JPH07211350A - Electrolyte for electrochemical battery, and battery - Google Patents

Electrolyte for electrochemical battery, and battery

Info

Publication number
JPH07211350A
JPH07211350A JP6019978A JP1997894A JPH07211350A JP H07211350 A JPH07211350 A JP H07211350A JP 6019978 A JP6019978 A JP 6019978A JP 1997894 A JP1997894 A JP 1997894A JP H07211350 A JPH07211350 A JP H07211350A
Authority
JP
Japan
Prior art keywords
battery
electrolytic solution
electrolyte
charge
oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6019978A
Other languages
Japanese (ja)
Other versions
JP3418446B2 (en
Inventor
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Masato Tani
真佐人 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP01997894A priority Critical patent/JP3418446B2/en
Publication of JPH07211350A publication Critical patent/JPH07211350A/en
Application granted granted Critical
Publication of JP3418446B2 publication Critical patent/JP3418446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrochemical battery such as a secondary battery having excellent charge and discharge efficiency of a negative electrode by obtaining electrolyte for the electrochemical battery whose interfacial coat resistance is small and which has excellent reversibility of charge and discharge of the negative electrode. CONSTITUTION:Electrolyte for an electrochemical battery containing dialkyl (C=1 to 16) pyrocarbonate and/or dialkyl (C:1 to 16) oxalate as a main component or an additive of the electrolyte and the electrochemical battery using it, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気化学電池用電解液及
びその電解液を使用した電気化学電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for an electrochemical cell and an electrochemical cell using the electrolytic solution.

【0002】[0002]

【従来の技術】従来、電気化学電池用電解液としてはプ
ロピレンカーボネートやエチレンカーボネート等のエス
テル類とジメトキシエタンやテトラヒドロフラン等のエ
ーテル類の混合液にアルカリ金属塩類を添加した溶液が
用いられている。
2. Description of the Related Art Conventionally, as an electrolytic solution for an electrochemical cell, a solution prepared by adding an alkali metal salt to a mixed solution of esters such as propylene carbonate and ethylene carbonate and ethers such as dimethoxyethane and tetrahydrofuran has been used.

【0003】従来の電解液は非水系電解液としては優れ
た伝導度を有しているものの、電極活物質に対する化学
的安定性並びにレドツクス安定性、充放電の繰り返しに
伴う電気化学的安定性に問題がある。
Although the conventional electrolytic solution has excellent conductivity as a non-aqueous electrolytic solution, it has a chemical stability with respect to an electrode active material, a redox stability, and an electrochemical stability due to repeated charging and discharging. There's a problem.

【0004】特にLi及びLi合金が電解液との接触後に
形成される表面被膜は、Li負極の充放電可逆性に大き
な影響を及ぼし、デンドライト生成に大きく係わつてい
る。即ち、Li二次電池の充放電サイクル寿命を左右す
る、Li負極の充放電効率に大きく係わつている。
In particular, the surface film formed by contacting Li and Li alloy with the electrolytic solution has a great influence on the reversibility of charge and discharge of the Li negative electrode and is greatly involved in dendrite formation. That is, it is greatly related to the charge / discharge efficiency of the Li negative electrode, which affects the charge / discharge cycle life of the Li secondary battery.

【0005】これに対し、2−メチルフラン等の添加剤
を添加する方法[J.Electrochem.Soc.,131,2197
(1984) K.M.Abraham 等や松田等のJ.Power
Sources,26,579(1989)]やLiAsF6+エチレンカ
ーボネート+2−メチルテトラヒドロフランの系[岡田
等 Electrochem.Acta,30,1715(1985)]等が提案
されているものの、界面抵抗が大きくなる等いまだ不十
分である。
On the other hand, a method of adding an additive such as 2-methylfuran [J. Electrochem. Soc., 131, 2197
(1984) K.S. M. Abraham et al. And Matsuda et al. Power
Sources, 26,579 (1989)] and LiAsF 6 + ethylene carbonate + 2-methyltetrahydrofuran systems [Hitoshi Okada Electrochem. Acta, 30, 1715 (1985)] and the like have been proposed, but they are still insufficient such as the interface resistance increasing.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は界面被
膜抵抗が小さく、負極の充放電可逆性に優れた電気化学
電池用電解液を提供することにあり、更に、優れた負極
の充放電効率を有する二次電池等の電気化学電池を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolytic solution for an electrochemical cell which has a low interfacial film resistance and is excellent in charge / discharge reversibility of a negative electrode, and further excellent charge / discharge of a negative electrode. An object is to provide an electrochemical battery such as a secondary battery having high efficiency.

【0007】[0007]

【課題を解決するための手段】本発明は電解液の主成分
もしくは添加剤としてジアルキル(C=1〜16)ピロカ
ーボネート及び/又はジアルキル(C=1〜16)オキサ
レートを含有せしめてなる、電気化学電池用電解液及び
それを用いた電気化学電池に係る。
DISCLOSURE OF THE INVENTION The present invention comprises an electrolysis solution containing a dialkyl (C = 1 to 16) pyrocarbonate and / or a dialkyl (C = 1 to 16) oxalate as a main component or an additive. The present invention relates to an electrolytic solution for a chemical battery and an electrochemical cell using the same.

【0008】本発明の電気化学電池用電解液を用いるこ
とにより、Li負極の界面被膜抵抗を小さくすることが
でき、また良好な充放電サイクル寿命を有する電気化学
電池を得ることができる。
By using the electrolytic solution for an electrochemical cell of the present invention, the interface film resistance of the Li negative electrode can be reduced, and an electrochemical cell having a good charge / discharge cycle life can be obtained.

【0009】本発明で使用されるジアルキル(C=1〜
16)ピロカーボネート及びジアルキル(C=1〜16)オ
キサレートは、例えば対応するクロル蟻酸エステルとソ
デイウムアルキルカーボネートとの反応[Kovalenko,
Zh.Obshch.Khim.22,1546(1952)]及びオキサリ
ルクロリドと対応するアルコールとの反応で合成され
る。
The dialkyl used in the present invention (C = 1 to 1
16) Pyrocarbonates and dialkyl (C = 1-16) oxalates can be prepared, for example, by reaction of the corresponding chloroformates with sodium alkyl carbonates [Kovalenko,
Zh. Obshch. Khim. 22, 1546 (1952)] and oxalyl chloride and the corresponding alcohols.

【0010】上記化合物を主成分とする電解液において
は、イオン伝導性の点から、アルキル基の炭素数は1〜
4が好ましく、メチルもしくはエチルが更に好適であ
る。混合アルキル置換体も同様に良好な結果を与える。
これらの例としてはジメチルピロカーボネート、ジエチ
ルピロカーボネート、メチルエチルピロカーボネート、
メチルプロピルピロカーボネート、メチルブチルピロカ
ーボネート及び/又はジメチルオキサレート、ジエチル
オキサレート、メチルエチルオキサレート、メチルプロ
ピルオキサレート、メチルブチルオキサレート等を挙げ
ることができる。
In the electrolyte containing the above compound as a main component, the alkyl group has 1 to 10 carbon atoms from the viewpoint of ionic conductivity.
4 is preferable, and methyl or ethyl is more preferable. Mixed alkyl substituents give equally good results.
Examples of these are dimethylpyrocarbonate, diethylpyrocarbonate, methylethylpyrocarbonate,
Methyl propyl pyrocarbonate, methyl butyl pyrocarbonate and / or dimethyl oxalate, diethyl oxalate, methyl ethyl oxalate, methyl propyl oxalate, methyl butyl oxalate etc. can be mentioned.

【0011】一方、添加剤として用いる場合、アルキル
基の炭素数は大きくても良く、炭素数1〜16のものを好
適に用いることができる。例えば前例の他にメチルデシ
ルピロカーボネート、エチルドデシルピロカーボネー
ト、エチルセチルピロカーボネート、ジ−2−エチルヘ
キシルピロカーボネート及び/又はメチルデシルオキサ
レート、エチルドデシルオキサレート、エチルセチルオ
キサレート、ジ−2−エチルヘキシルオキサレート等を
挙げることができる。
On the other hand, when used as an additive, the alkyl group may have a large number of carbon atoms, and those having 1 to 16 carbon atoms can be preferably used. For example, in addition to the preceding examples, methyldecylpyrocarbonate, ethyldodecylpyrocarbonate, ethylcetylpyrocarbonate, di-2-ethylhexylpyrocarbonate and / or methyldecyloxalate, ethyldodecyloxalate, ethylcetyloxalate, di-2-ethylhexyl. Examples thereof include oxalate.

【0012】本発明においては公知の電気化学電池用の
非プロトン性溶媒を用いることができる。このような溶
媒としては例えばプロピレンカーボネート(PC)、エ
チレンカーボネート(EC)、ジエチルカーボネート
(DEC)、ジメトキシエタン(DME)、テトラヒド
ロフラン(THF)、2−メチルテトラヒドロフラン、
ジオキソラン等を挙げることができる。
In the present invention, known aprotic solvents for electrochemical cells can be used. Examples of such a solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran,
Dioxolane etc. can be mentioned.

【0013】本発明の電解液に用いられる塩としては目
的に応じ種々選択が可能であり、例えばアルカリ金属
塩、アルカリ土類金属塩、4級アンモニウム塩等を挙げ
ることができる。具体的にはLiClO4,LiBF4,Li
PF6,LiAsF6,CF3SO3Li,LiCl,NaBr,
LiOCH3,Mg(ClO42,Al(ClO43,(C2
54NClO4,テトラエチルアンモニウムトシレート
等を例示できる。
The salt used in the electrolytic solution of the present invention can be variously selected according to the purpose, and examples thereof include alkali metal salts, alkaline earth metal salts and quaternary ammonium salts. Specifically, LiClO 4 , LiBF 4 , Li
PF 6 , LiAsF 6 , CF 3 SO 3 Li, LiCl, NaBr,
LiOCH 3 , Mg (ClO 4 ) 2 , Al (ClO 4 ) 3 , (C 2
H 5 ) 4 NClO 4 , tetraethylammonium tosylate and the like can be exemplified.

【0014】本発明は更に上記各電解液を用いた電気化
学電池にも係る。尚、本発明にいう電気化学電池とは、
正電極及び負電極が電解液を介して接触し、かつ電解液
により電子伝導が電気的に分離されているもので、通常
用いられているように電極間での全体の酸化還元反応が
起電力を生じるか、または該電池にエネルギーを加える
と、その状態が変化するように配置された2つの電極の
組み合わせを言う。電気化学電池には1次及び2次電
池、燃料電池、イオン選択センサー、電気化学的表示装
置、電子積分器等が包含される。
The present invention also relates to an electrochemical cell using each of the above electrolytic solutions. The electrochemical cell referred to in the present invention is
The positive electrode and the negative electrode are in contact with each other via the electrolytic solution, and the electron conduction is electrically separated by the electrolytic solution. As is commonly used, the entire redox reaction between the electrodes is an electromotive force. Or a combination of two electrodes arranged such that their state changes when energy is applied to the cell. Electrochemical cells include primary and secondary cells, fuel cells, ion selective sensors, electrochemical displays, electronic integrators and the like.

【0015】[0015]

【実施例】以下本発明を実施例により説明するが、本発
明は実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.

【0016】実施例1 界面被膜抵抗による電解液の評価 ジメチルピロカーボネート(DMPY):プロピレンカ
ーボネート(PC):ジメトキシエタン(DME)=
1:1:1の重量比で調製した溶媒に1モル/lとなる
ようにLiClO4を溶解し、この溶液を金属Liを電極と
した測定セルに注入して10kHzから10-3Hzの間の複素
インピーダンスを測定した。測定はSolartron 1250と1
286を連結した複素インピーダンス測定装置を用いて行
つた。
Example 1 Evaluation of Electrolyte Solution by Interfacial Film Resistance Dimethylpyrocarbonate (DMPY): Propylene carbonate (PC): Dimethoxyethane (DME) =
LiClO 4 was dissolved in a solvent prepared at a weight ratio of 1: 1: 1 to a concentration of 1 mol / l, and this solution was injected into a measuring cell using metal Li as an electrode, and the temperature was between 10 kHz and 10 −3 Hz. The complex impedance of was measured. Measurements are Solartron 1250 and 1
This was done using a complex impedance measuring device with 286 connected.

【0017】得られたCole−Cole Plotは小さな円弧
と低周波側に拡散律速を示す直線部分が認められ、この
円弧の水平軸との交点から求めた界面被膜抵抗値は10Ω
であつた。
In the obtained Cole-Cole Plot, a small arc and a straight line portion showing the diffusion-controlling rate are recognized on the low frequency side, and the interface film resistance value obtained from the intersection of the arc and the horizontal axis is 10Ω.
It was.

【0018】比較例1 比較のため同様に調製し測定した、プロピレンカーボネ
ート(PC):ジメトキシエタン(DME)=1:1の
電解液のCole−Cole Plotは大きな円弧のみを示し、
その円弧の水平軸との交点から求めた界面被膜抵抗値は
75Ωであつた。
Comparative Example 1 Cole-Cole Plot of an electrolyte solution of propylene carbonate (PC): dimethoxyethane (DME) = 1: 1, which was similarly prepared and measured for comparison, showed only a large arc,
The interface film resistance value obtained from the intersection of the arc with the horizontal axis is
It was 75Ω.

【0019】実施例2〜8及び比較例2〜4 所定の重量比率で調製した溶媒に1モル/lとなるよう
にLiClO4を溶解し、実施例1と同様に複素インピー
ダンス測定から求めた界面被膜抵抗値を以下にまとめて
示す。
Examples 2 to 8 and Comparative Examples 2 to 4 LiClO 4 was dissolved in a solvent prepared in a predetermined weight ratio so as to be 1 mol / l, and the interface obtained by measuring the complex impedance was measured as in Example 1. The film resistance values are summarized below.

【0020】 実施例2 ジメチルオキサレート:PC:DME=1:1:1 12Ω 実施例3 メチルブチルピロカーボネート:PC:EC=1:1:1 15Ω 実施例4 メチルデシルピロカーボネート:PC:ジオキソラン=5:50:45 16Ω 実施例5 エチルセチルオキサレート:EC:DMC=5:45:50 20Ω 実施例6 ジエチルピロカーボネート:EC:2−メチル THF=1:1:1 10Ω 実施例7 DMPY:ジプロピルオキサレート:PC:DME=1:1:1:1 14Ω 実施例8 ジ−2−エチルヘキシルピロカーボネート:PC:EC=1:1:1 18Ω 比較例2 EC:DMC=1:1 73Ω 比較例3 2−メチルフラン:PC:DME=5:50:45 90Ω 比較例4 2−メチルTHF:EC=1:1 50ΩExample 2 Dimethyloxalate: PC: DME = 1: 1: 1 12Ω Example 3 Methylbutylpyrocarbonate: PC: EC = 1: 1: 1 15Ω Example 4 Methyldecylpyrocarbonate: PC: Dioxolane = 5:50:45 16Ω Example 5 Ethyl cetyl oxalate: EC: DMC = 5: 45: 50 20Ω Example 6 Diethylpyrocarbonate: EC: 2-methyl THF = 1: 1: 1 10Ω Example 7 DMPY: di Propyl oxalate: PC: DME = 1: 1: 1: 1 14Ω Example 8 Di-2-ethylhexylpyrocarbonate: PC: EC = 1: 1: 1 18Ω Comparative Example 2 EC: DMC = 1: 1 73Ω Comparative Example 3 2-Methylfuran: PC: DME = 5: 50: 45 90Ω Comparative Example 4 2-Methyl THF: EC = 1: 1 50Ω

【0021】実施例9 正極材として非晶質V25を活物質として70重量%、ア
セチレンブラツクを25重量%、ポリテトラフルオロエチ
レンを5重量%配合した合剤ペレツト(16mmφ、厚さ0.
4mm)を用い、負極材としてリチウムアルミニウム合金
(リチウム含有率85%)、セパレータとして微孔性ポリ
プロピレンシートとポリプロピレン不織布、電解質とし
て実施例1の電解質を用いて1円硬貨サイズのリチウム
電池を作製した。
EXAMPLE 9 70% by weight of amorphous V 2 O 5 as a positive electrode material as an active material, 25% by weight of acetylene black and 5% by weight of polytetrafluoroethylene were mixed to prepare a mixture pellet (16 mmφ, thickness 0). .
4 mm), a lithium aluminum alloy (lithium content 85%) as a negative electrode material, a microporous polypropylene sheet and a polypropylene non-woven fabric as a separator, and the electrolyte of Example 1 as an electrolyte to produce a 1-yen coin size lithium battery. .

【0022】このリチウム電池を室温下、1mAの電流
値、2V〜3.5Vの電圧範囲で充放電試験を行い、充放
電特性を評価した。充放電の繰り返し数に対する放電容
量の変化は300サイクル目においても初期の90%を保持
しており、非常に良好な結果を示した。
The lithium battery was subjected to a charge / discharge test at room temperature at a current value of 1 mA and a voltage range of 2 V to 3.5 V to evaluate the charge / discharge characteristics. The change in discharge capacity with respect to the number of charge and discharge cycles was 90% of the initial value even at the 300th cycle, which was a very good result.

【0023】実施例10 重量混合比1:1:0.05のエチレンカーボネート(E
C)/ジメトキシエタン(DME)/エチルセチルピロ
カーボネートに1.5モル/lの濃度でCF3SO3Liを溶
解せしめて電解液とし、熱処理したMnO2 85wt%、ア
セチレンブラツク 12wt%、ポリテトラフルオロエチレ
ン 3wt%からなるカソードペレツトとリチウムアノー
ドを微孔性ポリプロピレンシートとポリプロピレン不織
布からなるセパレータで対向させて1円硬貨サイズのリ
チウム電池を作成した。この電池を30kΩで2Vまで放
電させ電池容量を測定したところ表1のように良好な結
果を得た。このように本件化合物は添加剤としても良好
な結果を示した。
Example 10 Ethylene carbonate (E with a weight mixing ratio of 1: 1: 0.05)
C) / dimethoxyethane (DME) / ethylcetylpyrocarbonate was dissolved in CF 3 SO 3 Li at a concentration of 1.5 mol / l to prepare an electrolytic solution, which was heat-treated MnO 2 85 wt%, acetylene black 12 wt%, polytetrafluoroethylene A cathode pellet made of 3 wt% and a lithium anode were made to face each other with a microporous polypropylene sheet and a separator made of polypropylene non-woven fabric to prepare a 1-yen coin size lithium battery. When this battery was discharged to 2 V at 30 kΩ and the battery capacity was measured, good results were obtained as shown in Table 1. As described above, the compound of the present invention also showed good results as an additive.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例11 重量混合比1:1:1のプロピレンカーボネート(P
C)/ジメトキシエタン(DME)/メチルエチルオキ
サレートに、1.5モル/lの濃度でCF3SO3Liを溶解
して電解液とし、正極材としては非晶質V25を活物質
として70重量%、アセチレンブラツクを25重量%、ポリ
テトラフルオロエチレンを5重量%配合した合剤ペレツ
ト(16mmφ、厚さ0.4mm)を用い、負極材としてリチウ
ムアルミニウム合金(リチウム含有率85%)、セパレー
タとして微孔性ポリプロピレンシートとポリプロピレン
不織布を用いて1円硬貨サイズのリチウム電池を作製し
た。このリチウム電池を室温下、1mAの電流値、2V
〜3.5Vの電圧範囲で充放電試験を行い、充放電特性を
評価した。充放電の繰り返し数に対する放電容量の変化
は300サイクル目においても初期の90%を保持してお
り、非常に良好な結果を示した。
Example 11 Propylene carbonate (P: 1: 1: 1 by weight)
CF 3 SO 3 Li was dissolved in C) / dimethoxyethane (DME) / methylethyl oxalate at a concentration of 1.5 mol / l to prepare an electrolytic solution, and as a positive electrode material, amorphous V 2 O 5 was used as an active material. 70% by weight, 25% by weight of acetylene black and 5% by weight of polytetrafluoroethylene were used as a mixture pellet (16 mmφ, thickness 0.4 mm), and lithium aluminum alloy (lithium content 85%) and separator were used as the negative electrode material. As a result, a 1-yen coin size lithium battery was manufactured using a microporous polypropylene sheet and a polypropylene nonwoven fabric. At room temperature, this lithium battery has a current value of 1 mA,
A charge / discharge test was performed in a voltage range of up to 3.5 V to evaluate charge / discharge characteristics. The change in discharge capacity with respect to the number of charge and discharge cycles was 90% of the initial value even at the 300th cycle, which was a very good result.

【0026】実施例12 重量混合比1:1:0.05のエチレンカーボネート(E
C)/ジメトキシエタン(DME)/メチルデシルオキ
サレートに1.5モル/lの濃度でCF3SO3Liを溶解し
て電解液とし、熱処理したMnO2 85wt%、アセチレン
ブラツク 12wt%、ポリテトラフルオロエチレン 3wt%
からなるカソードペレツトとリチウムアノードを微孔性
ポリプロピレンシートとポリプロピレン不織布からなる
セパレータで対向させて1円硬貨サイズのリチウム電池
を作成した。この電池を30kΩで2Vまで放電させ電池
容量を測定したところ表2のように良好な結果を得た。
このように、本件化合物は添加剤としても良好な結果を
示した。
Example 12 Ethylene carbonate (E) having a weight mixing ratio of 1: 1: 0.05
C) / dimethoxyethane (DME) / methyldecyl oxalate at a concentration of 1.5 mol / l was dissolved in CF 3 SO 3 Li to prepare an electrolytic solution, which was heat-treated MnO 2 85 wt%, acetylene black 12 wt%, polytetrafluoroethylene 3 wt%
A 1-yen coin-sized lithium battery was prepared by making the cathode pellet made of (1) and the lithium anode face each other with a separator made of a microporous polypropylene sheet and a polypropylene non-woven fabric. When this battery was discharged to 2 V at 30 kΩ and the battery capacity was measured, good results were obtained as shown in Table 2.
As described above, the compound of the present invention also showed good results as an additive.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の電解液は、生成する界面被膜抵
抗が小さく、充放電可逆性に優れ、電気化学電池の負極
の充放電効率と保存安定性を向上させることができる。
INDUSTRIAL APPLICABILITY The electrolytic solution of the present invention has a small interfacial film resistance to be produced, is excellent in charge / discharge reversibility, and can improve the charge / discharge efficiency and storage stability of the negative electrode of an electrochemical cell.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解液の主成分もしくは添加剤としてジ
アルキル(C=1〜16)ピロカーボネート及び/又はジ
アルキル(C=1〜16)オキサレートを含有せしめてな
る、電気化学電池用電解液。
1. An electrolytic solution for an electrochemical cell, which comprises dialkyl (C = 1 to 16) pyrocarbonate and / or dialkyl (C = 1 to 16) oxalate as a main component or an additive of the electrolytic solution.
【請求項2】 プロピレンカーボネート、エチレンカー
ボネート、ジエチルカーボネート、ジメトキシエタン、
テトラヒドロフラン、2−メチルテトラヒドロフラン及
びジオキソランから選ばれる少なくとも1種と塩の溶液
に、ジアルキル(C=1〜16)ピロカーボネート及び/
又はジアルキル(C=1〜16)オキサレートを添加して
成る電気化学電池用電解液。
2. Propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane,
A solution of at least one selected from tetrahydrofuran, 2-methyltetrahydrofuran and dioxolane and a salt is added to a dialkyl (C = 1 to 16) pyrocarbonate and / or
Alternatively, an electrolytic solution for an electrochemical cell, which is obtained by adding a dialkyl (C = 1 to 16) oxalate.
【請求項3】 請求項1又は2の電解液を用いた電気化
学電池。
3. An electrochemical cell using the electrolytic solution according to claim 1.
JP01997894A 1994-01-19 1994-01-19 Electrolyte for electrochemical cell and battery Expired - Fee Related JP3418446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01997894A JP3418446B2 (en) 1994-01-19 1994-01-19 Electrolyte for electrochemical cell and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01997894A JP3418446B2 (en) 1994-01-19 1994-01-19 Electrolyte for electrochemical cell and battery

Publications (2)

Publication Number Publication Date
JPH07211350A true JPH07211350A (en) 1995-08-11
JP3418446B2 JP3418446B2 (en) 2003-06-23

Family

ID=12014283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01997894A Expired - Fee Related JP3418446B2 (en) 1994-01-19 1994-01-19 Electrolyte for electrochemical cell and battery

Country Status (1)

Country Link
JP (1) JP3418446B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951085A1 (en) * 1998-04-16 1999-10-20 Wilson Greatbatch Ltd. Dicarbonate additives for non-aqueous electrolyte in alkali metal electrochemical cells
US6174629B1 (en) 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
US6586135B2 (en) 2001-03-21 2003-07-01 Wilson Greatbach Ltd. Electrochemical cell having an electrode with a dicarbonate additive in the electrode active mixture
JP2006147279A (en) * 2004-11-18 2006-06-08 Daiso Co Ltd Electrolyte composition and battery
US7445872B2 (en) 2002-11-15 2008-11-04 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2010524188A (en) * 2007-04-11 2010-07-15 エルジー・ケム・リミテッド Secondary battery using ternary eutectic mixture and manufacturing method thereof
US9296685B2 (en) 2010-03-08 2016-03-29 Basf Se Method of producing nanoparticle suspensions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628218B (en) * 2020-05-18 2021-08-31 珠海冠宇电池股份有限公司 Lithium ion battery and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951085A1 (en) * 1998-04-16 1999-10-20 Wilson Greatbatch Ltd. Dicarbonate additives for non-aqueous electrolyte in alkali metal electrochemical cells
US6063526A (en) * 1998-04-16 2000-05-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6174629B1 (en) 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
US6586135B2 (en) 2001-03-21 2003-07-01 Wilson Greatbach Ltd. Electrochemical cell having an electrode with a dicarbonate additive in the electrode active mixture
US7445872B2 (en) 2002-11-15 2008-11-04 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2006147279A (en) * 2004-11-18 2006-06-08 Daiso Co Ltd Electrolyte composition and battery
JP4560721B2 (en) * 2004-11-18 2010-10-13 ダイソー株式会社 Electrolyte composition and battery
JP2010524188A (en) * 2007-04-11 2010-07-15 エルジー・ケム・リミテッド Secondary battery using ternary eutectic mixture and manufacturing method thereof
US8546023B2 (en) 2007-04-11 2013-10-01 Lg Chem, Ltd. Secondary battery comprising ternary eutectic mixtures and preparation method thereof
US9296685B2 (en) 2010-03-08 2016-03-29 Basf Se Method of producing nanoparticle suspensions

Also Published As

Publication number Publication date
JP3418446B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP4902163B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
KR20180066169A (en) Secondary battery and manufacturing method thereof
JP4521525B2 (en) Non-flammable non-aqueous electrolyte and lithium ion battery using the same
CN107645013A (en) Compound quasi-solid electrolyte, its preparation method and the lithium battery or lithium ion battery containing it
US20030129498A1 (en) Electrolyte system and energy storage device using same
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
Sun et al. A novel lithium battery electrolyte based on lithium fluoride and a tris (pentafluorophenyl) borane anion receptor in DME
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
EP2863467A1 (en) Flame retardant for electrolytes for batteries
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
US20200014066A1 (en) Nonaqueous electrolyte secondary battery
JPH09306540A (en) Lithium secondary battery
WO2023035399A1 (en) Nonaqueous electrolyte and battery
JP3418446B2 (en) Electrolyte for electrochemical cell and battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2001526450A (en) Electrochemical cell containing liquid organic electrolyte with conductive additives
JPH0922722A (en) Electrolytic solution for lithium ion battery
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2000228223A (en) Non-aqueous electrolyte secondary cell
JP2001028272A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH07282846A (en) Nonaqueous electrolytic battery
JPH09204933A (en) Lithium secondary battery
KR20160025912A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees