JP3223035B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3223035B2
JP3223035B2 JP06954194A JP6954194A JP3223035B2 JP 3223035 B2 JP3223035 B2 JP 3223035B2 JP 06954194 A JP06954194 A JP 06954194A JP 6954194 A JP6954194 A JP 6954194A JP 3223035 B2 JP3223035 B2 JP 3223035B2
Authority
JP
Japan
Prior art keywords
dioxaspiro
electrolytic solution
aqueous electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06954194A
Other languages
Japanese (ja)
Other versions
JPH07282845A (en
Inventor
徹 松井
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06954194A priority Critical patent/JP3223035B2/en
Publication of JPH07282845A publication Critical patent/JPH07282845A/en
Application granted granted Critical
Publication of JP3223035B2 publication Critical patent/JP3223035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特に、その電解液の改良に関する。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to improvement of the electrolyte.

【0002】[0002]

【従来の技術】今日、プロピレンカーボネート、γ−ブ
チロラクトン、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソラン等の有機溶媒に、LiClO4、Li
BF4、LiAsF6、LiPF6、LiCF3SO3等の
溶質を溶かして得られる電解液と、リチウム等のアルカ
リ金属を活物質とする負極を組み合わせた非水電解質電
池は、高エネルギー密度を有するため、電子時計、カメ
ラをはじめとする小型電子機器に広く用いられるように
なった。この種の非水電解質電池を充電可能にする課題
のひとつは、充電過程において負極上に析出するアルカ
リ金属の形態が、樹枝状、フィブリル状ないしは針状と
いう、いわゆるデンドライトになることである。このデ
ンドライトが著しく成長すると、負極と正極の内部短
絡、発火という危険性が増加するばかりか、以降の放電
過程で溶解させても、デンドライトの局部的溶解が進行
し一部は電気的に極板より遊離するためすべてのデンド
ライトを溶かし出すことができない。すなわち、充電
(析出)量に対する放電(溶解)量が小さくなり(充放
電効率の低下)、サイクル寿命が短くなる。
Nowadays, propylene carbonate, .gamma.-butyrolactone, dimethoxyethane, tetrahydrofuran, in organic solvent dioxolane, LiClO 4, Li
A non-aqueous electrolyte battery in which an electrolyte obtained by dissolving a solute such as BF 4 , LiAsF 6 , LiPF 6 , or LiCF 3 SO 3 and a negative electrode using an alkali metal such as lithium as an active material has a high energy density Therefore, it has been widely used for small electronic devices such as electronic watches and cameras. One of the problems that make this type of nonaqueous electrolyte battery chargeable is that the form of alkali metal deposited on the negative electrode during the charging process is a so-called dendrite such as a dendrite, fibril or needle. If the dendrite grows remarkably, the danger of internal short circuit between the negative electrode and the positive electrode and the risk of ignition increase, and even if the dendrite is melted in the subsequent discharge process, local melting of the dendrite progresses and part of the dendrite becomes electrically Not all dendrites can be dissolved because they are more liberated. In other words, the amount of discharge (dissolution) relative to the amount of charge (precipitation) is reduced (decrease in charge and discharge efficiency), and the cycle life is shortened.

【0003】このような、課題を解決する方法として、
電解質塩を多く溶かす高誘電率のプロピレンカーボネー
トの溶媒に炭化水素化合物を添加剤として含ませ、析出
するリチウムの表面を保護することによって、デンドラ
イトの発生を抑制する試みがある(3rd International
Meeting on Lithium Batteries、アブストラクト、第34
6頁 (1986))。
[0003] As a method of solving such a problem,
Attempts have been made to suppress the generation of dendrites by adding a hydrocarbon compound as an additive to a high dielectric constant propylene carbonate solvent that dissolves a large amount of electrolyte salt to protect the surface of the deposited lithium (3rd International
Meeting on Lithium Batteries, Abstract, 34
6 (1986)).

【0004】[0004]

【発明が解決しようとする課題】前記のような、プロピ
レンカーボネートに炭化水素を添加剤として含ませた溶
媒を電解液に使用しても、上記引用文献に記載されてい
るように、充電(析出)後長期にわたって放置した電極
上のリチウムの腐食が進行し、充放電効率が低下すると
いう課題があった。また、炭化水素化合物を電解液に添
加すると、電解液の電導度が低下するため、高電流密度
での充放電時の分極が大きくなるという不都合が生じる
ことが判明した。本発明は、このような従来の欠点を除
去するものであり、充電(析出)によって析出したリチ
ウム等のアルカリ金属の腐食進行を抑制するとともに、
電導度が大きく、充放電を繰り返しても負極上でのデン
ドライトの発生が抑制される電解液を得ることによっ
て、信頼性の大きい非水電解質二次電池を提供すること
を目的とする。
As described in the above cited document, even if a solvent in which propylene carbonate contains a hydrocarbon as an additive is used as an electrolyte as described above, the charge (deposition) There is a problem in that the corrosion of lithium on the electrode left for a long time after the progress proceeds, and the charge / discharge efficiency decreases. In addition, it has been found that when a hydrocarbon compound is added to the electrolytic solution, the conductivity of the electrolytic solution is reduced, so that there is a disadvantage that polarization during charging and discharging at a high current density increases. The present invention is intended to eliminate such conventional disadvantages, and suppresses the progress of corrosion of alkali metals such as lithium deposited by charging (deposition).
An object of the present invention is to provide a highly reliable nonaqueous electrolyte secondary battery by obtaining an electrolytic solution having high conductivity and suppressing generation of dendrites on a negative electrode even when charge and discharge are repeated.

【0005】[0005]

【課題を解決するための手段】本発明の非水電解質二次
電池は、正極と、アルカリイオン伝導性の非水電解液
と、アルカリ金属を活物質とする負極とを具備し、前記
電解液が、式1で示される1,3−ジオキサスピロ
[4,5]デカン、式2で示される1,4−ジオキサス
ピロ[4,5]デカン、式3で示される1,3−ジオキ
サスピロ[4,4]ノナンおよび式4で示される1,4
−ジオキサスピロ[4,4]ノナンよりなる群から選ば
れる少なくとも1種を含むことを特徴とする。
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode, a non-aqueous electrolyte having alkali ion conductivity, and a negative electrode having an alkali metal as an active material. Are 1,3-dioxaspiro [4,5] decane represented by Formula 1, 1,4-dioxaspiro [4,5] decane represented by Formula 2, 1,3-dioxaspiro [4,4] represented by Formula 3 Nonane and 1,4 represented by formula 4
-Dioxaspiro [4,4] nonane, wherein at least one member selected from the group consisting of:

【0006】[0006]

【化1】 Embedded image

【0007】ここで、前記電解液の主溶媒は、エチレン
カーボネートおよびプロピレンカーボネートよりなる群
から選ばれる少なくとも1種であることが好ましい。
Here, the main solvent of the electrolytic solution is preferably at least one selected from the group consisting of ethylene carbonate and propylene carbonate.

【0008】[0008]

【作用】本発明者らが種々考察したところによると、ジ
オキサスピロ化合物を含む電解液中では、金属基体に析
出したリチウム原子(厳密には吸着イオン)は析出した
その場で固定されず、基体表面を拡散した後に熱力学的
に安定な結晶格子点で捕捉されやすいことが判明した。
したがって、析出開始直後に欠陥の多い結晶核が生成す
ると、析出原子はこの結晶核に集まりその結晶性を高め
るとともに、結晶核が球状に成長し、いわゆるデンドラ
イトになることが防がれる。ジオキサスピロ化合物は、
その構造式からも明らかなように、分子構造の一方が炭
素と水素原子のみからなる疎水構造であり、他方が酸素
原子を含む親水構造である。したがって、エチレンカー
ボネートやプロピレンカーボネートのような高誘電率の
溶媒と親和しやすく、また、自らリチウム等のイオンに
配位し電解質塩の解離に寄与するので、電解液の電導度
を損なうことがない。
According to various considerations by the present inventors, in an electrolytic solution containing a dioxaspiro compound, lithium atoms (to be exact, adsorbed ions) deposited on a metal substrate are not fixed in situ when deposited, and the surface of the substrate is not fixed. Has been found to be easily trapped at thermodynamically stable crystal lattice points after diffusion.
Therefore, when a crystal nucleus with many defects is generated immediately after the start of the precipitation, the precipitated atoms gather in the crystal nucleus to enhance its crystallinity, and the crystal nucleus grows in a spherical shape, thereby preventing so-called dendrite. The dioxaspiro compound is
As is clear from the structural formula, one of the molecular structures is a hydrophobic structure consisting of only carbon and hydrogen atoms, and the other is a hydrophilic structure containing oxygen atoms. Therefore, it is easily compatible with a solvent having a high dielectric constant, such as ethylene carbonate or propylene carbonate, and also coordinates itself with ions such as lithium and contributes to dissociation of the electrolyte salt, so that the conductivity of the electrolytic solution is not impaired. .

【0009】また、分析の結果、ジオキサスピロ化合物
は、リチウム等のアルカリ金属からなる電極の表面に吸
着しており、エチレンカーボネートやプロピレンカーボ
ネートのような高誘電率の溶媒との境界にあって、これ
らの高誘電率溶媒がアルカリ金属と直接反応するのを妨
げていることが明らかになった。このようなことから、
ジオキサスピロ化合物を含む電解液中で析出させたアル
カリ金属は、長期の放置においても腐食が進行せず、充
放電効率が向上するものと考えられる。
As a result of the analysis, the dioxaspiro compound is adsorbed on the surface of an electrode made of an alkali metal such as lithium, and at the boundary with a solvent having a high dielectric constant such as ethylene carbonate or propylene carbonate. It has been found that the high dielectric constant solvent prevents direct reaction with alkali metals. From such a thing,
It is considered that the alkali metal precipitated in the electrolytic solution containing the dioxaspiro compound does not progress corrosion even when left for a long period of time, and improves the charge / discharge efficiency.

【0010】電解液の主溶媒が、エチレンカーボネート
および/またはプロピレンカーボネートであるときは、
低温においてもジオキサスピロ化合物の溶解度が大き
く、特性の優れた電池を与える。
When the main solvent of the electrolytic solution is ethylene carbonate and / or propylene carbonate,
Even at a low temperature, the solubility of the dioxaspiro compound is large, and a battery having excellent characteristics is provided.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。な
お、実施例における電池の組立はすべてアルゴンガス雰
囲気下で行った。 [実施例1]エチレンカーボネートとプロピレンカーボ
ネートを体積比で1/1の割合で混合し、この混合溶媒
にLiClO4を1モル/lの割合で溶解し、電解液を
調製した。この電解液に種々のジオキサスピロ化合物を
計1wt%の割合で添加し、その電導度を25℃におい
て交流二極法を用いて測定した。 [比較例1]電解液に1wt%の割合でデカリンを混合
した他は実施例1と同様に調製した電解液を比較例とす
る。
Embodiments of the present invention will be described below. Note that all of the batteries in the examples were assembled in an argon gas atmosphere. Example 1 Ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1/1, and LiClO 4 was dissolved at a ratio of 1 mol / l in this mixed solvent to prepare an electrolytic solution. Various dioxaspiro compounds were added to the electrolytic solution at a ratio of 1 wt% in total, and the electric conductivity was measured at 25 ° C. using an alternating current bipolar method. Comparative Example 1 An electrolytic solution prepared in the same manner as in Example 1 except that decalin was mixed at a ratio of 1 wt% to the electrolytic solution is used as a comparative example.

【0012】これらの実施例および比較例の電解液の電
導度を表1に示す。ここで、D13は1,3−ジオキサ
スピロ[4,5]デカンを表し、以下同様に、D14は
1,4−ジオキサスピロ[4,5]デカンを、N13は
1,3−ジオキサスピロ[4,4]ノナンを、N14は
1,4−ジオキサスピロ[4,4]ノナンをそれぞれ表
す。表1より、本発明の実施例であるジオキサスピロ化
合物を添加した電解液の電導度は、比較例に対して約1
5%向上することがわかる。これは、ジオキサスピロ化
合物自身が電解質塩の解離に寄与し、電導度を損なうこ
とがないためである。
Table 1 shows the conductivity of the electrolyte solutions of these examples and comparative examples. Here, D13 represents 1,3-dioxaspiro [4,5] decane, D14 represents 1,4-dioxaspiro [4,5] decane, and N13 represents 1,3-dioxaspiro [4,4]. Nonane, and N14 represents 1,4-dioxaspiro [4,4] nonane, respectively. From Table 1, it is found that the conductivity of the electrolytic solution to which the dioxaspiro compound according to the example of the present invention is added is about 1 times that of the comparative example.
It turns out that it improves by 5%. This is because the dioxaspiro compound itself contributes to the dissociation of the electrolyte salt and does not impair the conductivity.

【0013】[0013]

【表1】 [Table 1]

【0014】[実施例2]実施例1と同様に、エチレン
カーボネートとプロピレンカーボネートを体積比で1/
1の割合で混合し、この混合溶媒にLiClO4を1モ
ル/lの割合で溶解し、電解液を調製した。この電解液
に種々のジオキサスピロ化合物を計1wt%の割合で添
加した。このようにして調製した電解液を用いて図1に
示すような偏平型電池を構成した。この電池の構成を図
1に基づき説明する。正極1は、LiMn24 粉末、
カーボンブラックおよび四弗化エチレン樹脂粉末を混合
し、チタンのエキスパンドメタルからなる集電体2をス
ポット溶接した正極缶3に加圧成型したものである。負
極4は、円板状に打ち抜いたリチウムシートをニッケル
のエキスパンドメタル5をスポット溶接した封口板6に
圧着してある。セパレータ7には、ポリプロピレン製多
孔質膜を用いている。正極缶に前記の電解液を注液後、
ガスケット8を介して封口板を組合せて偏平型電池を構
成した。
Example 2 As in Example 1, ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1 /
The mixture was mixed at a ratio of 1 and LiClO 4 was dissolved at a ratio of 1 mol / l in this mixed solvent to prepare an electrolytic solution. Various dioxaspiro compounds were added to this electrolyte at a total of 1 wt%. A flat battery as shown in FIG. 1 was constructed using the electrolyte solution thus prepared. The configuration of this battery will be described with reference to FIG. Positive electrode 1 is made of LiMn 2 O 4 powder,
It is obtained by mixing carbon black and ethylene tetrafluoride resin powder and press-molding a current collector 2 made of expanded metal of titanium into a positive electrode can 3 spot-welded. The negative electrode 4 is formed by pressing a disc-shaped punched lithium sheet onto a sealing plate 6 to which nickel expanded metal 5 is spot-welded. A porous film made of polypropylene is used for the separator 7. After injecting the above electrolyte into the positive electrode can,
A flat battery was constructed by combining a sealing plate with a gasket 8 interposed therebetween.

【0015】[比較例2]プロピレンカーボネートとエ
チレンカーボネートを体積比1/1の割合で混合した溶
媒にLiClO4を1モル/lの割合で溶解した電解液
に、デカリンを1wt%添加したものを用いた他は実施
例2と同様に構成した電池を比較例の電池とする。以上
のように構成した実施例2および比較例2の電池を25
℃において、2mA/cm2の電流密度、放電下限電圧
2.0V、充電上限電圧3.5Vで充放電サイクルを繰
り返し、放電容量が1サイクル目の半分になるまでのサ
イクル数(サイクル寿命)を求めた。表2は、実施例お
よび比較例の電池のサイクル寿命を比較したものであ
る。表2より、本発明のジオキサスピロ化合物を添加し
た電解液を用いた電池は、充放電サイクル寿命が著しく
向上していることがわかる。これは、本発明の電解液で
は、負極の腐食が低減し、デンドライトの発生が抑制さ
れることにより負極の充放電効率が向上したためであ
る。
Comparative Example 2 An electrolyte obtained by dissolving LiClO 4 at a ratio of 1 mol / l in a solvent in which propylene carbonate and ethylene carbonate were mixed at a ratio of 1/1 was added with 1% by weight of decalin. A battery configured in the same manner as in Example 2 except for the use was used as a battery of Comparative Example. The batteries of Example 2 and Comparative Example 2 configured as described above
The charge / discharge cycle was repeated at a current density of 2 mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 V, and the number of cycles (cycle life) until the discharge capacity became half of the first cycle was determined. I asked. Table 2 compares the cycle life of the batteries of the example and the comparative example. Table 2 shows that the battery using the electrolytic solution to which the dioxaspiro compound of the present invention was added has significantly improved charge / discharge cycle life. This is because in the electrolyte of the present invention, the corrosion of the negative electrode was reduced, and the generation of dendrites was suppressed, so that the charge and discharge efficiency of the negative electrode was improved.

【0016】[0016]

【表2】 [Table 2]

【0017】[実施例3]プロピレンカーボネートとエ
チレンカーボネートを体積比1/1の割合で混合した溶
媒に、LiClO4を1モル/lの割合で溶解した。こ
の電解液に1,3−ジオキサスピロ[4,5]デカンを
5wt%の割合で添加した。この電解液を用いて実施例
2と同様な偏平型電池を構成した。 [比較例3]プロピレンカーボネートとエチレンカーボ
ネートとジメトキシエタンを体積比0.5/0.5/2
の割合で混合した溶媒にLiClO4を1モル/lの割
合で溶解し、さらに1,3−ジオキサスピロ[4,5]
デカンを5wt%の割合で添加した電解液を用いた他は
実施例と同様に作製した電池を比較例とする。以上のよ
うに構成した実施例3および比較例3の電池の内部抵抗
を種々の温度で測定し、図2にプロットした。図2よ
り、比較例3の電池は、温度が−15℃以下で急激に内
部抵抗が増加していることがわかる。これは、比較例3
の電池は、主溶媒としてプロピレンカーボネートやエチ
レンカーボネート用いておらず、低温でジオキサスピロ
化合物の溶解度が低いために電解液が相分離したためで
ある。
Example 3 LiClO 4 was dissolved at a rate of 1 mol / l in a solvent in which propylene carbonate and ethylene carbonate were mixed at a volume ratio of 1/1. 1,3-Dioxaspiro [4,5] decane was added to the electrolyte at a ratio of 5 wt%. Using this electrolyte solution, a flat battery similar to that in Example 2 was formed. [Comparative Example 3] Propylene carbonate, ethylene carbonate and dimethoxyethane in a volume ratio of 0.5 / 0.5 / 2.
LiClO 4 is dissolved at a rate of 1 mol / l in a solvent mixed at a ratio of 1,3-dioxaspiro [4,5].
A comparative example is a battery manufactured in the same manner as in the example except that an electrolytic solution to which decane was added at a ratio of 5 wt% was used. The internal resistances of the batteries of Example 3 and Comparative Example 3 configured as described above were measured at various temperatures and plotted in FIG. 2 that the internal resistance of the battery of Comparative Example 3 sharply increases at a temperature of −15 ° C. or lower. This is Comparative Example 3
This is because battery No. did not use propylene carbonate or ethylene carbonate as the main solvent, and the electrolytic solution phase-separated due to low solubility of the dioxaspiro compound at low temperatures.

【0018】[0018]

【発明の効果】以上のように、本発明のジオキサスピロ
化合物を添加した電解液を採用すれば、電導度が高く、
また、充電時の負極上でのデンドライト発生が抑制され
ることにより内部短絡のない充放電サイクル寿命の長い
信頼性の大きい非水電解質二次電池が得られる。
As described above, the use of the electrolytic solution to which the dioxaspiro compound of the present invention has been added provides high conductivity,
In addition, since the generation of dendrites on the negative electrode during charging is suppressed, a highly reliable nonaqueous electrolyte secondary battery having a long charge-discharge cycle life without internal short circuit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた偏平型電池の縦断面図
である。
FIG. 1 is a longitudinal sectional view of a flat type battery used in an example of the present invention.

【図2】本発明の実施例及び比較例の電池の各温度にお
ける内部抵抗をプロットした図である。
FIG. 2 is a diagram in which the internal resistance at each temperature of the batteries of Examples and Comparative Examples of the present invention is plotted.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 正極缶 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット Reference Signs List 1 positive electrode 2 positive electrode current collector 3 positive electrode can 4 negative electrode 5 negative electrode current collector 6 sealing plate 7 separator 8 gasket

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、アルカリイオン伝導性の非水電
解液と、アルカリ金属を活物質とする負極とを具備し、
前記電解液が、1,3−ジオキサスピロ[4,5]デカ
ン、1,4−ジオキサスピロ[4,5]デカン、1,3
−ジオキサスピロ[4,4]ノナンおよび1,4−ジオ
キサスピロ[4,4]ノナンよりなる群から選ばれる少
なくとも1種を含むことを特徴とする非水電解質二次電
池。
Claims 1. A positive electrode, a non-aqueous electrolyte having an alkali ion conductivity, and a negative electrode containing an alkali metal as an active material,
The electrolytic solution comprises 1,3-dioxaspiro [4,5] decane, 1,4-dioxaspiro [4,5] decane,
-A non-aqueous electrolyte secondary battery comprising at least one member selected from the group consisting of dioxaspiro [4,4] nonane and 1,4-dioxaspiro [4,4] nonane.
【請求項2】 前記電解液の主溶媒が、エチレンカーボ
ネートおよびプロピレンカーボネートよりなる群から選
ばれる少なくとも1種である請求項1記載の非水電解質
二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the main solvent of the electrolytic solution is at least one selected from the group consisting of ethylene carbonate and propylene carbonate.
JP06954194A 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3223035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06954194A JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06954194A JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07282845A JPH07282845A (en) 1995-10-27
JP3223035B2 true JP3223035B2 (en) 2001-10-29

Family

ID=13405689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06954194A Expired - Fee Related JP3223035B2 (en) 1994-04-07 1994-04-07 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3223035B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853917A (en) * 1997-03-06 1998-12-29 Mitsubishi Chemical Corporation Electrolytic cell having a controlled electrode surface interface
KR101718062B1 (en) * 2013-09-24 2017-03-20 삼성에스디아이 주식회사 Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution
KR102380512B1 (en) 2015-01-16 2022-03-31 삼성에스디아이 주식회사 Electrolyte solution for lithium battery and lithium battery using the same
KR102436423B1 (en) 2015-03-12 2022-08-25 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery including the electrolyte

Also Published As

Publication number Publication date
JPH07282845A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US11081729B2 (en) Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
US20030148191A1 (en) Non-aqueous electrolyte secondary battery
US7063916B2 (en) Battery
JPWO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
CN110582883B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JP4701595B2 (en) Lithium ion secondary battery
JP2002231306A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
US20230378792A1 (en) Secondary battery charging method and charging system
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH0636797A (en) Lithium secondary battery
JP4366790B2 (en) Battery electrolyte and non-aqueous electrolyte secondary battery
JP2001068162A (en) Nonaqueous electrolyte secondary battery and its charging discharging method
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JP2597092B2 (en) Lithium secondary battery
JPH06119939A (en) Secondary battery with organic electrolyte
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JPH0896848A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees