JPH06119939A - Secondary battery with organic electrolyte - Google Patents

Secondary battery with organic electrolyte

Info

Publication number
JPH06119939A
JPH06119939A JP4263710A JP26371092A JPH06119939A JP H06119939 A JPH06119939 A JP H06119939A JP 4263710 A JP4263710 A JP 4263710A JP 26371092 A JP26371092 A JP 26371092A JP H06119939 A JPH06119939 A JP H06119939A
Authority
JP
Japan
Prior art keywords
carbonate
battery
solvent
organic
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263710A
Other languages
Japanese (ja)
Inventor
Tomohiro Kawamoto
具広 川本
Satoshi Ubukawa
訓 生川
Toru Amezutsumi
徹 雨堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4263710A priority Critical patent/JPH06119939A/en
Publication of JPH06119939A publication Critical patent/JPH06119939A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/765Tubular type or pencil type electrodes; tubular or multitubular sheaths or covers of insulating material for said tubular-type electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrolyte which has an excellent discharge characteristic even under a low temp. situation and which does not ill influence the other battery characteristics. CONSTITUTION:An organic electrolyte secondary battery is composed of a negative electrode which can store and release lithium ions, a positive electrode, and an organic electrolytic solution, wherein the material to the negative electrode is carbonaceous while the active material of positive electrode is a compound given by the structural expression LixMyOz (where, 0<x<=1, 1<=y<=2, 2<=z<=4, and M is transition metal). The organic electrolyte is prepared from an organic solvent and a solute, wherein the solvent is a hybrid organic solvent of three-component system including the first solvent consisting of ethylene carbonate, the second solvent consisting of one of the butylene carbonate, propylene carbonate, and dimethyl carbonate, and the third solvent consisting of one of the dimethyl carbonate and diethyl carbonate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電解液二次電池に
おいて、特に電解液の有機溶媒の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery, and more particularly to improvement of an organic solvent of the electrolyte.

【0002】[0002]

【従来の技術】従来、有機電解液二次電池において、負
極活物質に金属リチウムが広く使用されている。しかし
ながら、金属リチウム単体を負極活物質として用いる場
合、放電の際にリチウムイオンとなって溶出すると、負
極表面が凹凸状となり、充電の際に、リチウムが表面の
凸部に集中的に電析して樹枝状に成長する結果、樹枝状
に成長したリチウムが正極と接して内部短絡を引き起こ
したり、あるいはリチウムが負極表面にモッシー状に析
出して脱落を起こしたりするため、充放電サイクルによ
る寿命が極めて短いという問題点があった。
2. Description of the Related Art Conventionally, metallic lithium has been widely used as a negative electrode active material in organic electrolyte secondary batteries. However, when metallic lithium alone is used as the negative electrode active material, when it is discharged as lithium ions during dissolution, the negative electrode surface becomes uneven, and during charging, lithium is electrodeposited intensively on the convex portions of the surface. As a result of dendritic growth as a result of dendritic growth, lithium that has grown dendritically contacts the positive electrode and causes an internal short circuit, or lithium deposits in the form of mossy on the negative electrode surface and drops off, resulting in a long life due to charge / discharge cycles. There was a problem that it was extremely short.

【0003】そこで、負極としてリチウム−アルミニウ
ム等のリチウム合金を使用することが提案された。この
リチウム合金を用いると、リチウムが負極表面状に樹枝
状あるいはモッシー状に生成することを抑制し、内部短
絡や充放電の繰り返しによる微粉化した負極活物質が負
極から脱落するのを防止して、充放電サイクル特性を向
上させることができる。
Therefore, it has been proposed to use a lithium alloy such as lithium-aluminum as the negative electrode. By using this lithium alloy, it is possible to suppress the generation of lithium in a dendritic or mossy shape on the surface of the negative electrode, and to prevent the finely divided negative electrode active material from falling out of the negative electrode due to internal short circuit and repeated charging and discharging. The charge / discharge cycle characteristics can be improved.

【0004】しかしながら、リチウム−アルミニウム合
金等のリチウム合金は、非常に硬質なので、電極に形成
するために、リチウム合金を曲げたり、巻き取ったりす
ることが困難であり、扁平型等の限られた形状の電池で
しか使用することができないという問題点があった。
However, since a lithium alloy such as a lithium-aluminum alloy is very hard, it is difficult to bend or wind the lithium alloy to form an electrode, and it is limited to a flat type. There is a problem that it can be used only with a shaped battery.

【0005】そこで、さらに上記問題点を解決するため
に、有機電解液二次電池の負極材料として、可撓性に優
れること、モッシー状のリチウムが電析する恐れがない
ことなどの理由から、負極に炭素材料を用いることが提
案されている。特に、黒鉛などは、リチウムを吸蔵・放
出可能な量(容量)が多いため最近、その実用化が検討
されている。
Therefore, in order to solve the above-mentioned problems, as a negative electrode material of an organic electrolyte secondary battery, it is excellent in flexibility, and there is no possibility that mossy lithium is electrodeposited. It has been proposed to use a carbon material for the negative electrode. In particular, since graphite and the like have a large amount (capacity) capable of occluding and releasing lithium, their practical application has recently been studied.

【0006】しかしながら、この種の電池の電解液の溶
媒としては、一般的にエチレンカーボネートとジエチル
カーボネート、又はエチレンカーボネートーとジメチル
カーボネートなどの二成分系の混合溶媒が使用されてい
る。このような二成分系混合有機溶媒の場合、良好な充
放電特性を得るためには、誘電率が高く、粘度も比較的
低く非常に安定なエチレンカーボネートを一定以上混入
する必要がある。しかしながら、エチレンカーボネート
は融点が高いために単独では室温で固体状態となり、エ
チレンカーボネートの量が増すと、このような電解液を
用いた電池は、低温での充放電特性が著しく低下すると
いう問題点があった。
However, as a solvent for the electrolyte of this type of battery, a binary solvent mixture such as ethylene carbonate and diethyl carbonate or ethylene carbonate and dimethyl carbonate is generally used. In the case of such a binary organic solvent mixture, in order to obtain good charge / discharge characteristics, it is necessary to mix a certain amount or more of ethylene carbonate, which has a high dielectric constant and a relatively low viscosity, and is very stable. However, since ethylene carbonate has a high melting point, it becomes a solid state at room temperature by itself, and when the amount of ethylene carbonate increases, the battery using such an electrolytic solution has a problem that the charge / discharge characteristics at low temperature are significantly deteriorated. was there.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決して、低温状況下においても凝固しにく
く、さらに電導度の低下が小さく、低温下での充放電特
性を向上させて、充放電及びサイクル特性などにも悪影
響を与えない電解液を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems as described above, is less likely to coagulate even in a low temperature condition, has a small decrease in electric conductivity, and improves charge / discharge characteristics at a low temperature. The purpose of the present invention is to provide an electrolytic solution that does not adversely affect charge / discharge and cycle characteristics.

【0008】[0008]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵及び放出可能な負極と、正極と、有機電解液か
らなる有機電解液二次電池において、前記負極の材料は
炭素質からなり、前記正極の活物質は、構造式Lixy
z(但し、0<x≦1,1≦y≦2,2≦z≦4,M
は遷移金属)で表される化合物であり、前記有機電解液
は、有機溶媒と溶質とからなり、前記有機溶媒がエチレ
ンカーボネートよりなる第1の溶媒と、ブチレンカーボ
ネートまたはプロピレンカーボネートあるいはジメチル
カーボネートの群から選ばれた1つよりなる第2の溶媒
と、ジメチルカーボネートまたはジエチルカーボネート
の群から選ばれた1つよりなる第3の溶媒との異なる三
成分を含んでいる混合有機溶媒としたものである。
The present invention is an organic electrolyte secondary battery comprising a negative electrode capable of inserting and extracting lithium ions, a positive electrode, and an organic electrolyte, wherein the material of the negative electrode is carbonaceous, active material of the positive electrode, the structural formula Li x M y
O z (however, 0 <x ≦ 1, 1 ≦ y ≦ 2, 2 ≦ z ≦ 4, M
Is a compound represented by a transition metal), the organic electrolyte is composed of an organic solvent and a solute, the organic solvent is a first solvent consisting of ethylene carbonate, and a group of butylene carbonate or propylene carbonate or dimethyl carbonate A mixed organic solvent containing three different components of a second solvent composed of one selected from the group consisting of dimethyl carbonate and a third solvent composed of one selected from the group of diethyl carbonate. .

【0009】尚、前記炭素質がグラファイトであること
が好適である。
The carbonaceous material is preferably graphite.

【0010】[0010]

【作用】本発明による三成分系の混合電解液を用いた場
合、他の電池特性に大きな影響を与えることなく低温状
況下での充放電特性を向上させることができる。
When the ternary mixed electrolyte according to the present invention is used, the charge / discharge characteristics under low temperature conditions can be improved without significantly affecting other battery characteristics.

【0011】エチレンカーボネートとジメチルカーボネ
ートの混合有機溶媒は、低温状況下(約−20℃)で
は、ジメチルカーボネートの融点が2〜4℃のため完全
に凝固してしまう。また、エチレンカボーネートとジエ
チルカーボネートの混合有機溶媒の場合、ジエチルカー
ボネートの融点は−47℃であるので凝固はしないが、
有機溶媒が充分に混合されずにエチレンカーボネートが
析出してしまう。
The mixed organic solvent of ethylene carbonate and dimethyl carbonate is completely solidified under low temperature conditions (about -20 ° C.) because the melting point of dimethyl carbonate is 2 to 4 ° C. Also, in the case of a mixed organic solvent of ethylene carbonate and diethyl carbonate, since the melting point of diethyl carbonate is -47 ° C, it does not solidify,
The organic solvent is not sufficiently mixed and ethylene carbonate is deposited.

【0012】しかしながら、上記二成分系の有機溶媒
に、プロピレンカーボネートまたはブチルカーボネート
を加えた三成分系混合有機溶媒あるいはエチレンカーボ
ネートにジメチルカーボネート、ジエチルカーボネート
を加えた三成分系混合有機溶媒を用いた場合、低温下で
もエチレンカーボネートを析出することなく充分に液状
を保持することができる。さらに、三成分目の有機溶媒
とするプロピレンカーボネート,ブチレンカーボネー
ト,ジメチルカーボネート,ジエチルカーボネート等の
添加は比較的少量で効果があるために、電池特性への悪
影響は少なく抑えることができる。
However, when a ternary mixed organic solvent in which propylene carbonate or butyl carbonate is added to the above binary organic solvent or a ternary mixed organic solvent in which dimethyl carbonate and diethyl carbonate are added to ethylene carbonate is used. Even at a low temperature, the liquid state can be sufficiently maintained without precipitating ethylene carbonate. Furthermore, since the addition of propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and the like as the third component organic solvent is effective in a relatively small amount, the adverse effect on the battery characteristics can be suppressed to a small level.

【0013】[0013]

【実施例】【Example】

〔実施例1〕図1は本発明にかかる有機電解液二次電池
の断面図である。
Example 1 FIG. 1 is a sectional view of an organic electrolyte secondary battery according to the present invention.

【0014】正極1と、負極3とをセパレータ2を介し
て卷回し、渦巻電極体として、外装缶4内に挿入されて
いる。ここで、セパレータ2は、ポリプロピレン製の微
孔性薄膜よりなる。そして、正極1からは正極リード8
が延出して、正極外部端子である外装缶4と溶接され、
電気接続されており、また、負極3からは、負極リード
7が延出して、安全弁機構を備えた封口体6の下蓋10に
電気接続されている。ここで、封口体6は、上蓋9と下
蓋10とからなる空間に、弾性バネ11およびラミネート弁
板12を内蔵しており、下蓋10中央にある透孔をラミネー
ト弁板12で閉塞している。
The positive electrode 1 and the negative electrode 3 are wound around the separator 2 and inserted into the outer can 4 as a spiral electrode body. Here, the separator 2 is made of polypropylene microporous thin film. Then, from the positive electrode 1 to the positive electrode lead 8
Extends and is welded to the outer can 4 which is a positive electrode external terminal,
It is electrically connected, and the negative electrode lead 7 extends from the negative electrode 3 and is electrically connected to the lower lid 10 of the sealing body 6 having a safety valve mechanism. Here, the sealing body 6 has a built-in elastic spring 11 and a laminated valve plate 12 in a space composed of an upper lid 9 and a lower lid 10, and the through hole in the center of the lower lid 10 is closed by the laminated valve plate 12. ing.

【0015】次いで、上記渦巻電極体を外装缶4に挿入
し、電解液を注入した後、封口体6の下蓋10を絶縁パッ
キング5を介して外装缶開口部にかしめ固定される。
Next, the spiral electrode body is inserted into the outer can 4, and after injecting the electrolytic solution, the lower lid 10 of the sealing body 6 is caulked and fixed to the outer can opening through the insulating packing 5.

【0016】上記正極、負極及び有機電解液は以下のよ
うにして作製した。
The above positive electrode, negative electrode and organic electrolytic solution were prepared as follows.

【0017】[正極の作製]LiCoO2と、導電剤と
してアセチレンブラック及び結着剤としてフッ素樹脂デ
ィスパージョンをそれぞれ重量比で90:6:4の比率
で混練して正極合剤を得た。
[Production of Positive Electrode] LiCoO 2 , acetylene black as a conductive agent, and fluororesin dispersion as a binder were kneaded at a weight ratio of 90: 6: 4 to obtain a positive electrode mixture.

【0018】次いで、この正極合剤を集電体としてのア
ルミニウム製のラス板に圧延して、これを250℃で2
時間真空熱処理して正極を作製した。
Next, this positive electrode mixture was rolled into a lath plate made of aluminum as a current collector, and this was heated at 250 ° C. for 2 hours.
Vacuum heat treatment was performed for a time to produce a positive electrode.

【0019】[負極の作製]400メッシュパスのグラ
ファイト粉末と、結着剤としてのフッ素樹脂ディスパー
ジョンとをそれぞれ重量比で95:5の比率で混合し
て、負極合剤を得た。
[Preparation of Negative Electrode] 400 mesh pass graphite powder and fluororesin dispersion as a binder were mixed in a weight ratio of 95: 5 to obtain a negative electrode mixture.

【0020】次いで、この負極合剤を集電体としての銅
箔に圧延して、これを250℃で2時間真空下で熱処理
して負極を作製した。
Next, this negative electrode mixture was rolled into a copper foil as a current collector, and this was heat treated under vacuum at 250 ° C. for 2 hours to produce a negative electrode.

【0021】[有機電解液の作製]溶媒として、エチレ
ンカーボネート、プロピレンカーボネート、ジメチルカ
ーボネートとをそれぞれ体積比で2:1:1の比率で混
合し、溶質として、LiPF6を1モル/リットルを混
合溶媒に溶かして有機電解液を作製した。
[Preparation of Organic Electrolyte Solution] As a solvent, ethylene carbonate, propylene carbonate, and dimethyl carbonate were mixed in a volume ratio of 2: 1: 1, and as a solute, 1 mol / liter of LiPF 6 was mixed. An organic electrolytic solution was prepared by dissolving it in a solvent.

【0022】以上のようにして作製した電池を、本発明
電池A1とした。
The battery produced as described above was designated as Battery A1 of the invention.

【0023】〔実施例2〕有機電解液の溶媒として、エ
チレンカーボネート、プロピレンカーボネート、ジエチ
ルカーボネートとをそれぞれ体積比で2:1:1の比率
で混合する以外は、〔実施例1〕と同様に電池を作製し
て、本発明電池A2とした。
Example 2 The same as Example 1 except that ethylene carbonate, propylene carbonate and diethyl carbonate were mixed in a volume ratio of 2: 1: 1 as the solvent of the organic electrolyte. A battery was manufactured and designated as a battery A2 of the invention.

【0024】〔実施例3〕有機電解液の溶媒として、エ
チレンカーボネート、ブチレンカーボネート、ジメチル
カーボネートとをそれぞれ体積比で2:1:1の比率で
混合する以外は、〔実施例1〕と同様に電池を作製し
て、本発明電池A3とした。
[Example 3] The same as Example 1 except that ethylene carbonate, butylene carbonate and dimethyl carbonate were mixed at a volume ratio of 2: 1: 1 as the solvent of the organic electrolyte. A battery was prepared and designated as Battery A3 of the invention.

【0025】〔実施例4〕有機電解液の溶媒として、エ
チレンカーボネート、ブチレンカーボネート、ジエチル
カーボネートとをそれぞれ体積比で2:1:1の比率で
混合する以外は、〔実施例1〕と同様に電池を作製し
て、本発明電池A4とした。
Example 4 The same as Example 1 except that ethylene carbonate, butylene carbonate and diethyl carbonate were mixed at a volume ratio of 2: 1: 1 as the solvent of the organic electrolyte. A battery was manufactured and designated as Battery A4 of the invention.

【0026】〔実施例5〕有機電解液の溶媒として、エ
チレンカーボネート、ジメチルカーボネート、ジエチル
カーボネートとをそれぞれ体積比で2:1:1の比率で
混合する以外は、〔実施例1〕と同様に電池を作製し
て、本発明電池A5とした。
Example 5 The same as Example 1 except that ethylene carbonate, dimethyl carbonate and diethyl carbonate were mixed at a volume ratio of 2: 1: 1 as the solvent of the organic electrolyte. A battery was prepared and designated as the present battery A5.

【0027】〔比較例1〕有機電解液の溶媒として、エ
チレンカーボネート、ジエチルカーボネートとをそれぞ
れ体積比で1:1の比率で混合する以外は、〔実施例
1〕と同様に電池を作製して、比較電池X1とした。
[Comparative Example 1] A battery was prepared in the same manner as in [Example 1] except that ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 as the solvent of the organic electrolytic solution. , Comparative battery X1.

【0028】〔比較例2〕有機電解液の溶媒として、エ
チレンカーボネート、ジメチルカーボネートとをそれぞ
れ体積比で1:1の比率で混合する以外は、〔実施例
1〕と同様に電池を作製して、比較電池X2とした。
[Comparative Example 2] A battery was prepared in the same manner as in [Example 1] except that ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 as a solvent for the organic electrolytic solution. , Comparative battery X2.

【0029】〔比較例3〕有機電解液の溶媒として、エ
チレンカーボネート、プロピレンカーボネートとをそれ
ぞれ体積比で1:1の比率で混合する以外は、〔実施例
1〕と同様に電池を作製して、比較電池X3とした。
[Comparative Example 3] A battery was prepared in the same manner as in Example 1 except that ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1: 1 as a solvent for the organic electrolyte. Comparative battery X3.

【0030】〔比較例4〕有機電解液の溶媒として、エ
チレンカーボネート、ブチレンカーボネートとをそれぞ
れ体積比で1:1の比率で混合する以外は、〔実施例
1〕と同様に電池を作製して、比較電池X4とした。
[Comparative Example 4] A battery was prepared in the same manner as in [Example 1] except that ethylene carbonate and butylene carbonate were mixed in a volume ratio of 1: 1 as a solvent for the organic electrolytic solution. , Comparative battery X4.

【0031】〔比較例5〕負極として、金属リチウムを
用いる以外は〔比較例1〕と同様に電池を作製して、比
較電池Y1とした。
[Comparative Example 5] A battery was prepared in the same manner as in [Comparative Example 1] except that metallic lithium was used as the negative electrode, to obtain Comparative Battery Y1.

【0032】〔比較例6〕有機電解液の溶媒として、エ
チレンカーボネート、プロピレンカーボネート、ジエチ
ルカーボネートとをそれぞれ体積比で2:1:1の比率
で混合する以外は、〔比較例5〕と同様に電池を作製し
て、比較電池Y2とした。
Comparative Example 6 The same as Comparative Example 5 except that ethylene carbonate, propylene carbonate and diethyl carbonate were mixed at a volume ratio of 2: 1: 1 as the solvent of the organic electrolyte solution. A battery was prepared as a comparative battery Y2.

【0033】[実験1]本発明電池A1〜A5、比較電
池X1及びX2をそれぞれ200mAの電流で電池電圧
が4.1Vに達するまで充電した後、低温状況下(約−
20℃)で200mAの電流で放電した時の放電特性を
図1に示す。
[Experiment 1] The batteries A1 to A5 of the present invention and the comparative batteries X1 and X2 were charged at a current of 200 mA until the battery voltage reached 4.1 V, and then under low temperature conditions (about −
FIG. 1 shows the discharge characteristics when discharged at a current of 200 mA at 20 ° C.).

【0034】図1から判るように、本発明電池A1〜A
5は、それぞれ低温状況下においても比較電池X1及び
X2に比べて、放電電圧が高く、電池容量も大きく、優
れた放電特性を有していることがわかる。
As can be seen from FIG. 1, the batteries A1 to A of the present invention.
It can be seen that No. 5 has a higher discharge voltage and a larger battery capacity than those of the comparative batteries X1 and X2 even under low temperature conditions, and has excellent discharge characteristics.

【0035】[実験2]本発明電池A1〜A5、比較電
池X1〜X4、Y1及びY2をそれぞれ200mAの電
流で電池電圧が4.1Vに達するまで充電した後、20
0mAの電流で電池電圧が2.75Vに達するまで放電
した時の電池容量を測定した。図3に各電池と初期電池
容量の関係を示した。
[Experiment 2] The batteries A1 to A5 of the present invention and the comparative batteries X1 to X4, Y1 and Y2 were each charged with a current of 200 mA until the battery voltage reached 4.1 V, and then 20
The battery capacity at the time of discharging at a current of 0 mA until the battery voltage reached 2.75 V was measured. FIG. 3 shows the relationship between each battery and the initial battery capacity.

【0036】図3から判るように、本発明電池A1〜A
5は電池容量にもバラツキがなく安定した電池容量が得
られる。
As can be seen from FIG. 3, the batteries A1 to A of the present invention.
In No. 5, there is no variation in battery capacity and a stable battery capacity can be obtained.

【0037】[実験3]本発明電池A1〜A5、比較電
池X1、X2、Y1及びY2をそれぞれ200mAの電
流で電池電圧が4.1Vに達するまで充電した後、20
0mAの電流で電池電圧が2.75Vに達するまで放電
するという一連のサイクルを繰り返して充放電サイクル
特性を測定した。図4及び図5に各電池のサイクル数と
電池容量との関係を示した。
[Experiment 3] The batteries A1 to A5 of the present invention and the comparative batteries X1, X2, Y1 and Y2 were charged with a current of 200 mA until the battery voltage reached 4.1 V, and then 20
The charging / discharging cycle characteristics were measured by repeating a series of cycles of discharging at a current of 0 mA until the battery voltage reached 2.75V. 4 and 5 show the relationship between the cycle number of each battery and the battery capacity.

【0038】図4及び図5から、本発明電池A1〜A5
は、比較電池X1及びX2とほぼ同等の優れたサイクル
特性を示した。
From FIGS. 4 and 5, the batteries A1 to A5 of the present invention are shown.
Shows excellent cycle characteristics almost equal to those of the comparative batteries X1 and X2.

【0039】ここで、比較電池Y1及びY2は、図3よ
り初期の電池容量が非常に高いが、図4に示すように、
サイクル特性が非常に悪く二次電池として使用するには
問題があることが判る。
Here, the comparative batteries Y1 and Y2 have very high initial battery capacities as compared with FIG. 3, but as shown in FIG.
It can be seen that the cycle characteristics are very poor and there is a problem in using it as a secondary battery.

【0040】また、本発明電池A2と比較電池Y2とを
比較すると、電解液に同じ三成分系の混合有機溶媒を用
いても本発明電池A2のように負極材料としてグラファ
イトを使用することによって、サイクル特性がより向上
していることが判る。
Further, comparing the battery A2 of the present invention with the comparative battery Y2, even if the same ternary mixed organic solvent was used as the electrolytic solution, by using graphite as the negative electrode material like the battery A2 of the present invention, It can be seen that the cycle characteristics are further improved.

【0041】[0041]

【発明の効果】本発明は、構造式Lixyz(0<x
≦1、1≦y≦2、2≦z≦4、Mは遷移金属)からな
る正極活物質と、負極材料に炭素質を用い、有機電解液
に三成分系の混合有機溶媒を用いることにより、低温状
況下においても優れた放電特性を有し、且つ他の電池特
性にも影響を与えないものである。
INDUSTRIAL APPLICABILITY The present invention has the structural formula Li x M y O z (0 <x
≦ 1, 1 ≦ y ≦ 2, 2 ≦ z ≦ 4, M is a transition metal), a carbonaceous material is used for the negative electrode material, and a ternary mixed organic solvent is used for the organic electrolyte. In addition, it has excellent discharge characteristics even under low temperature conditions and does not affect other battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【図2】本発明電池及び比較電池の低温下での放電特性
図である。
FIG. 2 is a discharge characteristic diagram of a battery of the present invention and a comparative battery at low temperature.

【図3】本発明電池及び比較電池の電池容量の関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the battery capacities of the present invention battery and the comparative battery.

【図4】本発明電池と比較電池のサイクル特性を示す図
である。
FIG. 4 is a diagram showing cycle characteristics of the battery of the present invention and a comparative battery.

【図5】本発明電池と比較電池のサイクル特性を示す図
である。
FIG. 5 is a diagram showing cycle characteristics of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

1・・・・・正極 2・・・・・セパレータ 3・・・・・負極 4・・・・・外装缶 5・・・・・絶縁パッキング 6・・・・・封口体 7・・・・・負極リード 8・・・・・正極リード 9・・・・・上蓋 10・・・・・下蓋 11・・・・・弾性バネ 12・・・・・ラミネート弁板 A1〜A5・・本発明電池 X1〜X4・・比較電池 Y1、Y2・・比較電池 1 ... Positive electrode 2 ... Separator 3 ... Negative electrode 4 ... Outer can 5 ... Insulating packing 6 ... Sealing body 7 ... -Negative electrode lead 8 ... Positive electrode lead 9 ... Upper lid 10 ... Lower lid 11 ... Elastic spring 12 ... Laminate valve plate A1 to A5 ... Batteries X1 to X4 ... Comparison batteries Y1, Y2 ... Comparison batteries

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵及び放出可能な負
極と、正極と、有機電解液からなる有機電解液二次電池
において、前記負極の材料は炭素質からなり、前記正極
の活物質は、構造式Lixyz(但し、0<x≦1,
1≦y≦2,2≦z≦4,Mは遷移金属)で表される化
合物であり、前記有機電解液は、有機溶媒と溶質とから
なり、前記有機溶媒がエチレンカーボネートよりなる第
1の溶媒と、ブチレンカーボネートまたはプロピレンカ
ーボネートあるいはジメチルカーボネートの群から選ば
れた1つよりなる第2の溶媒と、ジメチルカーボネート
またはジエチルカーボネートの群から選ばれた1つより
なる第3の溶媒との異なる三成分を含んでいる混合有機
溶媒であることを特徴とした有機電解液二次電池。
1. An organic electrolyte secondary battery comprising a negative electrode capable of inserting and extracting lithium ions, a positive electrode, and an organic electrolytic solution, wherein the material of the negative electrode is made of carbonaceous material, and the active material of the positive electrode has a structure. Formula Li x M y O z (where 0 <x ≦ 1,
1 ≦ y ≦ 2, 2 ≦ z ≦ 4, M is a compound represented by a transition metal), the organic electrolytic solution is composed of an organic solvent and a solute, and the organic solvent is a first carbonate composed of ethylene carbonate. A solvent, a second solvent consisting of one selected from the group of butylene carbonate or propylene carbonate or dimethyl carbonate, and a third solvent consisting of one selected from the group of dimethyl carbonate or diethyl carbonate; An organic electrolyte secondary battery, which is a mixed organic solvent containing components.
【請求項2】 前記炭素質がグラファイトであることを
特徴とする請求項1記載の有機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the carbonaceous material is graphite.
JP4263710A 1992-10-01 1992-10-01 Secondary battery with organic electrolyte Pending JPH06119939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263710A JPH06119939A (en) 1992-10-01 1992-10-01 Secondary battery with organic electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263710A JPH06119939A (en) 1992-10-01 1992-10-01 Secondary battery with organic electrolyte

Publications (1)

Publication Number Publication Date
JPH06119939A true JPH06119939A (en) 1994-04-28

Family

ID=17393247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263710A Pending JPH06119939A (en) 1992-10-01 1992-10-01 Secondary battery with organic electrolyte

Country Status (1)

Country Link
JP (1) JPH06119939A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027833A (en) * 1996-11-27 2000-02-22 Denso Corporation Nonaqueous electrolyte secondary cell
JP2000058124A (en) * 1998-07-31 2000-02-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US6103423A (en) * 1996-06-04 2000-08-15 Denso Corporation Negative electrode for secondary cells and a non-aqueous electrolyte secondary cell comprising the same as at least one electrode
JP2011086630A (en) * 2003-04-18 2011-04-28 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
JP2016035933A (en) * 2005-10-28 2016-03-17 三菱化学株式会社 Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103423A (en) * 1996-06-04 2000-08-15 Denso Corporation Negative electrode for secondary cells and a non-aqueous electrolyte secondary cell comprising the same as at least one electrode
US6027833A (en) * 1996-11-27 2000-02-22 Denso Corporation Nonaqueous electrolyte secondary cell
JP2000058124A (en) * 1998-07-31 2000-02-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2011086630A (en) * 2003-04-18 2011-04-28 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US9593016B2 (en) 2005-06-20 2017-03-14 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2016035933A (en) * 2005-10-28 2016-03-17 三菱化学株式会社 Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Similar Documents

Publication Publication Date Title
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP4949018B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
EP0582410A1 (en) Secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH06119939A (en) Secondary battery with organic electrolyte
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH06203829A (en) Nonaqueous electrolyte secondary battery
JP3044812B2 (en) Non-aqueous electrolyte secondary battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JP2643046B2 (en) Non-aqueous secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP3432922B2 (en) Solid electrolyte secondary battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP4088850B2 (en) Non-aqueous solvent secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JPH05101829A (en) Non-aqueous solvent secondary battery