to stand in a 0 degreeC environment.

【図7】電解液のMEC混合率と導電率の関係を示す特
性図である。
FIG. 7 is a characteristic diagram showing the relationship between the MEC mixing ratio of the electrolytic solution and the conductivity.

【図8】温度22℃環境下における電解液中のLiPF
6 濃度と導電率の関係を示す特性図である。
FIG. 8: LiPF in electrolyte at a temperature of 22 ° C.
FIG. 6 is a characteristic diagram showing the relationship between 6 concentration and conductivity.

【図9】温度−20℃環境下における電解液中のLiP
6 濃度と導電率の関係を示す特性図である。
FIG. 9: LiP in electrolyte at a temperature of -20 ° C.
F 6 is a characteristic diagram showing the relationship between the concentration and electric conductivity.

【図10】電解液中のLiPF6 濃度と充放電効率の関
係を示す特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the LiPF 6 concentration in the electrolytic solution and the charge / discharge efficiency.

【符号の説明】[Explanation of symbols]

1 ・・・負極 2 ・・・正極 3 ・・・セパレータ 4 ・・・絶縁板 5 ・・・電池缶 6 ・・・絶縁ガスケット 7 ・・・電池蓋 9 ・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Insulating gasket 7 ... Battery lid 9 ... Negative electrode current collector 10 ...・ Positive electrode current collector 11 ... Negative electrode lead 12 ... Positive electrode lead

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンをドープ・脱ドープ可能
な炭素質材料よりなる負極と、LiX MO2 (但し、M
はコバルト、ニッケル、マンガンの少なくとも1種を表
す。)よりなる正極と、非水溶媒に電解質が溶解されて
なる電解液を有してなる非水電解液二次電池において、 上記非水溶媒がプロピレンカーボネートとメチルエチル
カーボネートの混合溶媒であることを特徴とする非水電
解液二次電池。
1. A negative electrode made of a carbonaceous material capable of being doped and dedoped with lithium ions, and Li X MO 2 (provided that M
Represents at least one of cobalt, nickel and manganese. ) And a non-aqueous electrolyte secondary battery comprising an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous solvent is a mixed solvent of propylene carbonate and methyl ethyl carbonate. Characteristic non-aqueous electrolyte secondary battery.
【請求項2】 上記非水溶媒がプロピレンカーボネート
とメチルエチルカーボネートが7:3〜3:7なる体積
比で混合されてなる混合溶媒であることを特徴とする請
求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte solution according to claim 1, wherein the non-aqueous solvent is a mixed solvent in which propylene carbonate and methyl ethyl carbonate are mixed in a volume ratio of 7: 3 to 3: 7. Secondary battery.
【請求項3】 非水溶媒に電解質としてLiPF6
0.6〜1.8mol/lなる濃度で溶解されているこ
とを特徴とする請求項2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein LiPF 6 as an electrolyte is dissolved in the non-aqueous solvent at a concentration of 0.6 to 1.8 mol / l.
JP5060754A 1992-03-31 1993-03-19 Nonaqueous electrolyte secondary battery Pending JPH0613109A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5060754A JPH0613109A (en) 1992-03-31 1993-03-19 Nonaqueous electrolyte secondary battery
US08/131,957 US5437945A (en) 1993-03-19 1993-10-08 Secondary battery having non-aqueous electrolyte

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-105894 1992-03-31
JP10589492 1992-03-31
JP5060754A JPH0613109A (en) 1992-03-31 1993-03-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0613109A true JPH0613109A (en) 1994-01-21

Family

ID=26401812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060754A Pending JPH0613109A (en) 1992-03-31 1993-03-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0613109A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714607A (en) * 1993-04-28 1995-01-17 Sony Corp Nonaqueous electrolyte secondary battery
US5891588A (en) * 1996-05-11 1999-04-06 Furukawa Denchi Kabushiki Kaisha Lithium secondary battery
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery
JP2002025606A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
US6762654B1 (en) 1999-07-15 2004-07-13 Murata Manufacturing Co., Ltd. Delay line
JP2009537936A (en) * 2006-05-18 2009-10-29 中信国安盟固利新能源科技有限公司 Small and medium capacity high power lithium ion battery
JP2013069698A (en) * 2012-12-11 2013-04-18 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014127246A (en) * 2012-12-25 2014-07-07 Automotive Energy Supply Corp Nonaqueous electrolyte battery for vehicle and method for use of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714607A (en) * 1993-04-28 1995-01-17 Sony Corp Nonaqueous electrolyte secondary battery
US5891588A (en) * 1996-05-11 1999-04-06 Furukawa Denchi Kabushiki Kaisha Lithium secondary battery
JP2000149905A (en) * 1998-11-10 2000-05-30 Sony Corp Solid electrolyte battery
US6762654B1 (en) 1999-07-15 2004-07-13 Murata Manufacturing Co., Ltd. Delay line
JP2002025606A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2009537936A (en) * 2006-05-18 2009-10-29 中信国安盟固利新能源科技有限公司 Small and medium capacity high power lithium ion battery
JP2013069698A (en) * 2012-12-11 2013-04-18 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014127246A (en) * 2012-12-25 2014-07-07 Automotive Energy Supply Corp Nonaqueous electrolyte battery for vehicle and method for use of the same

Similar Documents

Publication Publication Date Title
US5561005A (en) Secondary battery having non-aqueous electrolyte
JP4423888B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
JP3060474B2 (en) Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JP3709628B2 (en) Non-aqueous electrolyte secondary battery
JP2002279989A (en) Battery
US5437945A (en) Secondary battery having non-aqueous electrolyte
JPH11233140A (en) Nonaqueous electrolyte secondary battery
JP3552377B2 (en) Rechargeable battery
JPH0613109A (en) Nonaqueous electrolyte secondary battery
JP4417037B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP4367015B2 (en) battery
JP3430706B2 (en) Carbon material for negative electrode and non-aqueous electrolyte secondary battery
JP2002270231A (en) Cell
JPH07335262A (en) Nonaqueous electrolyte secondary battery
JP3557240B2 (en) Non-aqueous electrolyte secondary battery
JP4195122B2 (en) Non-aqueous electrolyte secondary battery
JPH11250914A (en) Nonaqueous electrolyte secondary battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH11297354A (en) Nonaqueos electrolyte secondary battery
JP2002164052A (en) Non-aqueous electrolytic battery
JPH09283178A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010619