JPH07240233A - High polymer solid electrolyte lithium secondary battery - Google Patents

High polymer solid electrolyte lithium secondary battery

Info

Publication number
JPH07240233A
JPH07240233A JP6028404A JP2840494A JPH07240233A JP H07240233 A JPH07240233 A JP H07240233A JP 6028404 A JP6028404 A JP 6028404A JP 2840494 A JP2840494 A JP 2840494A JP H07240233 A JPH07240233 A JP H07240233A
Authority
JP
Japan
Prior art keywords
solid electrolyte
secondary battery
negative electrode
lithium secondary
polymer solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6028404A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Kensuke Hironaka
健介 弘中
Kenji Nakai
賢治 中井
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Michio Sasaoka
三千雄 笹岡
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Nobuatsu Watanabe
信淳 渡辺
Youhou Tei
容宝 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP6028404A priority Critical patent/JPH07240233A/en
Publication of JPH07240233A publication Critical patent/JPH07240233A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To realize high reliability and practical usability as a whole solid lithium secondary battery, which are not conventional by providing both practical discharging capacity and excellent charging-discharging cycle characteristics in a high polymer solid electrolyte lithium secondary battery. CONSTITUTION:A high polymer solid electrolyte lithium secondary battery is provided with a high polymer solid electrolyte layer 5 between a positive electrode 4 and a negative electrode 1. The negative electrode 1 contains a carbon material, a solid electrolyte, and an electrolytic liquid and the electrolytic liquid contains ethylene carbonate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、実用的な放電容量を確
保し、充放電サイクル特性に優れる高分子固体電解質リ
チウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte lithium secondary battery which secures a practical discharge capacity and is excellent in charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】従来、リチウム二次電池は有機電解液を
用いるために液漏れの可能性があり、エレクトロニクス
レベルの高い信頼性を実現することは困難であった。し
かし、電解液を固体にするいわゆる固体電解質を用いる
ことで高信頼性が期待できる全固体リチウム二次電池が
可能となり、これまでに種々研究開発され現在注目され
ている。固体電解質は大きく分けて無機系と高分子系と
があるが、活物質との密着性、柔軟性及び分子設計の自
由度の幅が大きいことなどから高分子固体電解質が有望
視されている。
2. Description of the Related Art Conventionally, since a lithium secondary battery uses an organic electrolytic solution, there is a possibility of liquid leakage, and it has been difficult to realize high reliability at an electronic level. However, by using a so-called solid electrolyte in which the electrolytic solution is a solid, an all-solid-state lithium secondary battery that can be expected to have high reliability has become possible. Solid electrolytes are roughly classified into inorganic type and polymer type, but polymer solid electrolytes are regarded as promising because of their high adhesiveness to active materials, flexibility, and wide flexibility in molecular design.

【0003】一方、リチウム二次電池は、負極活物質に
リチウムを用いるために高いエネルギ−を有するが、金
属リチウムを用いた場合、充放電の繰り返しに伴い負極
リチウムの針状析出(デンドライトの生成)が起こり、
この針状析出リチウムがセパレ−タを突き破って正極に
到達するため、内部短絡を起こして電池性能を著しく低
下させる。またこの内部短絡により過大な電流が流れて
電池温度の異常上昇を招くために有機電解液が揮発し、
これによる電池内圧が上昇して最悪の場合、電池の破
裂、爆発を引き起こす。
On the other hand, the lithium secondary battery has a high energy because lithium is used as the negative electrode active material. However, when metallic lithium is used, needle-like deposition of negative electrode lithium (generation of dendrite) occurs with repeated charge and discharge. ) Happened,
This acicular lithium deposit breaks through the separator and reaches the positive electrode, causing an internal short circuit and significantly reducing battery performance. Also, due to this internal short circuit, an excessive current flows, causing an abnormal rise in battery temperature, and the organic electrolyte evaporates,
Due to this, the internal pressure of the battery rises, and in the worst case, the battery may burst or explode.

【0004】このような負極リチウムの針状析出の問題
を解決するために、金属リチウムを用いない材料とし
て、充放電に伴ってリチウムの収容・放出が可能な負極
のリチウム保持体にリチウム−炭素を用いることが提案
され、優れた充放電特性を示している。特に、炭素材料
は高い結晶構造のもので、電解液に主としてエチレンカ
ーボネートが用いられることで高いエネルギー密度を得
ている。
In order to solve such a problem of acicular deposition of lithium in the negative electrode, lithium-carbon is used as a material that does not use metallic lithium and is used as a negative electrode lithium holder capable of accommodating and releasing lithium as it is charged and discharged. It has been proposed to use, and shows excellent charge and discharge characteristics. In particular, the carbon material has a high crystal structure, and ethylene carbonate is mainly used in the electrolytic solution to obtain a high energy density.

【0005】[0005]

【発明が解決しようとする課題】そこで、高分子固体電
解質リチウム二次電池の場合において充放電特性を更に
向上させるために、負極に炭素材料を用いた高分子固体
電解質リチウム二次電池を作製し、充放電試験を行った
ところ、僅かな容量しか得られなかった。一方、高分子
固体電解質の代わりに非水電解液を用いた場合では、正
極活物質、炭素材料、負極活物質とも高分子固体電解質
電池の場合と同じ材料にしたにも拘らず、高い容量が確
保できた。このため、負極に炭素材料を用いた高分子固
体電解質リチウム二次電池の場合に、正極、負極のどち
らに問題があるのか調べた結果、負極の炭素材料にはリ
チウムがほとんど収容されていないことがわかった。原
因は現在のところ明確ではないが、高分子固体電解質か
ら炭素材料にリチウムイオンをスムーズに受け渡しでき
ないためと推測している。このように、負極に炭素材料
を用いた高分子固体電解質リチウム電池は実用的な容量
で使用することができないという課題があった。本発明
は、負極に炭素材料を用いた高分子固体電解質リチウム
二次電池において、実用的な放電容量を確保し、かつ優
れた充放電サイクル特性を得ることを目的とする。
Therefore, in order to further improve charge / discharge characteristics in the case of a polymer solid electrolyte lithium secondary battery, a polymer solid electrolyte lithium secondary battery using a carbon material for the negative electrode was prepared. As a result of charge / discharge test, only a small capacity was obtained. On the other hand, in the case of using the non-aqueous electrolyte solution instead of the polymer solid electrolyte, the high capacity was obtained even though the positive electrode active material, the carbon material, and the negative electrode active material were the same materials as in the case of the polymer solid electrolyte battery. I was able to secure it. Therefore, in the case of a polymer solid electrolyte lithium secondary battery using a carbon material for the negative electrode, as a result of investigating whether there is a problem in the positive electrode or the negative electrode, it is found that the carbon material of the negative electrode contains almost no lithium. I understood. The cause is not clear at present, but it is speculated that lithium ions cannot be smoothly transferred from the polymer solid electrolyte to the carbon material. As described above, there is a problem that the polymer solid electrolyte lithium battery using the carbon material for the negative electrode cannot be used with a practical capacity. An object of the present invention is to secure a practical discharge capacity and obtain excellent charge / discharge cycle characteristics in a polymer solid electrolyte lithium secondary battery using a carbon material for a negative electrode.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極と負極の間に高分子固体電解質層を
有する高分子固体電解質リチウム二次電池であって、前
記負極は炭素材料と固体電解質と電解液とを含むもので
あり、該電解液にエチレンカーボネートを含むものであ
ることを特徴とするものである。
In order to solve the above problems, the present invention is a solid polymer electrolyte lithium secondary battery having a solid polymer electrolyte layer between a positive electrode and a negative electrode, wherein the negative electrode is carbon. It is characterized in that it contains a material, a solid electrolyte and an electrolytic solution, and that the electrolytic solution contains ethylene carbonate.

【0007】[0007]

【作用】不明な点が多いが、リチウムを負極の炭素材料
に収容・放出させるのにエチレンカーボネートが何らか
の媒体として働いていると考えられるため、炭素材料を
用いた負極中に固体電解質とエチレンカーボネートを含
む電解液とが存在することにより、高分子固体電解質層
と負極の炭素材料との間でリチウムイオンをスムーズに
受け渡しができるものと推測する。このように、負極中
に炭素材料と固体電解質とエチレンカーボネートを含む
電解液とを組合せることにより、高分子固体電解質リチ
ウム二次電池において、実用的な放電容量と優れた充放
電サイクル特性を合わせ持つことで、これまでにない全
固体リチウム二次電池としての高信頼性と実用性を実現
できる。
[Function] Although there are many unclear points, it is considered that ethylene carbonate acts as a medium for accommodating and releasing lithium in the carbon material of the negative electrode. Therefore, the solid electrolyte and ethylene carbonate are used in the negative electrode using the carbon material. It is presumed that the presence of the electrolytic solution containing a lithium ion enables the lithium ions to be smoothly transferred between the solid polymer electrolyte layer and the carbon material of the negative electrode. As described above, by combining the carbon material, the solid electrolyte, and the electrolytic solution containing ethylene carbonate in the negative electrode, in the polymer solid electrolyte lithium secondary battery, practical discharge capacity and excellent charge / discharge cycle characteristics are combined. By having it, it is possible to realize unprecedented high reliability and practicality as an all-solid-state lithium secondary battery.

【0008】[0008]

【実施例】【Example】

(実施例1)図1に電池構造を示している。負極1の作
製方法を説明する。負極活物質となる炭素材料の人造黒
鉛粉末とポリフッ化ビニリデン粉末とを90:10(wt
%)の割合で混合し、N−メチルピロリドンと混練して
ペースト状にする。この黒鉛はc軸方向の結晶子Lc(00
2)、a軸方向の結晶子La(110)とも1000オングスト
ローム以上ある結晶性の高い試料であることがわかって
いる。このペーストを負極集電体兼外装としてのステン
レス箔2(5×5cm,厚み20μm)の周縁に封止部の
糊しろを残して、ステンレス箔2の中央部に4×4cmの
寸法で塗布し、その後200℃で真空乾燥を行ってステ
ンレス箔2に炭素材料を固着させ、水分を除去した。こ
の後の作業は全てドライボックス内で行った。
(Example 1) FIG. 1 shows a battery structure. A method for manufacturing the negative electrode 1 will be described. 90:10 (wt.) Of artificial graphite powder of carbon material and polyvinylidene fluoride powder as negative electrode active material
%) And kneaded with N-methylpyrrolidone to form a paste. This graphite has a crystallite Lc (00
2) It is known that the crystallite La (110) in the a-axis direction has a high crystallinity of 1000 angstroms or more. This paste is applied to the central portion of the stainless steel foil 2 with a size of 4 × 4 cm, leaving a margin for the sealing portion on the periphery of the stainless steel foil 2 (5 × 5 cm, thickness 20 μm) also serving as the negative electrode current collector and exterior. Then, vacuum drying was performed at 200 ° C. to fix the carbon material on the stainless steel foil 2 to remove water. All subsequent work was performed in the dry box.

【0009】次にポリオレフィン系の樹脂からなる封止
材3をステンレス箔2の周縁の封止部に熱溶着させ、エ
チレンカーボネート(EC)とジエチレンカーボネート(DE
C)とを75:25(vol%)で混ぜた溶液に1MのLiCl
4を溶かした電解液(EC/DEC電解液)の数滴をマイクロ
シリンジで炭素材料に含浸させた。その上に、固体電解
質のメトキシオリゴエチレンオキシポリホスファゼン(M
EP)が1,2−ジメトキシエタン(DME)に分散している
溶液(MEP/DME溶液)を塗布し、DMEを揮発させる。こ
れにより、炭素材料とEC/DEC電解液とMEP固体
電解質からなる負極1を作製した。また、MEP/DM
E溶液にEC/DEC電解液を先に添加しておき、これ
を塗布してもよい。一方、炭素材料もECが添加された
MEP/DME溶液にあらかじめ適量混合しておき、こ
れをステンレス箔2に塗布してMEPを固体電解質とし
てだけでなく結着剤としての作用もさせた負極は更に望
ましい。
Next, the sealing material 3 made of a polyolefin resin is heat-welded to the sealing portion at the peripheral edge of the stainless steel foil 2, and ethylene carbonate (EC) and diethylene carbonate (DE
C) and 75:25 (vol%) mixed solution with 1M LiCl
The carbon material was impregnated with a few drops of an electrolyte solution (EC / DEC electrolyte solution) in which O 4 was dissolved. On top of that, the solid electrolyte methoxyoligoethyleneoxypolyphosphazene (M
A solution (MEP / DME solution) in which EP) is dispersed in 1,2-dimethoxyethane (DME) is applied to volatilize DME. Thus, the negative electrode 1 including the carbon material, the EC / DEC electrolytic solution, and the MEP solid electrolyte was produced. Also, MEP / DM
The EC / DEC electrolytic solution may be added to the E solution in advance and the solution may be applied. On the other hand, a carbon material is mixed in advance with an EC-added MEP / DME solution in an appropriate amount, and this is applied to the stainless steel foil 2 to make the MEP not only a solid electrolyte but also a binder. More desirable.

【0010】次いで、正極4の作製方法を説明する。L
iCoO2 粉末とカーボンブラックを85:15(wt%)の
割合で混ぜて真空乾燥した後、MEP/DME溶液と混
合してDMEを揮発させて混練し、これを正極集電体兼
外装としてのステンレス箔2’にロールプレスでシート
状に貼り付けて作った。この正極4上にMEP/DME
溶液を塗布して、高分子固体電解質層5を形成させた。
この正極4と先の負極1とを、ステンレス箔2,2’を
封止材3に溶着することにより貼り合わせて高分子固体
電解質リチウム二次電池とした。
Next, a method for producing the positive electrode 4 will be described. L
After mixing iCoO 2 powder and carbon black in a ratio of 85:15 (wt%) and vacuum drying, mix with MEP / DME solution to volatilize DME and knead it, and use this as a cathode current collector and exterior. It was made by sticking a sheet of stainless steel foil 2'with a roll press. MEP / DME on this positive electrode 4
The solution was applied to form the solid polymer electrolyte layer 5.
The positive electrode 4 and the negative electrode 1 were attached to each other by welding the stainless foils 2 and 2 ′ to the sealing material 3 to form a polymer solid electrolyte lithium secondary battery.

【0011】(比較例1)負極にEC/DEC電解液を
含浸させないほかは実施例1と同様に作製した。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that the negative electrode was not impregnated with the EC / DEC electrolytic solution.

【0012】(従来例)負極に金属リチウム板を使用
し、正極と高分子固体電解質層は実施例1と同様に作製
した。
(Conventional Example) A metal lithium plate was used for the negative electrode, and the positive electrode and the solid polymer electrolyte layer were prepared in the same manner as in Example 1.

【0013】これらの電池について、25μA/cm2の電
流密度で4.2Vまで充電し、同じ電流密度で2.8Vまで
放電した初回の放電特性を図2に、またこの条件での充
放電サイクル特性を図3に示す。これより、実施例1と
従来例は初回の放電特性に大差なく、比較例に比べて高
い放電容量を示した。しかし、サイクル特性は実施例1
のみが高い容量を維持しつつサイクル寿命が長かった。
With respect to these batteries, the initial discharge characteristics obtained by charging up to 4.2 V at a current density of 25 μA / cm 2 and discharging up to 2.8 V at the same current density are shown in FIG. 2 and the charge / discharge cycle under these conditions. The characteristics are shown in FIG. As a result, the first example and the conventional example showed no significant difference in the initial discharge characteristics, and showed higher discharge capacity than the comparative example. However, the cycle characteristics are shown in Example 1.
Only had a long cycle life while maintaining a high capacity.

【0014】(実施例2)正極の活物質にLiイオンを
含まない材料の場合(例えばV25,MnO2等)でも、
以下のように高分子固体電解質リチウム二次電池を作製
できる。負極1の作製方法を説明する。負極活物質とな
る炭素材料の天然黒鉛粉末とポリフッ化ビニリデン粉末
とを90:10(wt%)の割合で混合し、N−メチルピロ
リドンと混練してペースト状にする。この黒鉛もc軸方
向の結晶子Lc(002)、a軸方向の結晶子La(110)とも1
000オングストローム以上ある結晶性の高い試料であ
ることがわかっている。このペーストを負極集電体兼外
装としてのステンレス箔2(5×5cm,厚み20μm)の
周縁に封止部の糊しろを残して、ステンレス箔2の中央
部に4×4cmの寸法で塗布し、その後200℃で真空乾
燥を行い、ステンレス箔2に炭素材料を固着させ、水分
を除去した。この後の作業は全てドライボックス内で行
った。
(Embodiment 2) Even when the positive electrode active material is a material containing no Li ion (for example, V 2 O 5 , MnO 2 etc.),
A polymer solid electrolyte lithium secondary battery can be manufactured as follows. A method for manufacturing the negative electrode 1 will be described. Natural graphite powder, which is a carbon material used as the negative electrode active material, and polyvinylidene fluoride powder are mixed at a ratio of 90:10 (wt%), and kneaded with N-methylpyrrolidone to form a paste. This graphite also has a crystallite Lc (002) in the c-axis direction and a crystallite La (110) in the a-axis direction that is 1
It is known that the sample has a high crystallinity of 000 Å or more. This paste is applied to the central portion of the stainless steel foil 2 with a size of 4 × 4 cm, leaving a margin for the sealing portion on the periphery of the stainless steel foil 2 (5 × 5 cm, thickness 20 μm) also serving as the negative electrode current collector and the exterior. Then, vacuum drying was performed at 200 ° C. to fix the carbon material on the stainless steel foil 2 to remove water. All subsequent work was performed in the dry box.

【0015】次にEC/DEC電解液がたっぷり入った
ビーカーに、ステンレス箔2に固着した炭素材料を浸積
して、対極にリチウム金属をステンレスメッシュに固定
した電極を用い、この電極間に電流を流して炭素材料に
リチウムが収容される還元反応を起こす。電極間の電圧
が0Vになるまで還元反応を行い、その後取り出してD
ECで洗浄する。その次にポリオレフィン系の樹脂から
なる封止材3をステンレス箔2の周縁の封止部に熱溶着
させ、EC/DEC電解液の数滴をマイクロシリンジで
炭素材料に含浸させた。その上に、MEP/DME溶液
を塗布し、DMEを揮発させる。これにより、リチウム
含有炭素材料とEC/DEC電解液とMEP固体電解質
からなる負極1を作製した。
Next, a carbon material fixed to the stainless steel foil 2 is immersed in a beaker containing a large amount of EC / DEC electrolyte, and an electrode having lithium metal fixed to a stainless steel mesh is used as a counter electrode, and an electric current is applied between the electrodes. To cause a reduction reaction in which lithium is contained in the carbon material. The reduction reaction is performed until the voltage between the electrodes becomes 0 V, and then take out D
Wash with EC. Then, a sealing material 3 made of a polyolefin-based resin was heat-welded to the peripheral sealing portion of the stainless steel foil 2, and a few drops of the EC / DEC electrolytic solution was impregnated into the carbon material with a microsyringe. On top of that, a MEP / DME solution is applied to volatilize DME. Thus, the negative electrode 1 including the lithium-containing carbon material, the EC / DEC electrolytic solution, and the MEP solid electrolyte was produced.

【0016】次いで、正極4の作製方法を説明する。正
極活物質にV25粉末を用いて、導電助剤の黒鉛粉末と
80:20(wt%)の割合で混合し、真空乾燥した後にM
EP/DME溶液と混練する。DMEが揮発した後、こ
れを正極集電体兼外装としてのステンレス箔2’にロー
ルプレスでシート状に貼り付け、この正極4上にMEP
/DME溶液を塗布して、高分子固体電解質層5を形成
させた。この正極4と先の負極1とを、ステンレス箔
2,2’を封止材3に溶着することにより貼り合わせて
高分子固体電解質リチウム二次電池とした。実施例1と
は正、負極活物質が異なるだけで、構造は図1と同様で
ある。
Next, a method for producing the positive electrode 4 will be described. V 2 O 5 powder was used as the positive electrode active material, mixed with graphite powder as a conductive additive at a ratio of 80:20 (wt%), dried in vacuum, and then mixed with M
Knead with EP / DME solution. After the DME is volatilized, it is attached to a stainless foil 2 ′ serving as a positive electrode current collector and an exterior by a roll press in a sheet form, and the MEP is placed on the positive electrode 4.
The / DME solution was applied to form the solid polymer electrolyte layer 5. The positive electrode 4 and the negative electrode 1 were attached to each other by welding the stainless foils 2 and 2 ′ to the sealing material 3 to form a polymer solid electrolyte lithium secondary battery. The structure is the same as in FIG. 1 except that the positive and negative electrode active materials are different from those in Example 1.

【0017】(比較例2)負極にEC/DEC電解液を
含浸させないほかは実施例2と同様に作製した。
(Comparative Example 2) The same procedure as in Example 2 was carried out except that the negative electrode was not impregnated with the EC / DEC electrolytic solution.

【0018】これらの電池について、25μA/cm2の電
流密度で3.7Vまで充電し、同じ電流密度で2.5Vまで
放電した初回の放電特性を図4に、またこの条件での充
放電サイクル特性を図5に示す。これより、実施例2の
電池系においても比較例2に比べて優れた放電容量とサ
イクル特性を示すことがわかった。
With respect to these batteries, the initial discharge characteristics obtained by charging up to 3.7 V at a current density of 25 μA / cm 2 and discharging up to 2.5 V at the same current density are shown in FIG. 4 and the charge / discharge cycle under these conditions. The characteristics are shown in FIG. From this, it was found that the battery system of Example 2 also exhibited excellent discharge capacity and cycle characteristics as compared with Comparative Example 2.

【0019】なお、負極に含まれる電解液は、ECが含
有して電気化学的に安定であれば特にその他の溶液は限
定されない。また負極に含まれる固体電解質も特に限定
されず、無機系であってもよい。
The electrolytic solution contained in the negative electrode is not particularly limited as long as it contains EC and is electrochemically stable. The solid electrolyte contained in the negative electrode is not particularly limited, and may be an inorganic type.

【0020】[0020]

【発明の効果】上述したように、本発明は、正極と負極
の間に高分子固体電解質層を有する高分子固体電解質リ
チウム二次電池であって、前記負極は炭素材料と固体電
解質と電解液とを含むものであり、該電解液はエチレン
カーボネートを含むものであることを特徴とするため、
負極中に炭素材料と固体電解質とエチレンカーボネート
を含む電解液とを組合せることにより、高分子固体電解
質リチウム二次電池において、実用的な放電容量と優れ
た充放電サイクル特性を合わせ持つことで、これまでに
ない全固体リチウム二次電池としての高信頼性と実用性
を実現できる。
As described above, the present invention is a solid polymer electrolyte lithium secondary battery having a solid polymer electrolyte layer between a positive electrode and a negative electrode, wherein the negative electrode is a carbon material, a solid electrolyte, and an electrolyte solution. And, wherein the electrolytic solution is characterized by containing ethylene carbonate,
By combining a carbon material, a solid electrolyte and an electrolytic solution containing ethylene carbonate in the negative electrode, in a polymer solid electrolyte lithium secondary battery, by having a practical discharge capacity and excellent charge-discharge cycle characteristics, High reliability and practicality as an all-solid-state lithium secondary battery can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における電池構造の断面図であ
る。
FIG. 1 is a cross-sectional view of a battery structure according to an embodiment of the present invention.

【図2】本発明の実施例1と比較例1と従来例の放電特
性曲線図である。
FIG. 2 is a discharge characteristic curve diagram of Example 1 of the present invention, Comparative Example 1, and a conventional example.

【図3】本発明の実施例1と比較例1と従来例の充放電
サイクル特性曲線図である。
FIG. 3 is a charge / discharge cycle characteristic curve diagram of Example 1 of the present invention, Comparative Example 1, and a conventional example.

【図4】本発明の実施例2と比較例2の放電特性曲線図
である。
FIG. 4 is a discharge characteristic curve diagram of Example 2 of the present invention and Comparative Example 2.

【図5】本発明の実施例2と比較例2の充放電サイクル
特性曲線図である。
5 is a charge / discharge cycle characteristic curve diagram of Example 2 of the present invention and Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

1は負極、2,2’はステンレス箔、3は封止材、4は
正極、5は高分子固体電解質層
1 is a negative electrode, 2 and 2'is a stainless steel foil, 3 is a sealing material, 4 is a positive electrode, 5 is a solid polymer electrolyte layer

フロントページの続き (72)発明者 中井 賢治 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 早川 他▲く▼美 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 笹岡 三千雄 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 渡辺 信淳 京都府京都市うぐいす台136番地 (72)発明者 鄭 容宝 京都府京都市上京区千本通出水下る十四軒 町394番地Front page continuation (72) Kenji Nakai, Kenji Nakai, 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Shin-Kindo Electric Co., Ltd. (72) Inventor, Hayakawa, etc. ▲ Ku ▼, Nishi-Shinjuku, Shinjuku-ku, Tokyo No. 1 in Shinjin Todenki Co., Ltd. (72) Inventor Akio Komaki 2-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Inside Shinjindo Denki Co., Ltd. (72) Inventor Michio Sasaoka Kaga Kawauchi, Tokushima, Tokushima Prefecture 463 Suno Otsuka Chemical Co., Ltd.Tokushima Research Institute (72) Inventor Weibun Nakaga, Kawauchi-cho, Tokushima City Tokushima Prefecture 463 Otsuka Chemical Co., Ltd. Tokushima Research Center (72) Inventor Akiyoshi Inubushi Kawauchi, Tokushima City Tokushima Prefecture 463, Kagasuno, Machi Town, Tokushima Research Institute, Otsuka Chemical Co., Ltd. (72) Nobuyoshi Watanabe 136, Uguisudai, Kyoto City, Kyoto Prefecture (72) Inventor, Zheng Bao, 394 Senju Street, Kamigyo-ku, Kyoto City, Kyoto Prefecture 394 address

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と負極の間に高分子固体電解質層を有
する高分子固体電解質リチウム二次電池であって、前記
負極は炭素材料と固体電解質と電解液とを含むものであ
り、該電解液はエチレンカーボネートを含むものである
ことを特徴とする高分子固体電解質リチウム二次電池。
1. A solid polymer electrolyte lithium secondary battery having a solid polymer electrolyte layer between a positive electrode and a negative electrode, wherein the negative electrode contains a carbon material, a solid electrolyte and an electrolytic solution. A polymer solid electrolyte lithium secondary battery characterized in that the liquid contains ethylene carbonate.
【請求項2】正極の活物質にリチウム塩を含むことを特
徴とする請求項1記載の高分子固体電解質リチウム二次
電池。
2. The polymer solid electrolyte lithium secondary battery according to claim 1, wherein the positive electrode active material contains a lithium salt.
【請求項3】負極の炭素材料がリチウム含有炭素材料で
あることを特徴とする請求項1記載の高分子固体電解質
リチウム二次電池。
3. The polymer solid electrolyte lithium secondary battery according to claim 1, wherein the carbon material of the negative electrode is a lithium-containing carbon material.
【請求項4】高分子固体電解質層はメトキシオリゴエチ
レンオキシポリホスファゼンであることを特徴とする請
求項1記載の高分子固体電解質リチウム二次電池。
4. The polymer solid electrolyte lithium secondary battery according to claim 1, wherein the polymer solid electrolyte layer is methoxyoligoethyleneoxypolyphosphazene.
JP6028404A 1994-02-25 1994-02-25 High polymer solid electrolyte lithium secondary battery Pending JPH07240233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6028404A JPH07240233A (en) 1994-02-25 1994-02-25 High polymer solid electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6028404A JPH07240233A (en) 1994-02-25 1994-02-25 High polymer solid electrolyte lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07240233A true JPH07240233A (en) 1995-09-12

Family

ID=12247732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6028404A Pending JPH07240233A (en) 1994-02-25 1994-02-25 High polymer solid electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07240233A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
US20060263688A1 (en) * 2003-03-07 2006-11-23 Batscap Method of producing electrode composite material
JP2012209218A (en) * 2011-03-30 2012-10-25 Sekisui Chem Co Ltd Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery
KR20190088332A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 Anode active material slurry for solid electrolyte battery and anode for solid electrolyte battery prepared therefrom
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001882A1 (en) * 2002-06-19 2003-12-31 Bridgestone Corporation Supporting electrolyte for cell and method for production thereof, and cell
US20060263688A1 (en) * 2003-03-07 2006-11-23 Batscap Method of producing electrode composite material
US8632904B2 (en) * 2003-03-07 2014-01-21 Blue Solutions Method of producing electrode composite material
JP2012209218A (en) * 2011-03-30 2012-10-25 Sekisui Chem Co Ltd Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery
KR20190088332A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 Anode active material slurry for solid electrolyte battery and anode for solid electrolyte battery prepared therefrom
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same

Similar Documents

Publication Publication Date Title
CN100424917C (en) Lithium ion secondary battery and method for manufacturing same
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
US20020050054A1 (en) Method of Manufacturing lithium secondary cell
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
US20230231100A1 (en) Electrochemical devices, electronic devices
US20020034687A1 (en) Rechargeable lithium battery
JP3157079B2 (en) Manufacturing method of lithium secondary battery
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JPH1050345A (en) Polymer electrolyte and lithium polymer battery using the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
US6669860B1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery, and electric double-layer capacitor
JP2001307735A (en) Lithium secondary battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
CN217158273U (en) Button type battery and electronic equipment
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2005519426A (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
JPH0782839B2 (en) Secondary battery negative electrode
KR20000075095A (en) A positive electrode for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery using the same
JPH04190557A (en) Lithium secondary battery
JP4682395B2 (en) Non-aqueous battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH10106546A (en) Manufacture of electrode for battery