JPH07282846A - Nonaqueous electrolytic battery - Google Patents

Nonaqueous electrolytic battery

Info

Publication number
JPH07282846A
JPH07282846A JP6069543A JP6954394A JPH07282846A JP H07282846 A JPH07282846 A JP H07282846A JP 6069543 A JP6069543 A JP 6069543A JP 6954394 A JP6954394 A JP 6954394A JP H07282846 A JPH07282846 A JP H07282846A
Authority
JP
Japan
Prior art keywords
propylene carbonate
electrolytic solution
ethylene carbonate
electrolyte
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6069543A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6069543A priority Critical patent/JPH07282846A/en
Publication of JPH07282846A publication Critical patent/JPH07282846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance conductivity, suppress generation of dendrites on a nega tive electrode even after charging/discharging was repeated to enhance reliability by using a mixture of ethylene carbonate and a specified derivative as a solvent of an electrolyte. CONSTITUTION:A mixture of ethylene carbonate and/or propylene carbonate and a gamma-butyrolactone derivative represented by a specified formula is used as a solvent of an electrolyte. By mixing propylene carbonate or ethylene carbonate as an ion conductivity auxiliary in the electrolyte, conductivity especially at low temperature is enhanced and surface diffusion of deposited atoms is accelerated. By the electrolyte using propylene carbonate and/or ethylene carbonate and gamma-butyrolactone derivative, generation of dendrites on a negative electrode is suppressed. Internal short circuit is prevented, charge/discharge cycle life is lengthened, and reliability is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特に、その電解液の改良に関する。
The present invention relates to a non-aqueous electrolyte secondary battery,
Particularly, it relates to improvement of the electrolytic solution.

【0002】[0002]

【従来の技術】今日、プロピレンカーボネート、γ−ブ
チロラクトン、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソラン等の有機溶媒に、LiClO4、Li
BF4、LiAsF6、LiPF6、LiCF3SO3等の
溶質を溶かして得られる電解液と、リチウム等のアルカ
リ金属を活物質とする負極を組み合わせた非水電解質電
池は、高エネルギー密度を有するため、電子時計、カメ
ラをはじめとする小型電子機器に広く用いられるように
なった。この種の非水電解質電池を充電可能にする課題
のひとつは、充電過程において負極上に析出するアルカ
リ金属の形態が、樹枝状、フィブリル状ないしは針状と
いう、いわゆるデンドライトになることである。このデ
ンドライトが著しく成長すると、負極と正極の内部短
絡、発火という危険性が増加するばかりか、以降の放電
過程で溶解させても、デンドライトの局部的溶解が進行
し一部は電気的に極板より遊離するためすべてのデンド
ライトを溶かし出すことができない。すなわち、充電
(析出)量に対する放電(溶解)量が小さくなり(充放
電効率の低下)、サイクル寿命が短くなる。
2. Description of the Related Art Today, organic solvents such as propylene carbonate, γ-butyrolactone, dimethoxyethane, tetrahydrofuran and dioxolane are mixed with LiClO 4 , Li
A non-aqueous electrolyte battery having a combination of an electrolyte obtained by dissolving a solute such as BF 4 , LiAsF 6 , LiPF 6 , and LiCF 3 SO 3 and a negative electrode using an alkali metal such as lithium as an active material has a high energy density. Therefore, it has come to be widely used in small electronic devices such as electronic timepieces and cameras. One of the problems in enabling this type of non-aqueous electrolyte battery to be charged is that the form of the alkali metal deposited on the negative electrode during the charging process becomes so-called dendrite, which is dendritic, fibrillar, or acicular. When this dendrite grows significantly, not only the risk of internal short circuit between the negative electrode and the positive electrode and ignition increases, but even if the dendrite is dissolved in the subsequent discharge process, local dissolution of the dendrite proceeds and part of it is electrically Not all dendrites can be melted out because they are more liberated. That is, the amount of discharge (dissolution) with respect to the amount of charge (deposition) becomes small (reduction of charge / discharge efficiency), and the cycle life becomes short.

【0003】このような、課題を解決する方法として、
電解質塩を多く溶かす高誘電率のプロピレンカーボネー
ト等の溶媒と電解液の粘度を低下させるためのジメトキ
シエタン等の低粘度溶媒の混合溶媒を用いることによっ
て電解液の電導性を高め、デンドライトの発生を抑制す
る試みがある(Electrochimica Acta, 第30巻,1715
頁,1985)。
As a method for solving such a problem,
By using a mixed solvent of a solvent such as propylene carbonate having a high dielectric constant that dissolves a large amount of electrolyte salt and a low-viscosity solvent such as dimethoxyethane to reduce the viscosity of the electrolytic solution, the conductivity of the electrolytic solution is increased and the generation of dendrites is prevented. There is an attempt to suppress it (Electrochimica Acta, Volume 30, 1715)
P., 1985).

【0004】[0004]

【発明が解決しようとする課題】前記のようなプロピレ
ンカーボネートとジメトキシエタンの混合溶媒を電解液
に使用しても、室温におけるデンドライト発生は低減さ
れても完全に抑えることは難しく、特に、低温における
充電過程でのデンドライトの抑制は困難であった。この
原因について詳しく解析したところ、高誘電率のプロピ
レンカーボネートと電解液の粘度を低下させる役割のジ
メトキシエタンは、その分子構造がまったく異なるため
に低温で分離し、主として高粘度のプロピレンカーボネ
ートにおいてイオン伝導の役割がなされるため電解液全
体の電導性が低下し、デンドライトの発生が促進される
ことが判明した。本発明は、このような従来の欠点を除
去するものであり、室温はもちろん、低温においても電
導度が大きく、充放電を繰り返しても負極上でのデンド
ライトの発生が抑制される電解液を得ることによって、
信頼性の大きい非水電解質二次電池を提供することを目
的とする。
Even when the mixed solvent of propylene carbonate and dimethoxyethane as described above is used in the electrolytic solution, it is difficult to completely suppress dendrite generation at room temperature, but it is difficult to completely suppress it. It was difficult to suppress dendrites during the charging process. A detailed analysis of this cause revealed that propylene carbonate, which has a high dielectric constant, and dimethoxyethane, which plays a role in lowering the viscosity of the electrolyte, are separated at low temperatures because their molecular structures are completely different, resulting in ion conduction mainly in high-viscosity propylene carbonate. It has been found that since the role of (1) is performed, the conductivity of the entire electrolytic solution is lowered, and the generation of dendrites is promoted. The present invention eliminates such conventional drawbacks, and obtains an electrolytic solution which has a large electric conductivity not only at room temperature but also at low temperature and in which generation of dendrites on the negative electrode is suppressed even after repeated charging and discharging. By
It is an object to provide a highly reliable non-aqueous electrolyte secondary battery.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池は、正極と、アルカリイオン伝導性の非水電解液
と、アルカリ金属を活物質とする負極を具備し、前記電
解液が、エチレンカーボネートおよびプロピレンカーボ
ネートよりなる群から選ばれる少なくとも1種と次式で
示されるγ−ブチロラクトン誘導体との混合溶媒を用い
るものである。
A non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode, an alkali ion conductive non-aqueous electrolytic solution, and a negative electrode using an alkali metal as an active material, wherein the electrolytic solution is , A mixed solvent of at least one selected from the group consisting of ethylene carbonate and propylene carbonate and a γ-butyrolactone derivative represented by the following formula.

【0006】[0006]

【化2】 [Chemical 2]

【0007】[0007]

【作用】本発明者らが種々考察したところによると、側
鎖に長鎖のアルキル基を有するγ−ブチロラクトン誘導
体を含む電解液中では、金属基体に析出したリチウム原
子(厳密には吸着イオン)は析出したその場で固定され
ず、基体表面を拡散した後に熱力学的に安定な結晶格子
点で捕捉されやすいことが判明した。したがって、析出
開始直後に欠陥の多い結晶核が生成すると、析出原子は
この結晶核に集まりその結晶性を高めるとともに、結晶
核が球状に成長し、いわゆるデンドライトになることが
防がれる。電解液にはγ−ブチロラクトン誘導体の単独
溶媒を用いるのが好ましいが、そのリチウム塩の低溶解
性のため電導度が低い。そこで、プロピレンカーボネー
トやエチレンカーボネートをイオン伝導性助剤として電
解液に混合することによって、特に低温での電導度を向
上させ、析出原子の表面拡散をさらに容易にすることが
できる。したがって、プロピレンカーボネートおよび/
またはエチレンカーボネートとγ−ブチロラクトン誘導
体を使用する電解液においては、アルカリ金属負極上で
のデンドライト発生が一層抑制されることになる。
According to various investigations by the present inventors, in the electrolytic solution containing the γ-butyrolactone derivative having a long-chain alkyl group in the side chain, lithium atoms (strictly speaking, adsorbed ions) deposited on the metal substrate It was found that is not fixed on the spot where it was deposited, but is easily trapped at the thermodynamically stable crystal lattice points after diffusing on the substrate surface. Therefore, when crystal nuclei with many defects are generated immediately after the start of precipitation, the precipitated atoms gather in the crystal nuclei to enhance their crystallinity and prevent the crystal nuclei from growing spherically to become so-called dendrites. It is preferable to use a single solvent of the γ-butyrolactone derivative as the electrolytic solution, but the conductivity is low due to the low solubility of the lithium salt. Therefore, by mixing propylene carbonate or ethylene carbonate as an ion-conducting auxiliary agent into the electrolytic solution, it is possible to improve the electrical conductivity particularly at low temperature and further facilitate the surface diffusion of precipitated atoms. Therefore, propylene carbonate and /
Alternatively, in an electrolytic solution using ethylene carbonate and a γ-butyrolactone derivative, dendrite generation on the alkali metal negative electrode is further suppressed.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。な
お、実施例における電池の組立はすべてアルゴンガス雰
囲気下で行った。 [実施例1]2−プロピル−γ−ブチロラクトンとプロ
ピレンカーボネートを体積比で3/7の割合で混合し、
この混合溶媒にLiClO4を1モル/lの割合で溶解
し、電解液を調製した。この電解液に、リチウム箔をニ
ッケルのエキスパンドメタルに圧着した2枚の電極を浸
漬して対向させ、2mA/cm2の電流密度で1時間通
電した。この通電操作の必要性は、電解液中の不純物
(おもに水)を活性リチウムで除去することにより電導
度が約30%高くなるからである。 [比較例1]溶媒にプロピレンカーボネートとジメトキ
シエタンの体積比1/1の混合溶媒を用いた他は実施例
1と同様にして調製した電解液を比較例とする。
EXAMPLES Examples of the present invention will be described below. All the batteries in the examples were assembled under an argon gas atmosphere. [Example 1] 2-propyl-γ-butyrolactone and propylene carbonate were mixed in a volume ratio of 3/7,
LiClO 4 was dissolved in this mixed solvent at a ratio of 1 mol / l to prepare an electrolytic solution. Two electrodes, in which a lithium foil was press-bonded to an expanded metal of nickel, were immersed in this electrolytic solution so as to face each other, and a current density of 2 mA / cm 2 was applied for 1 hour. The necessity of this energizing operation is that the conductivity (about water) is increased by about 30% by removing impurities (mainly water) in the electrolytic solution with active lithium. Comparative Example 1 An electrolytic solution prepared in the same manner as in Example 1 except that a mixed solvent of propylene carbonate and dimethoxyethane in a volume ratio of 1/1 was used as a solvent is a comparative example.

【0009】以上のようにして調製した電解液の電導度
を交流二極法を用いて−20℃〜25℃ で測定した。
その結果を図1にプロットした。図より、実施例の電解
液は、室温付近ではその電導度は比較例にはやや劣るも
のの、低温になってもイオン伝導度の低下は小さく、比
較例より約25%向上していることがわかる。これは、
実施例の電解液においては、γ−ブチロラクトン誘導体
はそのカルボニル基の存在によってプロピレンカーボネ
ートとの相溶性が良好で低温になっても相分離が抑制さ
れているのに対し、比較例においてはプロピレンカーボ
ネートとジメトキシエタンの非相似分子構造により相分
離が促進するためである。
The electric conductivity of the electrolytic solution prepared as described above was measured at -20 ° C to 25 ° C using an alternating current bipolar method.
The results are plotted in FIG. From the figure, it is found that the electrolytes of the Examples have slightly lower electric conductivity near room temperature than the Comparative Examples, but the decrease in ionic conductivity is small even at low temperatures, which is about 25% higher than the Comparative Examples. Recognize. this is,
In the electrolytic solution of the example, the γ-butyrolactone derivative has good compatibility with propylene carbonate due to the presence of the carbonyl group, and phase separation is suppressed even at low temperature, whereas in the comparative example, propylene carbonate is used. This is because the phase separation is promoted by the dissimilar molecular structures of and dimethoxyethane.

【0010】[実施例2]実施例1と同様に、2−プロ
ピル−γ−ブチロラクトン(BL)、プロピレンカーボ
ネート(PC)、エチレンカーボネート(EC)を種々
の割合で混合した溶媒に、LiClO4を1モル/lの
割合で溶解して電解液を調製した。 [比較例2]PCとECを1:1(体積比)で混合した
溶媒を用いた他は実施例2と同様にして電解液を調製し
た。
Example 2 As in Example 1, LiClO 4 was added to a solvent prepared by mixing 2-propyl-γ-butyrolactone (BL), propylene carbonate (PC) and ethylene carbonate (EC) in various proportions. An electrolytic solution was prepared by dissolving at a ratio of 1 mol / l. [Comparative Example 2] An electrolytic solution was prepared in the same manner as in Example 2 except that a solvent in which PC and EC were mixed at a ratio of 1: 1 (volume ratio) was used.

【0011】上記の実施例2および比較例2の各電解液
のイオン伝導度を−10℃で測定した結果を表1に示
す。表1より、本発明の実施例の2−プロピル−γ−ブ
チロラクトンとの混合溶媒を用いた電解液は、その低温
での電導度は、約10%以上向上することがわかる。こ
れは、2−プロピル−γ−ブチロラクトンとプロピレン
カーボネート、エチレンカーボネートとの相溶性により
イオンの回りの溶媒和構造がアモルファスとなり、イオ
ンの伝導路が開けるためである。
Table 1 shows the results of measuring the ionic conductivity of each of the electrolytic solutions of Example 2 and Comparative Example 2 at -10 ° C. From Table 1, it can be seen that the electrolytic solution using the mixed solvent of 2-propyl-γ-butyrolactone of the example of the present invention has a conductivity of about 10% or higher at low temperature. This is because the solvation structure around the ions becomes amorphous due to the compatibility of 2-propyl-γ-butyrolactone with propylene carbonate and ethylene carbonate, and the conduction paths of the ions are opened.

【0012】[0012]

【表1】 [Table 1]

【0013】[実施例3]2−ペンチル−γ−ブチロラ
クトン、プロピレンカーボネート、エチレンカーボネー
トを1:2:2の割合(体積比)で混合し、1モル/l
の濃度でLiClO4を溶解した。この電解液を用いて
図2に示すような偏平型電池を構成した。この電池の構
成を図2に基づき説明する。正極1は、LiMn24
粉末、カーボンブラックおよび四弗化エチレン樹脂粉末
を混合し、チタンのエキスパンドメタルからなる集電体
2をスポット溶接した正極缶3に加圧成型したものであ
る。負極4は、円板状に打ち抜いたリチウムシートをニ
ッケルのエキスパンドメタル5をスポット溶接した封口
板6に圧着してある。セパレータ7には、ポリプロピレ
ン製多孔質膜を用いている。正極缶に前記の電解液を注
液後、ガスケット8を介して封口板を組合せて偏平型電
池を構成した。 [比較例3]プロピレンカーボネートとエチレンカーボ
ネートの1:1(体積比)の混合物を電解液溶媒として
用いた他は実施例3と同様にして電池を構成した。
[Example 3] 2-Pentyl-γ-butyrolactone, propylene carbonate and ethylene carbonate were mixed at a ratio (volume ratio) of 1: 2: 2 to prepare 1 mol / l.
LiClO 4 was dissolved at a concentration of. A flat-type battery as shown in FIG. 2 was constructed using this electrolytic solution. The structure of this battery will be described with reference to FIG. The positive electrode 1 is LiMn 2 O 4
Powder, carbon black and tetrafluoroethylene resin powder were mixed, and the current collector 2 made of expanded metal of titanium was spot-welded and pressure-molded into a positive electrode can 3. The negative electrode 4 is obtained by crimping a lithium sheet punched into a disc shape onto a sealing plate 6 obtained by spot welding an expanded metal 5 of nickel. A polypropylene porous film is used for the separator 7. After injecting the above electrolytic solution into the positive electrode can, a flat plate battery was constructed by combining a sealing plate through a gasket 8. Comparative Example 3 A battery was constructed in the same manner as in Example 3 except that a 1: 1 (volume ratio) mixture of propylene carbonate and ethylene carbonate was used as the electrolytic solution solvent.

【0014】実施例3および比較例3の電池を−10℃
において、2mA/cm2の電流密度で、放電下限電圧
2.0V、充電上限電圧3.5Vで充放電サイクルを繰
り返した。図3はこのときの各サイクル数における放電
容量をプロットしたものである。図3から、本発明の実
施例の電池は、比較例より充放電サイクル寿命が著しく
向上していることがわかる。これは、本発明の実施例で
ある2−ペンチル−γ−ブチロラクトンを用いる電解液
においては、充電時のデンドライト発生が抑制され、結
果として負極の充放電効率が改善されるためである。
The batteries of Example 3 and Comparative Example 3 were stored at -10 ° C.
At a current density of 2 mA / cm 2 , the charging / discharging cycle was repeated at a discharge lower limit voltage of 2.0 V and a charge upper limit voltage of 3.5 V. FIG. 3 is a plot of the discharge capacity at each cycle number at this time. It can be seen from FIG. 3 that the batteries of the examples of the present invention have remarkably improved charge / discharge cycle life as compared with the comparative examples. This is because in the electrolytic solution using 2-pentyl-γ-butyrolactone, which is an example of the present invention, dendrite generation during charging is suppressed, and as a result, the charge / discharge efficiency of the negative electrode is improved.

【0015】[実施例4]2−ペンチル,4−メチル−
γ−ブチロラクトン、プロピレンカーボネート、エチレ
ンカーボネートを1:2.5:2.5の割合(体積比)
で混合し、1モル/lの濃度でLiClO4を溶解し
た。この電解液を用いて実施例3と同様な偏平型電池を
構成した。 [比較例4]プロピレンカーボネートとエチレンカーボ
ネートの1:1(体積比)の混合物を電解液溶媒として
用いた他は実施例4と同様にして電池を構成した。
Example 4 2-Pentyl, 4-methyl-
Ratio of γ-butyrolactone, propylene carbonate and ethylene carbonate of 1: 2.5: 2.5 (volume ratio)
LiClO 4 was dissolved at a concentration of 1 mol / l. A flat battery similar to that of Example 3 was constructed using this electrolytic solution. [Comparative Example 4] A battery was constructed in the same manner as in Example 4 except that a 1: 1 (volume ratio) mixture of propylene carbonate and ethylene carbonate was used as the electrolytic solution solvent.

【0016】実施例4および比較例4の電池を25℃に
おいて、2mA/cm2の電流密度で、放電下限電圧
2.5V、充電上限電圧3.5Vの条件で充放電サイク
ルを繰り返した。図4は、上記実施例4および比較例4
の電池の各サイクル数での放電容量をプロットしたもの
である。これより、本発明の実施例の電池は、比較例よ
り充放電サイクル寿命が著しく向上していることがわか
る。これは、本発明の実施例である2−ペンチル,4−
メチル−γ−ブチロラクトンを用いる電解液において
は、充電時のデンドライト発生が抑制され、結果として
負極の充放電効率が改善されるためである。なお、上記
の実施例においては、特定のアルキル基側鎖を有するγ
−ブチロラクトン誘導体を用いたが、他のアルキル基側
鎖を有するγ−ブチロラクトン誘導体とプロピレンカー
ボネート、エチレンカーボネートとの混合溶媒を電解液
として用いても同様な効果が得られ、特に、側鎖の炭素
数がR1で2〜6、R2で0〜6の範囲の長鎖アルキル基
を有するγ−ブチロラクトン誘導体で良好であった。
The batteries of Example 4 and Comparative Example 4 were subjected to a charging / discharging cycle at 25 ° C. with a current density of 2 mA / cm 2 and a discharge lower limit voltage of 2.5 V and a charge upper limit voltage of 3.5 V. FIG. 4 shows Example 4 and Comparative Example 4 described above.
Is a plot of the discharge capacity of the battery of FIG. From this, it is understood that the batteries of Examples of the present invention have remarkably improved charge / discharge cycle life as compared with Comparative Examples. This is an example of the present invention, 2-pentyl, 4-
This is because in the electrolytic solution using methyl-γ-butyrolactone, dendrite generation during charging is suppressed, and as a result, the charge / discharge efficiency of the negative electrode is improved. In the above examples, γ having a specific alkyl group side chain
-The butyrolactone derivative was used, but a similar effect can be obtained even when a mixed solvent of a γ-butyrolactone derivative having another alkyl group side chain, propylene carbonate, and ethylene carbonate is used as an electrolytic solution. The γ-butyrolactone derivative having a long-chain alkyl group in which the number of R 1 is 2 to 6 and the number of R 2 is 0 to 6 was good.

【0017】[0017]

【発明の効果】以上のように、本発明のγ−ブチロラク
トン誘導体を使用する電解液を採用すれば、特に低温で
の電導度が大きく、充電時のデンドライト発生が抑制さ
れ、内部短絡のない、充放電サイクル寿命の長い信頼性
の大きい非水電解質二次電池が得られる。
As described above, when the electrolytic solution using the γ-butyrolactone derivative of the present invention is adopted, the electrical conductivity is particularly large at a low temperature, the dendrite generation during charging is suppressed, and the internal short circuit does not occur. A highly reliable non-aqueous electrolyte secondary battery having a long charge / discharge cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例の電解液の電導度
をプロットした図である。
FIG. 1 is a diagram in which electric conductivities of electrolytic solutions of Examples and Comparative Examples of the present invention are plotted.

【図2】本発明の実施例に用いた偏平型電池の縦断面図
である。
FIG. 2 is a vertical cross-sectional view of a flat type battery used in an example of the present invention.

【図3】本発明の実施例および比較例の電池の各サイク
ル数での放電容量をプロットした図である。
FIG. 3 is a diagram in which the discharge capacities of the batteries of Examples and Comparative Examples of the present invention at each cycle number are plotted.

【図4】本発明の実施例および比較例の電池の各サイク
ル数での放電容量をプロットした図である。
FIG. 4 is a diagram in which the discharge capacities of the batteries of Examples and Comparative Examples of the present invention at each cycle number are plotted.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 正極缶 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット 1 Positive Electrode 2 Positive Electrode Current Collector 3 Positive Electrode Can 4 Negative Electrode 5 Negative Current Collector 6 Sealing Plate 7 Separator 8 Gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と、アルカリイオン伝導性の非水電
解液と、アルカリ金属を活物質とする負極を具備し、前
記電解液の溶媒が、エチレンカーボネートおよびプロピ
レンカーボネートよりなる群から選ばれる少なくとも1
種と次式で示されるγ−ブチロラクトン誘導体との混合
溶媒であることを特徴とする非水電解質二次電池。 【化1】
1. A positive electrode, an alkali ion conductive non-aqueous electrolyte, and a negative electrode having an alkali metal as an active material, wherein the solvent of the electrolyte is at least selected from the group consisting of ethylene carbonate and propylene carbonate. 1
A non-aqueous electrolyte secondary battery, which is a mixed solvent of a seed and a γ-butyrolactone derivative represented by the following formula. [Chemical 1]
JP6069543A 1994-04-07 1994-04-07 Nonaqueous electrolytic battery Pending JPH07282846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6069543A JPH07282846A (en) 1994-04-07 1994-04-07 Nonaqueous electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6069543A JPH07282846A (en) 1994-04-07 1994-04-07 Nonaqueous electrolytic battery

Publications (1)

Publication Number Publication Date
JPH07282846A true JPH07282846A (en) 1995-10-27

Family

ID=13405747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6069543A Pending JPH07282846A (en) 1994-04-07 1994-04-07 Nonaqueous electrolytic battery

Country Status (1)

Country Link
JP (1) JPH07282846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003228A1 (en) * 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2001024305A1 (en) * 1999-09-29 2001-04-05 Valence Technology, Inc. Lactone solvents for electrochemical cells
KR100371399B1 (en) * 1999-12-31 2003-02-07 주식회사 엘지화학 New additives for electrolyte and lithium ion battery using the same
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery
WO2020217820A1 (en) * 2019-04-26 2020-10-29 昭和電工マテリアルズ株式会社 Composition for pressure-sensitive adhesive, pressure-sensitive adhesive film, and surface-protective film
WO2024128672A1 (en) * 2022-12-15 2024-06-20 주식회사 렉쎌 Compound for electrolyte, compound for electrolyte additive, electrolyte material, electrolyte additive, electrolyte for secondary battery, and secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003228A1 (en) * 1999-07-02 2001-01-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
JP2001023684A (en) * 1999-07-02 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6723473B1 (en) 1999-07-02 2004-04-20 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2001024305A1 (en) * 1999-09-29 2001-04-05 Valence Technology, Inc. Lactone solvents for electrochemical cells
KR100371399B1 (en) * 1999-12-31 2003-02-07 주식회사 엘지화학 New additives for electrolyte and lithium ion battery using the same
JP2017021986A (en) * 2015-07-10 2017-01-26 日立マクセル株式会社 Nonaqueous secondary battery
WO2020217820A1 (en) * 2019-04-26 2020-10-29 昭和電工マテリアルズ株式会社 Composition for pressure-sensitive adhesive, pressure-sensitive adhesive film, and surface-protective film
JP2020183461A (en) * 2019-04-26 2020-11-12 日立化成株式会社 Composition for pressure-sensitive adhesives, pressure-sensitive adhesive film, and surface-protective film
WO2024128672A1 (en) * 2022-12-15 2024-06-20 주식회사 렉쎌 Compound for electrolyte, compound for electrolyte additive, electrolyte material, electrolyte additive, electrolyte for secondary battery, and secondary battery

Similar Documents

Publication Publication Date Title
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH08115742A (en) Lithium secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JPH11297362A (en) Nonaqueous electrolyte secondary battery and its manufacturing method and method for detection battery state
JP2001068162A (en) Nonaqueous electrolyte secondary battery and its charging discharging method
JP3287927B2 (en) Non-aqueous electrolyte secondary battery
JP2004010988A (en) Method of producing carbonaceous material membrane and secondary battery with nonaqueous electrolyte
JPH07211350A (en) Electrolyte for electrochemical battery, and battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JPH0896848A (en) Nonaqueous electrolytic secondary battery
KR100459882B1 (en) Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP3283412B2 (en) Non-aqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JP3115839B2 (en) Lithium secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JPH07169504A (en) Nonaqueous electrolytic secondary battery
KR100440932B1 (en) Electrolytes for lithium rechargeable battery