JP3294400B2 - Non-aqueous electrolyte and non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte and non-aqueous electrolyte battery

Info

Publication number
JP3294400B2
JP3294400B2 JP26126793A JP26126793A JP3294400B2 JP 3294400 B2 JP3294400 B2 JP 3294400B2 JP 26126793 A JP26126793 A JP 26126793A JP 26126793 A JP26126793 A JP 26126793A JP 3294400 B2 JP3294400 B2 JP 3294400B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
alkyl group
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26126793A
Other languages
Japanese (ja)
Other versions
JPH076786A (en
Inventor
茂 藤田
篤雄 小丸
恵一 横山
昭男 檜原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Sony Corp
Original Assignee
Mitsui Chemicals Inc
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26544991&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3294400(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Chemicals Inc, Sony Corp filed Critical Mitsui Chemicals Inc
Priority to JP26126793A priority Critical patent/JP3294400B2/en
Publication of JPH076786A publication Critical patent/JPH076786A/en
Application granted granted Critical
Publication of JP3294400B2 publication Critical patent/JP3294400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規な非水電解液及びそ
れを用いた非水電解液電池に関する。
The present invention relates to a novel non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.

【0002】[0002]

【従来の技術】非水電解液を用いた電池は、高電圧・高
エネルギー密度を有し、かつ貯蔵性などの信頼性に優れ
ているため、広く民生用電子機器の電源に用いられてい
る。しかし、非水電解液系の電解液は水溶液系の電解液
に比べて電気伝導度が1〜2桁低いのが実情で、特に、
耐電圧の低い非水電解液の場合はそれを使用した電池の
充放電効率が低くなり寿命が短くなる。また、非水電解
液を用いた電池は充放電を繰返すとデンドライトと呼ば
れる針状の金属が析出する場合があり、電極から脱落し
て反応性の高い金属粉末が生成することや、正極と負極
を隔てるセパレータをデンドライトが突き破ってショー
トするなどの危険性が高いことが問題である。
2. Description of the Related Art A battery using a non-aqueous electrolyte has a high voltage and a high energy density and is excellent in reliability such as storability, so that it is widely used as a power source for consumer electronic devices. . However, the non-aqueous electrolyte-based electrolyte has a fact that the electrical conductivity is lower by one to two orders of magnitude than the aqueous electrolyte, especially,
In the case of a non-aqueous electrolyte having a low withstand voltage, the charge / discharge efficiency of a battery using the non-aqueous electrolyte is reduced, and the life is shortened. In addition, a battery using a non-aqueous electrolyte may repeatedly deposit and discharge a needle-shaped metal called a dendrite. The problem is that there is a high danger that the dendrite breaks through the separator that separates and short-circuits.

【0003】非水電解液の電気電導度を向上するため、
高誘電率の溶媒である炭酸プロピレン、γ−ブチロラク
トン、スロホラン等の電解液に低粘度溶媒であるジメト
キシエタンやテトラヒドロフランまた1,3−ジオキソ
ラン等を加えることが試みられている(例えば、電気化
学、53 No.3、173(1985))。また電解
液の耐久性を向上させる試みとしては、ジメトキシエタ
ンなど耐電圧の低い溶媒の代りに耐電圧の高い炭酸ジエ
チル等の炭酸エステルを使用し電池の充放電効率を高め
ることや(例えば特開平2−10666号公報)、燐酸
エステルを電解液に添加すること(特開平4−1848
70号公報)によって電解液に自己消火性を持たせるこ
となどが挙げられる。
In order to improve the electric conductivity of a non-aqueous electrolyte,
Attempts have been made to add low-viscosity solvents such as dimethoxyethane, tetrahydrofuran, and 1,3-dioxolane to electrolytes such as propylene carbonate, γ-butyrolactone, and sulfolane, which are solvents having a high dielectric constant (for example, electrochemical, 53 No. 3, 173 (1985)). Further, as an attempt to improve the durability of the electrolytic solution, use of a carbonate ester such as diethyl carbonate having a high withstand voltage in place of a solvent having a low withstand voltage such as dimethoxyethane to improve the charge / discharge efficiency of the battery has been proposed (for example, JP-A-2-10666), and adding a phosphoric acid ester to an electrolytic solution (JP-A-4-1848).
No. 70) to give the electrolyte a self-extinguishing property.

【0004】[0004]

【発明が解決すべき課題】ところで、エネルギー密度の
高い電池が望まれていることから、高電圧電池について
各方面から研究が進められている。例えば、電池の正極
にLiCoO2、LiNiO2、LiMn24等のリチウ
ムと遷移金属の複合酸化物を使用し、負極に金属リチウ
ムやリチウムの合金またリチウムと炭素の化合物を使用
した場合、4Vを発生することのできる電池が研究され
てきた。この場合、酸化による電解液の分解が起こりや
すくなるため、従来用いられてきたγ−ブチロラクト
ン、エチルアセテート等のエステル類や1,3−ジオキ
ソラン、テトラヒドロフラン、ジメトキシエタン等のエ
ーテル類は耐電圧が低く正極と反応するため好ましい溶
媒ではなく、充放電を繰返すごとに電池の容量が低下し
たりガスが発生し電池の内圧が上昇するなどの問題があ
り、耐酸化性のある電解液溶媒が望まれていた。
However, since batteries with high energy density are desired, high voltage batteries have been studied from various fields. For example, when a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 is used for a positive electrode of a battery and metallic lithium or an alloy of lithium or a compound of lithium and carbon is used for a negative electrode, 4 V Batteries capable of generating phenomena have been studied. In this case, since the decomposition of the electrolyte solution due to oxidation is likely to occur, conventionally used esters such as γ-butyrolactone and ethyl acetate and ethers such as 1,3-dioxolan, tetrahydrofuran and dimethoxyethane have a low withstand voltage. It is not a preferable solvent because it reacts with the positive electrode, and there are problems such as a decrease in the capacity of the battery every time charge and discharge are repeated and an increase in the internal pressure of the battery due to generation of gas, and an electrolyte solvent having oxidation resistance is desired. I was

【0005】電池の負極に金属リチウム、リチウムの合
金またはリチウムの化合物を使用する場合は、充電又は
過充電により析出する金属リチウムは高い反応性を持つ
ため、耐酸化性に優れた電解液溶媒とでも反応する可能
性がある。また充放電を繰返すとデンドライトと呼ばれ
る針状のリチウムが析出する場合があり、電極から脱落
して反応性の高いリチウム粉末が生成することや、正極
と負極を隔てるセパレータをデンドライトが突き破って
ショートするなどの安全性上の問題点も提起されてい
る。
When lithium metal, a lithium alloy or a lithium compound is used for the negative electrode of a battery, the lithium metal deposited by charging or overcharging has a high reactivity, so that it is difficult to use an electrolyte solvent having excellent oxidation resistance. But it may react. When charging and discharging are repeated, needle-shaped lithium called a dendrite may precipitate, dropping from the electrode to generate highly reactive lithium powder, and short-circuiting due to the dendrite breaking through the separator separating the positive and negative electrodes. And other safety issues have been raised.

【0006】[0006]

【発明の目的】本発明は上記の問題点に鑑みなされたも
ので、耐電圧および充放電サイクル特性に優れ、引火点
が高く安全性に優れた非水電解液を提供することを目的
とする。また、本発明は、安全で高電圧を発生すること
ができ、かつ電池性能の優れた非水電解液電池を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte having excellent withstand voltage and charge / discharge cycle characteristics, a high flash point and excellent safety. . Another object of the present invention is to provide a non-aqueous electrolyte battery that is safe, can generate a high voltage, and has excellent battery performance.

【0007】[0007]

【課題を解決するための手段】発明者らは安全で高電圧
を発生でき、かつ電池性能の優れた非水電解液電池を作
るため、耐電圧および充放電サイクル特性に優れた電解
液を見出すため鋭意研究を行った。その結果、炭酸エス
テルの少なくとも一方のアルキル基のβ位水素を置換す
ると、炭酸エステルは、化学的安定性が向上し金属リチ
ウムとの反応性が低くなり、また耐酸化性も向上するこ
とを見出した。そして少なくとも一方のアルキル基のβ
位水素を置換した炭酸エステルを含有する電解液を使用
した電池が、安全性が向上し、加えて充放電サイクル寿
命が向上することを見出した。
DISCLOSURE OF THE INVENTION The present inventors have found an electrolyte having excellent withstand voltage and charge / discharge cycle characteristics in order to produce a non-aqueous electrolyte battery which is safe, can generate a high voltage, and has excellent battery performance. For this reason, I conducted diligent research. As a result, it has been found that, when the β-position hydrogen of at least one alkyl group of the carbonate ester is substituted, the carbonate ester has improved chemical stability, reduced reactivity with metallic lithium, and also improved oxidation resistance. Was. And β of at least one alkyl group
It has been found that a battery using an electrolytic solution containing a carbonate ester substituted with a hydrogen atom has improved safety and, in addition, has improved charge / discharge cycle life.

【0008】即ち、本発明の非水電解液は一般式[I]
の炭酸エステルを含有するものであり、
That is, the non-aqueous electrolyte of the present invention has the general formula [I]
Which contains a carbonate ester of

【0009】[0009]

【化2】 Embedded image

【0010】(式中R1はアルキル基又はハロゲン原子
置換アルキル基を表わし、R2はβ位置に水素を持たな
いアルキル基又はハロゲン原子置換アルキル基を表わ
す。)また、本発明の非水電解液電池は、電解液として
一般式[I]の炭酸エステルを含有する電解液を用いる
ものである。本発明の非水電解液電池において、負極材
料としては、金属リチウム、リチウム合金等の金属材
料、金属硫化物及び各種炭素材料を用いることができる
が、特にリチウムイオンを吸蔵・放出することのできる
炭素材料が好ましい。このような炭素材料としてグラフ
ァイトでも非晶質炭素でもよく、活性炭、炭素繊維、カ
ーボンブラック、メソカーボンマイクロビーズなどあら
ゆる炭素材料を用いることができる。
(In the formula, R 1 represents an alkyl group or a halogen atom-substituted alkyl group, and R 2 represents an alkyl group having no hydrogen at the β-position or a halogen atom-substituted alkyl group.) The liquid battery uses an electrolytic solution containing a carbonate of the general formula [I] as the electrolytic solution. In the nonaqueous electrolyte battery of the present invention, as the negative electrode material, metal materials such as metal lithium and lithium alloy, metal sulfides and various carbon materials can be used, and particularly, they can occlude and release lithium ions. Carbon materials are preferred. Such a carbon material may be graphite or amorphous carbon, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be used.

【0011】また、正極材料としては、MoS2、Ti
2、MnO2、V25などの遷移金属酸化物、遷移金属
硫化物或いはLiCoO2、LiMnO2、LiMn
24、LiNiO2などのリチウムと遷移金属から成る
複合酸化物等を用いることができ、好ましくはリチウム
と遷移金属酸化物から成る複合酸化物が用いられる。本
発明によれば電解液溶媒として、一般式[I]で表され
る炭酸エステルを含有する電解液溶媒を用いることによ
って、金属リチウムとの反応性が低くなり、また酸化に
よる電解液溶媒の分解も起こりにくくなり、引火点が高
くなると共に電池の充放電のサイクル寿命が長くなる。
As the positive electrode material, MoS 2 , Ti
Transition metal oxides such as S 2 , MnO 2 , V 2 O 5 , transition metal sulfides, or LiCoO 2 , LiMnO 2 , LiMn
A composite oxide of lithium and a transition metal such as 2 O 4 and LiNiO 2 can be used, and a composite oxide of lithium and a transition metal oxide is preferably used. According to the present invention, the use of the electrolytic solvent containing the carbonate represented by the general formula [I] as the electrolytic solvent reduces the reactivity with metallic lithium and decomposes the electrolytic solvent by oxidation. And the flash point is increased, and the cycle life of charge and discharge of the battery is prolonged.

【0012】以下、本発明の非水電解液について更に詳
しく説明する。一般式[I]で表される炭酸エステルの
1は、アルキル基、好ましくは炭素数1〜5のアルキ
ル基又はハロゲン原子置換アルキル基を表わし、R2
β位水素を持たないアルキル基、好ましくは炭素数5〜
8のアルキル基、またはハロゲン原子置換アルキル基、
好ましくは炭素数1〜5のハロゲン原子置換アルキル基
を表わす。アルキル基としては、メチル基、エチル基、
プロピル基、イソプロピル基等が挙げられ、β位水素を
持たないアルキル基としてはネオペンチル基(−CH2
C(CH3)3)、2,2,2−トリエチルエチル基(−C
2C(CH2CH3)3)等が挙げられる。ハロゲン原子置
換アルキル基としては、ハロゲン原子がフッ素原子、塩
素原子等で置換されたアルキル基、特にフッ素原子置換
アルキル基であることが望ましく、2−フルオロエチル
基(−CH2CFH2)、2,2−ジフルオロエチル基
(−CH2CF2H)、2,2,2−トリフルオロエチル
基(−CH2CF3)、2,2,3,3,3−ペンタフル
オロプロピル基(−CH2CF2CF3)、2,2,3,
3−テトラフルオロプロピル基(−CH2CF2CF
2H)、2,2,2,3,3,3−ヘキサフルオロイソ
プロピル基(−CH(CF32)等が挙げられる。
Hereinafter, the non-aqueous electrolyte of the present invention will be described in more detail. R 1 of the carbonate represented by the general formula [I] represents an alkyl group, preferably an alkyl group having 1 to 5 carbon atoms or a halogen-substituted alkyl group, R 2 represents an alkyl group having no β-position hydrogen, Preferably 5 to 5 carbon atoms
An alkyl group of 8, or a halogen atom-substituted alkyl group,
It preferably represents a halogen atom-substituted alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group,
Propyl group, isopropyl group and the like. Examples of the alkyl group having no β-position hydrogen include a neopentyl group (—CH 2
C (CH 3) 3), 2,2,2- triethyl ethyl group (-C
H 2 C (CH 2 CH 3 ) 3 ). The halogen atom-substituted alkyl group, a halogen atom fluorine atom, an alkyl group substituted by a chlorine atom or the like, it is desirable in particular fluorine atom-substituted alkyl group, 2-fluoroethyl group (-CH 2 CFH 2), 2 , 2-difluoroethyl group (-CH 2 CF 2 H), 2,2,2- trifluoroethyl group (-CH 2 CF 3), 2,2,3,3,3-pentafluoro-propyl (-CH 2 CF 2 CF 3 ), 2, 2, 3 ,
3-tetrafluoropropyl group (—CH 2 CF 2 CF
2 H), 2,2,2,3,3,3-hexafluoroiso
And a propyl group (—CH (CF 3 ) 2 ).

【0013】このような炭酸エステルとして、炭酸メチ
ルネオペンチル、炭酸メチル2,2,2−トリエチルエ
チル等のβ位水素を持たない炭酸エステルや、炭酸メチ
ルトリクロロエチル、炭酸メチルトリブロモエチル、炭
酸メチルトリヨードエチル、炭酸メチル2,2,2−ト
リフルオロエチル、炭酸エチル2,2,2−トリフルオ
ロエチル、炭酸メチル2,2,3,3,3−ペンタフル
オロエチル、炭酸メチル2,2,3,3−テトラフルオ
ロエチル、炭酸メチル2,2,2,3,3,3−ヘキサ
フルオロイソプロピル、炭酸ジ2,2,2−トリフルオ
ロエチル、炭酸2,2,2−トリフルオロエチル2,
2,3,3,3−ペンタフルオロプロピル等のハロゲン
原子置換炭酸エステルを挙げることができる。これら炭
酸エステルは1種または2種以上を混合して、電解液溶
媒として用いることができる。
Examples of such carbonates include carbonates having no β-position hydrogen such as methyl neopentyl carbonate and methyl 2,2,2-triethylethyl carbonate, methyltrichloroethyl carbonate, methyltribromoethyl carbonate, and methyl carbonate. Triiodoethyl, methyl 2,2,2-trifluoroethyl carbonate, ethyl 2,2,2-trifluoroethyl, methyl 2,2,3,3,3-pentafluoroethyl, methyl 2,2,2 3,3-tetrafluoroethyl, methyl carbonate 2,2,2,3,3,3-hexa
Fluoroisopropyl , di2,2,2-trifluoroethyl carbonate, 2,2,2-trifluoroethyl carbonate2
Examples thereof include halogen atom-substituted carbonates such as 2,3,3,3-pentafluoropropyl. These carbonates can be used alone or in combination of two or more as an electrolyte solvent.

【0014】電解液溶媒は、一般式[I]で表わされる
炭酸エステル単独でもよいが、炭酸プロピレン等の環状
炭酸エステルやγ−ブチロラクトン、スルホラン等との
混合溶媒を用いることができ、これによって電解質の溶
解度を高めることができ、電気伝導度を更に向上するこ
とができる。環状炭酸エステルとしては5〜6員環状の
炭酸エステルを用いることができるが、5員環の炭酸エ
ステルが好ましく、特に炭酸エチレン、炭酸プロピレ
ン、炭酸ブチレン、炭酸ビニレンが好ましい。
As the solvent for the electrolytic solution, the carbonate represented by the general formula [I] may be used alone, but a mixed solvent with a cyclic carbonate such as propylene carbonate, γ-butyrolactone, sulfolane or the like can be used. Can be increased, and the electric conductivity can be further improved. As the cyclic carbonate, a 5- to 6-membered carbonate can be used, but a 5-membered carbonate is preferable, and ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate are particularly preferable.

【0015】一般式[I]で表わされる炭酸エステルと
環状炭酸エステルとの混合溶媒として用いる場合には、
一般式[I]で表わされる炭酸エステルと環状炭酸エス
テルとの混合比が体積比で1:9〜9:1、好ましくは
2:8〜8:2の範囲とする。この範囲にあると、粘度
が低くかつ誘電率が高いので、電気伝導度が高くなるの
で好ましい。
When used as a mixed solvent of the carbonate represented by the general formula [I] and the cyclic carbonate,
The mixing ratio of the carbonate represented by the general formula [I] to the cyclic carbonate is in the range of 1: 9 to 9: 1, preferably 2: 8 to 8: 2 by volume. Within this range, the viscosity is low and the dielectric constant is high, so that the electrical conductivity increases, which is preferable.

【0016】本発明の電解用溶媒は、一般式[I]で表
わされる炭酸エステルと環状炭酸エステルの他、通常電
池用電解液溶媒として用いられるエーテル系、鎖状炭酸
エステル等の非水溶媒を、本発明の電解液溶媒の特性を
損わない範囲で適宜添加することができる。電解液に一
般式[I]の炭酸エステルを含有する電解液溶媒を用い
る場合の電解質としては、通常の電池電解液に用いられ
る電解質を使用することができ、LiPF6、LiB
4、LiClO4、LiAsF6、LiCF3SO3、L
iAlCl4、LiN(SO 2 CF32、LiC49SO
3、LiC817SO3などのリチウム塩が好ましく、特
にLiPF6、LiBF4、LiCF3SO3、LiClO
4が好ましい。
The solvent for electrolysis according to the present invention includes, in addition to the carbonate and cyclic carbonate represented by the general formula [I], non-aqueous solvents such as ethers and chain carbonates which are usually used as electrolyte solvents for batteries. It can be added as appropriate within a range that does not impair the characteristics of the electrolyte solvent of the present invention. When the electrolyte solution containing the carbonate of the general formula [I] is used as the electrolyte, an electrolyte used in a normal battery electrolyte can be used. LiPF 6 , LiB
F 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , L
iAlCl 4 , LiN ( SO 2 CF 3 ) 2 , LiC 4 F 9 SO
3 , lithium salts such as LiC 8 F 17 SO 3 are preferable, and in particular, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiClO
4 is preferred.

【0017】電解質を溶媒に溶かす濃度は通常、0.1
〜3モル/lで実施することができ、好ましくは、0.
5〜1.5モル/lで用いることができる。本発明の非
水電解液電池は、電解液として以上説明した非水電解液
を含むものであり、その形状、形態等は本発明の範囲内
で任意に選択することができる。
The concentration at which the electrolyte is dissolved in the solvent is usually 0.1
To 3 mol / l, preferably 0.1 to 0.1 mol / l.
It can be used at 5 to 1.5 mol / l. The non-aqueous electrolyte battery of the present invention contains the non-aqueous electrolyte described above as the electrolyte, and its shape, form, and the like can be arbitrarily selected within the scope of the present invention.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。 1.炭酸エステルの合成 以下に示す炭酸エステル(R1-O-CO-O-R2)を、触
媒として28%ナトリウムメトキシド/メタノール溶液
を用い、対応するアルコール(R2OH)と炭酸ジメチ
ル又は炭酸ジエチルとのエステル交換反応によって合成
した。尚、化合物3については、トリフルオロエタノー
ルとクロロ炭酸エチルをジエチルエーテルを溶媒に使用
して反応させて合成した。また化合物7については、
2,2,3,3,3−ペンタフルオロプロパノールと化
合物6とエステル交換反応によって合成した。 化合物1−炭酸メチルネオペンチル 化合物2−炭酸メチル2,2,2−トリフルオロエチル 化合物3−炭酸エチル2,2,2−トリフルオロエチル 化合物4−炭酸メチル2,2,3,3,3−ペンタフル
オロプロピル 化合物5−炭酸メチル2,2,3,3−テトラフルオロ
プロピル 化合物6−炭酸ジ2,2,2−トリフルオロエチル 化合物7−炭酸2,2,2−トリフルオロエチル−2,
2,3,3,3−ペンタフルオロプロピル これら炭酸エステル化合物の粘度(cP、25℃)及び比
誘電率(25℃)を表1に示した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. 1. Synthesis of Carbonate Ester A carbonate (R 1 -O-CO-OR 2 ) shown below was converted to a corresponding alcohol (R 2 OH) with dimethyl carbonate or carbonate using a 28% sodium methoxide / methanol solution as a catalyst. It was synthesized by transesterification with diethyl. Compound 3 was synthesized by reacting trifluoroethanol and ethyl chlorocarbonate using diethyl ether as a solvent. For compound 7,
It was synthesized by transesterification between 2,2,3,3,3-pentafluoropropanol and compound 6. Compound 1-methyl neopentyl carbonate Compound 2-methyl 2,2,2-trifluoroethyl compound 3-Ethyl carbonate 2,2,2-trifluoroethyl Compound 4-methyl 2,2,3,3,3- Pentafluoropropyl compound 5-methyl 2,2,3,3-tetrafluoropropyl compound 6-Di-2,2,2-trifluoroethyl carbonate Compound 7-2,2,2-trifluoroethyl-2, carbonate
2,3,3,3-Pentafluoropropyl The viscosity (cP, 25 ° C.) and relative dielectric constant (25 ° C.) of these carbonate compounds are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例として従来化合物である炭酸ジエチ
ル(DEC)及び炭酸ジイソプロピル(DIPC)の粘
度、比誘電率についても併せて表1に示した。 2.金属リチウムとの反応性 上記のように得られた7つの炭酸エステル化合物のうち
炭酸メチルネオペンチル(MNPC)と炭酸メチル2,
2,2−トリフルオロエチル(MFEC)について金属
リチウムとの反応性を調べた。
As comparative examples, the viscosity and the relative dielectric constant of the conventional compounds diethyl carbonate (DEC) and diisopropyl carbonate (DIPC) are also shown in Table 1. 2. Reactivity with Metallic Lithium Among the seven carbonate ester compounds obtained as described above, methyl neopentyl carbonate (MNPC) and methyl carbonate 2,2
The reactivity of 2,2-trifluoroethyl (MFEC) with metallic lithium was examined.

【0021】アルゴンボックス中で、炭酸メチルネオペ
ンチル(MNPC)5gにサイコロ状に切削した金属リ
チウム0.1gを加え、液中でリチウムにスパーテルを
押しつけてリチウムの清浄面を露出して、25℃で48
時間放置後、金属リチウムの表面状態及び液部の状態を
調べ、反応性を判断した。炭酸メチル2,2,2−トリ
フルオロエチル(MFEC)及び比較例として従来化合
物である炭酸ジエチル(DEC)、炭酸ジイソプロピル
(DIPC)についても同様の実験を行い、得られた結
果を表2に示した。
In an argon box, 0.1 g of dice-cut metallic lithium was added to 5 g of methyl neopentyl carbonate (MNPC), and a spatula was pressed against the lithium in the solution to expose a clean surface of lithium, and the temperature was changed to 25 ° C. At 48
After standing for a period of time, the surface state of the lithium metal and the state of the liquid part were examined to determine the reactivity. The same experiment was carried out for methyl 2,2,2-trifluoroethyl carbonate (MFEC) and the conventional compounds diethyl carbonate (DEC) and diisopropyl carbonate (DIPC) as comparative examples. Table 2 shows the obtained results. Was.

【0022】[0022]

【表2】 [Table 2]

【0023】表2からも明らかなようにMNPC、MF
ECはともに金属リチウムと反応することなく、電解液
として極めて安定性が高く、好適であることが示され
た。 3.引火点の測定 化合物2、化合物3、化合物4、化合物6、化合物7及
び比較例として炭酸ジメチル(DMC)の引火点を、ま
た化合物2、化合物4、炭酸ジメチルのそれぞれと炭酸
プロピレン(PC)の1:1(体積比率)混合溶液の引
火点をそれぞれタグ密閉式(JIS−K2265)で測
定した。測定結果を表3に示した。
As is clear from Table 2, MNPC and MF
Both ECs did not react with metallic lithium and had extremely high stability as an electrolytic solution, indicating that they were suitable. 3. Measurement of flash point The flash point of compound 2, compound 3, compound 4, compound 6, compound 7, and dimethyl carbonate (DMC) as a comparative example, and the flash point of each of compound 2, compound 4, and dimethyl carbonate and propylene carbonate (PC) The flash point of the 1: 1 (volume ratio) mixed solution was measured by a closed tag method (JIS-K2265). Table 3 shows the measurement results.

【0024】[0024]

【表3】 [Table 3]

【0025】表3から明らかなように本発明の炭酸エス
テルは、炭酸ジメチルなどの通常の炭酸エステルに比べ
て高い引火点を示した。 4.電気伝導度及び耐電圧の測定 電解質として六フッ化リン酸リチウム(LiPF6
3.8g(25mmol)を電解液溶媒に溶かし25m
lの電解液を調整した。溶媒としては上記合成で得た炭
酸エステル単独及び上記合成で得た炭酸エステルと炭酸
プロピレン(PC)との1:1(体積比)混合溶媒を用
いた。この電解液の電気伝導度をインピーダンスメータ
ーを用い10kHzで測定した。またこの電解液の耐電
圧の測定は、作用極、対極に白金を使用し参照極に金属
リチウムを使用した3電極式耐電圧測定セルに上記溶液
を入れ、ポテンシオスタットで50mV/secで電位
走引し、分解電流が0.1mA以上流れなかった範囲を
耐電圧とした。結果を表4に示した。
As is clear from Table 3, the carbonate of the present invention exhibited a higher flash point than ordinary carbonates such as dimethyl carbonate. 4. Measurement of electric conductivity and withstand voltage Lithium hexafluorophosphate (LiPF 6 ) as electrolyte
Dissolve 3.8 g (25 mmol) in the electrolyte solvent to obtain 25 m
1 electrolyte solution was prepared. As the solvent, the carbonate ester obtained in the above synthesis alone or a 1: 1 (volume ratio) mixed solvent of the carbonate ester obtained in the above synthesis and propylene carbonate (PC) was used. The electric conductivity of this electrolytic solution was measured at 10 kHz using an impedance meter. The withstand voltage of the electrolytic solution was measured by placing the solution in a three-electrode withstand voltage measuring cell using platinum as a working electrode and a counter electrode and using lithium metal as a reference electrode, and applying a potential of 50 mV / sec with a potentiostat. A range in which the electrophoresis was performed and the decomposition current did not flow by 0.1 mA or more was defined as a withstand voltage. The results are shown in Table 4.

【0026】[0026]

【表4】 [Table 4]

【0027】表3及び表4からも明らかなように、本発
明の電解液は高い耐電圧と、実用レベルの優れた電気伝
導度を示した。 5.電池サイクル寿命 図1に示すような電池寸法が外形20mm、高さ2.5
mmのコイン形非水電解液電池を作成した。負極1には
金属リチウムを、正極2にはLiCoO285重量部に
導電剤としてグラファイト12重量部、結合剤としてフ
ッ素樹脂3重量部を加えた混合物を加圧成形したものを
用いた。これら負極1、正極2を構成する物質は、ポリ
プロピレンから成る多孔質セパレータ3を介してそれぞ
れ負極缶4及び正極缶5に圧着されている。このような
電池の電解液として、炭酸メチルトリフルオロエチル
(MFEC)と炭酸プロピレン(PC)とを体積比で
1:1の割合で混合した溶媒に六フッ化リン酸リチウム
を1.0モル/lの割合で溶解させたものを用い、封口
ガスケット6により封入した。
As is clear from Tables 3 and 4, the electrolytic solution of the present invention exhibited a high withstand voltage and excellent electric conductivity at a practical level. 5. Battery cycle life Battery size as shown in Fig. 1 is 20mm in outer diameter and 2.5mm in height
A coin-shaped nonaqueous electrolyte battery having a thickness of 1 mm was prepared. The negative electrode 1 was made of metallic lithium, and the positive electrode 2 was made by pressing and forming a mixture of 85 parts by weight of LiCoO 2 and 12 parts by weight of graphite as a conductive agent and 3 parts by weight of a fluororesin as a binder. The materials constituting the negative electrode 1 and the positive electrode 2 are pressure-bonded to a negative electrode can 4 and a positive electrode can 5, respectively, via a porous separator 3 made of polypropylene. As a battery electrolyte for such a battery, lithium hexafluorophosphate (1.0 mol / l) was used in a solvent in which methyl trifluoroethyl carbonate (MFEC) and propylene carbonate (PC) were mixed at a volume ratio of 1: 1. Using a solution dissolved at a rate of 1 l, it was sealed with a sealing gasket 6.

【0028】このように作成した電池について、1.0
mAの電流で上限電圧を4.1Vとして10時間充電
し、続いて1.0mAの電流で3.0Vとなるまで放電
した時の充放電効率を測定した。また、このような充放
電を所定サイクル繰返し、充放電効率の変化を観察し
た。図2はその結果を示すもので、充放電効率をサイク
ル数に対してプロットしたもの(○)である。またMN
PCとPCとの混合溶媒(体積比1:1)を用いた以外
はMFEC−PC系と同様に作成した電池についても、
図2にその結果を示した(△)。なお、比較例として電
解液溶媒として炭酸ジエチルと炭酸プロピレンの混合溶
媒(体積比1:1)を用い、その他はMFEC−PC系
と同様に作成したコイン形電池について、同様の充放電
効率を測定した(●)。
For the battery thus prepared, 1.0
The charge / discharge efficiency was measured when the battery was charged at a current of mA at an upper limit voltage of 4.1 V for 10 hours and then discharged at a current of 1.0 mA until the voltage reached 3.0 V. In addition, such charge / discharge was repeated for a predetermined cycle, and a change in charge / discharge efficiency was observed. FIG. 2 shows the results, in which the charge / discharge efficiency is plotted against the number of cycles ((). Also MN
A battery prepared in the same manner as the MFEC-PC system except that a mixed solvent of PC and PC (volume ratio 1: 1) was used,
FIG. 2 shows the results (△). As a comparative example, the same charge / discharge efficiency was measured for a coin-shaped battery prepared in the same manner as the MFEC-PC system, using a mixed solvent of diethyl carbonate and propylene carbonate (volume ratio 1: 1) as the electrolyte solvent. (●)

【0029】図2からも明らかなように、本実施例の電
解液溶媒を用いた電池は、4V以上の高い電圧にさらさ
れても、高いエネルギー密度を維持し、非常に優れたサ
イクル特性を示した。
As is clear from FIG. 2, the battery using the electrolyte solvent of the present example maintains a high energy density even when exposed to a high voltage of 4 V or more, and exhibits extremely excellent cycle characteristics. Indicated.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、電解液溶媒として新規な鎖状炭酸エステルを
含む有機溶媒を用いることにより、引火点が高く、電気
伝導度、耐電圧共に優れた非水電解液を提供することが
できた。また、本発明によれば、これら非水電解液を電
池に応用することによって、充放電効率及びサイクル特
性が優れ、エネルギー密度の高い電池を作ることができ
る。
As is apparent from the above description, according to the present invention, by using a novel organic solvent containing a chain carbonate as an electrolyte solvent, a high flash point, high electric conductivity, and high withstand voltage can be obtained. In both cases, an excellent non-aqueous electrolyte could be provided. Further, according to the present invention, by applying these non-aqueous electrolytes to batteries, batteries having excellent charge / discharge efficiency and cycle characteristics and high energy density can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の1実施例を示す
概略断面図。
FIG. 1 is a schematic sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明の非水電解液電池のサイクル特性を示す
図。
FIG. 2 is a diagram showing cycle characteristics of the nonaqueous electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・負極 2・・・・・・正極 1 ... Negative electrode 2 ... Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 恵一 千葉県袖ヶ浦市長浦字拓二号580番32 三井石油化学工業株式会社内 (72)発明者 檜原 昭男 千葉県袖ヶ浦市長浦字拓二号580番32 三井石油化学工業株式会社内 (56)参考文献 特開 平6−219992(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keiichi Yokoyama 580-32, Takuji, Nagaura, Sodegaura-shi, Chiba (72) Inside of Mitsui Petrochemical Industries Co., Ltd. No. 32 Mitsui Petrochemical Industry Co., Ltd. (56) References JP-A-6-199992 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式[I]で表わされる炭酸エステルを
含有する非水電解液。 【化1】 (式中R1はアルキル基又はハロゲン原子置換アルキル
基を表わし、R2はβ位置に水素を持たないアルキル基
又はハロゲン原子置換アルキル基を表わす。)
1. A non-aqueous electrolyte containing a carbonate represented by the general formula [I]. Embedded image (In the formula, R 1 represents an alkyl group or a halogen atom-substituted alkyl group, and R 2 represents an alkyl group having no hydrogen at the β-position or a halogen atom-substituted alkyl group.)
【請求項2】請求項1記載の一般式[I]において、R
1又はR2の少なくとも一方はβ位置に水素を持たないア
ルキル基又はフッ素原子置換アルキル基である炭酸エス
テルを含有する非水電解液。
2. In the general formula [I] according to claim 1, R
A non-aqueous electrolyte containing at least one of R 1 and R 2 containing a carbonate ester which is an alkyl group having no hydrogen at the β-position or a fluorine atom-substituted alkyl group.
【請求項3】請求項1記載の一般式[I]において、R
1が−CH3、−CH2CH3及び−CH2CF3の群から選
ばれる基であり、R2が−CH2C(CH33、−CH2
CF3 −CH2CF2CF3、−CH2CF2CF2H、−
CH(CF32の群から選ばれる基である炭酸エステル
を含有する非水電解液。
3. The method according to claim 1, wherein R is
1 is -CH 3, a group selected from the group consisting of -CH 2 CH 3 and -CH 2 CF 3, R 2 is -CH 2 C (CH 3) 3 , -CH 2
CF 3, -CH 2 CF 2 CF 3, -CH 2 CF 2 CF 2 H, -
A non-aqueous electrolyte containing a carbonate selected from the group of CH (CF 3 ) 2 .
【請求項4】一般式[I]で表わされる炭酸エステルの
他に、更に環状炭酸エステルを含むことを特徴とする請
求項1記載の非水電解液。
4. The non-aqueous electrolyte according to claim 1, further comprising a cyclic carbonate in addition to the carbonate represented by the general formula [I].
【請求項5】一般式[I]で表わされる炭酸エステルと
環状炭酸エステルとの混合比が体積比で1:9〜9:1
の範囲であることを特徴とする請求項4記載の非水電解
液。
5. The mixing ratio of the carbonate represented by the general formula [I] to the cyclic carbonate is 1: 9 to 9: 1 by volume ratio.
5. The non-aqueous electrolyte according to claim 4, wherein:
【請求項6】電解質が、LiPF6、LiBF4、LiC
lO4、LiAsF6、LiCF3SO3、LiAlC
4、LiN(SO3CF32、LiC49SO3、Li
817SO3の群から選ばれるリチウム化合物であるこ
とを特徴とする請求項1記載の非水電解液。
6. An electrolyte comprising: LiPF 6 , LiBF 4 , LiC
10 4 , LiAsF 6 , LiCF 3 SO 3 , LiAlC
l 4 , LiN (SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , Li
Nonaqueous electrolytic solution according to claim 1, wherein is a lithium compound selected from the group consisting of C 8 F 17 SO 3.
【請求項7】電解液として請求項1記載の非水電解液を
含む非水電解液電池。
7. A non-aqueous electrolyte battery comprising the non-aqueous electrolyte according to claim 1 as an electrolyte.
JP26126793A 1992-11-18 1993-10-19 Non-aqueous electrolyte and non-aqueous electrolyte battery Expired - Lifetime JP3294400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26126793A JP3294400B2 (en) 1992-11-18 1993-10-19 Non-aqueous electrolyte and non-aqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30904292 1992-11-18
JP4-309042 1992-11-18
JP26126793A JP3294400B2 (en) 1992-11-18 1993-10-19 Non-aqueous electrolyte and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH076786A JPH076786A (en) 1995-01-10
JP3294400B2 true JP3294400B2 (en) 2002-06-24

Family

ID=26544991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26126793A Expired - Lifetime JP3294400B2 (en) 1992-11-18 1993-10-19 Non-aqueous electrolyte and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3294400B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645544B2 (en) 2006-06-05 2010-01-12 Sony Corporation Electrolyte, battery including electrolyte, and method for manufacturing electrolyte
US8241795B2 (en) 2006-12-08 2012-08-14 Sony Corporation Electrolytic solutions and battery
US8404389B2 (en) 2006-12-07 2013-03-26 Sony Corporation Electrolytic solution and battery
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery
US10008746B2 (en) 2007-05-21 2018-06-26 Murata Manufacturing Co., Ltd. Electrolytic solution and battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JP3758107B2 (en) * 1996-08-07 2006-03-22 三井化学株式会社 Ion conductive polymer gel electrolyte and solid state battery including the polymer gel electrolyte
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JP5062459B2 (en) * 2001-05-15 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP4415522B2 (en) * 2001-09-12 2010-02-17 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte battery
JP2005222887A (en) * 2004-02-09 2005-08-18 Sony Corp Electrode winding type battery
JP5073161B2 (en) * 2004-10-13 2012-11-14 三星エスディアイ株式会社 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
KR101137747B1 (en) * 2005-06-10 2012-04-25 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery and carbonate compound
KR100767427B1 (en) 2006-12-21 2007-10-17 제일모직주식회사 Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
JP5360463B2 (en) * 2008-05-28 2013-12-04 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
CN104247137B (en) 2012-04-17 2016-09-07 大金工业株式会社 Electrolyte, electrochemical device, lithium rechargeable battery and assembly
EP2840641B1 (en) 2012-04-17 2019-01-23 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP5978787B2 (en) 2012-06-11 2016-08-24 ソニー株式会社 Non-aqueous secondary battery electrolyte, non-aqueous secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5842873B2 (en) * 2013-07-12 2016-01-13 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
KR101848189B1 (en) 2013-10-04 2018-04-11 아사히 가세이 가부시키가이샤 Electrolyte and lithium-ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645544B2 (en) 2006-06-05 2010-01-12 Sony Corporation Electrolyte, battery including electrolyte, and method for manufacturing electrolyte
US8404389B2 (en) 2006-12-07 2013-03-26 Sony Corporation Electrolytic solution and battery
US8241795B2 (en) 2006-12-08 2012-08-14 Sony Corporation Electrolytic solutions and battery
USRE44705E1 (en) * 2006-12-08 2014-01-14 Sony Corporation Electrolytic solutions and battery
US10008746B2 (en) 2007-05-21 2018-06-26 Murata Manufacturing Co., Ltd. Electrolytic solution and battery
US10008745B2 (en) 2007-05-21 2018-06-26 Murata Manufacturing Co., Ltd. Electrolytic solution and battery
US10069168B2 (en) 2007-05-21 2018-09-04 Murata Manufacturing Co., Ltd. Electrolytic solution and battery
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery

Also Published As

Publication number Publication date
JPH076786A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5461883B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3821495B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4463333B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002158035A (en) Non-aqueous electrolyte and secondary battery using the same
JP3369310B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4392726B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH10189039A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2002343426A (en) Nonaqueous electrolyte and secondary battery using the same
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH0963644A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JPH11329496A (en) Nonaqueous electrolyte nonaqueous secondary battery
JP3695947B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP3986216B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2001057235A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2000223151A (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP3571762B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JPH10149840A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH10189038A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

EXPY Cancellation because of completion of term