JP2002015775A - Nonaqueous solvent secondary cell and positive active material for the same - Google Patents

Nonaqueous solvent secondary cell and positive active material for the same

Info

Publication number
JP2002015775A
JP2002015775A JP2000197191A JP2000197191A JP2002015775A JP 2002015775 A JP2002015775 A JP 2002015775A JP 2000197191 A JP2000197191 A JP 2000197191A JP 2000197191 A JP2000197191 A JP 2000197191A JP 2002015775 A JP2002015775 A JP 2002015775A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197191A
Other languages
Japanese (ja)
Inventor
Masaki Shikoda
将貴 志子田
Aiichiro Fujiwara
愛一郎 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2000197191A priority Critical patent/JP2002015775A/en
Publication of JP2002015775A publication Critical patent/JP2002015775A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To materialize a nonaqueous solvent secondary cell with a discharge voltage of 2.4 V, compatible with Ni/Cd secondary cell, with improved capacity characteristic at over charge and over discharge. SOLUTION: For a nonaqueous solvent secondary cell having a positive electrode with positive electrode binding agent of MoO3 as an active material, and a negative electrode with negative electrode binding agent containing Li occluding carbon material, the operation potential of the positive electrode is higher by 1.5 V and over against the standard unipolar potential of lithium at all times, and discharge is made to finish when the operation potential of the negative electrode starts to increase. Such nonaqueous solvent secondary cell fulfilling above condition can be manufactured by making the electric capacity ratio of the positive electrode binding agent and the negative electrode binding agent 1.05-1.20, and the effect is further improved by adding Na element to the positive electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水溶媒二次電池に
関し、更に詳しくは、放電時の電圧が約2.4Vであ
り、過放電時や過充電時における容量劣化が改善された
Li二次電池およびこれに用いる正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly, to a Li-ion battery having a discharge voltage of about 2.4 V and improved capacity deterioration during over-discharge and over-charge. The present invention relates to a secondary battery and a positive electrode active material used therein.

【0002】[0002]

【従来の技術】最近、各種のポータブルな電気・電子機
器の多様化、小型化、軽量化の進展に伴い、その駆動源
として使用される二次電池に対しても、多様化、小型
化、軽量化の要望が強まっている。そのような二次電池
としては、従来から、作動電圧が1.2V級であるNi
/Cd二次電池を1つ或いは直列に接続することによっ
て1.2V或いは2.4Vで使用することが主流になっ
ている。しかしながら、このNi/Cd二次電池は電解
液が水溶液であるため、使用環境の温度によっては充分
な電流を取り出せない等の問題がある。例えば環境温度
が0℃より低くなると電解液の凍結などが起こりはじ
め、電流を取り出すことはほとんど不可能になり、さら
に、長期安定性においても劣っている。
2. Description of the Related Art Recently, with the progress of diversification, miniaturization, and weight reduction of various portable electric and electronic devices, diversification, miniaturization, and rechargeable batteries used as driving sources thereof have been increasing. The demand for weight reduction is increasing. As such a secondary battery, Ni has an operating voltage of 1.2V class.
The mainstream is to use one or two Cd / Cd secondary batteries in series or in series at 1.2V or 2.4V. However, since the Ni / Cd secondary battery has an electrolytic solution as an aqueous solution, there is a problem that a sufficient current cannot be taken out depending on the temperature of the use environment. For example, when the environmental temperature is lower than 0 ° C., freezing of the electrolytic solution starts to occur, so that it is almost impossible to extract a current, and further, the long-term stability is poor.

【0003】一方、このような水性電解液電池が有する
欠点を改良するために有機電解液を用いた非水溶媒二次
電池の研究・開発が、最近盛んに行われており、その一
部は既に実用化されている。この非水溶媒二次電池は、
一般に、高エネルギー密度を有し、貯蔵・保管時におけ
る自己放電も少なく、また環境温度が−20〜60℃と
いう広い範囲でも電流を取り出すことができるという利
点を備えている。しかしながら他方では、非水溶媒二次
電池は、電解液が水溶液である電池に比べると、単位面
積当たりの充放電電流の最大値が低いという問題があ
る。このことは、駆動源としての二次電池の小型化が進
展している昨今の状況下においては、水溶液系電池に比
べて不利な問題になっている。例えば、対象とする電池
がコイン型電池であった場合、電池反応に寄与する反応
面積は非常に小さくなるので微小電流しか流すことがで
きないことになり、仮に大電流で充放電を行うと、活物
質の利用率低下や充放電サイクル寿命特性の劣化が引き
起こされることになるからである。
On the other hand, research and development of a non-aqueous solvent secondary battery using an organic electrolyte have been actively conducted recently in order to improve the disadvantages of such an aqueous electrolyte battery. It has already been put to practical use. This non-aqueous solvent secondary battery is
In general, it has an advantage that it has a high energy density, has little self-discharge during storage and storage, and can take out current even in a wide range of environmental temperature of −20 to 60 ° C. However, on the other hand, the non-aqueous solvent secondary battery has a problem that the maximum value of the charge / discharge current per unit area is lower than a battery in which the electrolyte is an aqueous solution. This is a disadvantage in comparison with the aqueous battery under the recent situation where the size of the secondary battery as the driving source is progressing. For example, if the target battery is a coin-type battery, the reaction area contributing to the battery reaction becomes very small, so that only a very small current can flow. This is because a reduction in the utilization rate of the substance and a deterioration in the charge / discharge cycle life characteristics are caused.

【0004】また、非水溶媒二次電池の代表例としての
Li二次電池についてみると、Li二次電池の正極活物
質として、例えば、VやMn酸化物のようにその
結晶構造に直接Li+が可逆的に出入りできるような材
料や、LiCoO、LiNiO、LiMnOのよ
うに、充放電に関与するLi源がLi+として配位結合
した状態にあるスピネル型の結晶構造を有する材料など
が検討されており、その一部は既に実用化されている
が、上記した材料は、いずれも、Liの標準単極電位
(以後、Li+/Li電位という)を基準にして3.0
〜4.0V前後の放電電位を示すため、作動電圧が1.
2V、あるいは2.4Vである前記Ni/Cd二次電池
との互換性がなくなってしまう。
Further, regarding a Li secondary battery as a typical example of a non-aqueous solvent secondary battery, a positive electrode active material of a Li secondary battery has a crystal structure such as V 2 O 5 or Mn oxide. Has a spinel-type crystal structure in which a Li source involved in charge and discharge is coordinated as Li +, such as LiCoO 2 , LiNiO 2 , and LiMnO 2 , such as LiCoO 2 , LiNiO 2 , and LiMnO 2. Materials and the like have been studied, and some of them have already been put to practical use. However, all of the above-mentioned materials have a reference to a standard monopolar potential of Li (hereinafter referred to as Li + / Li potential) of 3.0.
An operating voltage of 1.about.4.0 V indicates a discharge potential.
The compatibility with the Ni / Cd secondary battery of 2V or 2.4V is lost.

【0005】ところで、従来Li+/Li電位に対する
放電電位が2.4V付近にある材料として、MoO
知られている。この材料は、放電容量250mAh/g
以上もの特性を備えており、そのため、高容量のLi二
次電池用の電池材料としての期待を集めているが、いま
だほとんど実用化されていない。その理由としては、例
えば、負極としてLi箔を用いた場合に、充放電の反復
過程で当該Li箔が微細化したり、またLi箔の表面に
Liの樹枝状突起が成長してそれがセパレータを突き破
って正極と接触して内部短絡が発生したりして、電池の
充放電サイクル特性の劣化を引き起こし、電池の使用寿
命が短くなってしまうからである。また、充放電サイク
ルを繰り返すことにより、MoOの構造に変化が起こ
ってしまうからである。
By the way, MoO 3 is conventionally known as a material having a discharge potential in the vicinity of 2.4 V with respect to the Li + / Li potential. This material has a discharge capacity of 250 mAh / g.
Although it has the above characteristics, it is expected to be used as a battery material for a high-capacity Li secondary battery, but it has hardly been put to practical use yet. The reason for this is that, for example, when a Li foil is used as the negative electrode, the Li foil becomes finer in the repetitive process of charge and discharge, or dendrites of Li grow on the surface of the Li foil, which forms the separator. This is because the battery may break through and come into contact with the positive electrode to cause an internal short circuit, causing deterioration of the charge / discharge cycle characteristics of the battery and shortening the service life of the battery. Further, repeating the charge / discharge cycle causes a change in the structure of MoO 3 .

【0006】MoO系電池のこのような問題に対して
は、Li−Al合金を負極に用いることで改善すること
が知られている。しかしながら、Li−Al合金の放電
電位はLi+/Li電位を基準にして約0.4Vである
ため、結局、そのLi二次電池の作動電圧は2.0V
(2.4V−0.4V)程度となってしまい、その電池
は2.4V級の電池としては不適切である。
It is known that such a problem of the MoO 3 battery can be improved by using a Li—Al alloy for the negative electrode. However, since the discharge potential of the Li-Al alloy is about 0.4 V based on the Li + / Li potential, the operating voltage of the Li secondary battery eventually becomes 2.0 V.
(2.4 V-0.4 V), which is inappropriate as a 2.4 V class battery.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、従来の
Ni/Cd二次電池と互換性のある2.4V付近の放電
電位を有する電池を実現するために種々検討した結果、
MoOがLi+/Li電位を基準にしてその放電電位
が2.4V前後であり、またその単位重量当たりの容量
として250mAh/gを得ることができ、しかも充放
電時におけるLi+の出入りの可逆性に優れ、かつ安価
に合成することができるという点に着目して、これを正
極活物質として使用し、また、負極材料として、炭素材
はLi+/Li電位を基準にするとその放電電位が約0
Vであり、また多孔構造でもあるという事実に着目し、
この炭素材にLiを吸蔵させた材料を負極活物質として
使用した電池を開発した。
The present inventors have conducted various studies to realize a battery having a discharge potential near 2.4 V which is compatible with a conventional Ni / Cd secondary battery.
MoO 3 has a discharge potential of about 2.4 V based on the Li + / Li potential, and can obtain a capacity per unit weight of 250 mAh / g. Focusing on the fact that it can be synthesized inexpensively and can be synthesized at low cost, it is used as a positive electrode active material, and as a negative electrode material, a carbon material has a discharge potential of about 0 based on the Li + / Li potential.
V and the fact that it is also a porous structure,
A battery using a material obtained by inserting Li into the carbon material as a negative electrode active material was developed.

【0008】しかしながら、このMoOは、Moを中
心とした酸素を頂点とする八面体を1ブロックとし、そ
のブロックが連なり、層構造を形成している。その層間
への多量のLi挿入・脱離といった過充電・過放電の充
放電サイクルを繰り返すと、層の膨張・収縮により結晶
構造が破壊され劣化してしまうという欠点があり、その
改善が求められていた。本発明は、正極にMoOを用
いたLi二次電池における上記した問題を解決し、作動
電圧が約2.4Vである非水溶媒二次電池において、大
電流の充放電時においても活物質の利用率低下が生起せ
ず、充放電サイクル寿命特性の劣化が生じるおそれの少
ない非水溶媒二次電池を提供することを目的とするもの
である。
However, this MoO 3 forms one layer of an octahedron having oxygen at the apex centered on Mo, and the blocks are connected to form a layered structure. Repeated charge / discharge cycles of overcharge and overdischarge, such as the insertion and removal of a large amount of Li between the layers, have the disadvantage that the crystal structure is destroyed and deteriorated due to the expansion and contraction of the layers. I was The present invention solves the above-described problem in a Li secondary battery using MoO 3 for the positive electrode, and in a non-aqueous solvent secondary battery having an operating voltage of about 2.4 V, an active material even when charging and discharging a large current. It is an object of the present invention to provide a non-aqueous solvent secondary battery that does not cause a decrease in the utilization factor of the battery and is less likely to cause deterioration in the charge / discharge cycle life characteristics.

【0009】また、本発明は過充電および過放電の充放
電サイクルによる容量低下の少ない非水溶媒二次電池に
用いるための正極活物質を提供することを目的としてい
る。
Another object of the present invention is to provide a positive electrode active material for use in a non-aqueous solvent secondary battery in which the capacity is less reduced due to overcharge and overdischarge cycles.

【0010】[0010]

【課題を解決するための手段】すなわち本発明は、上記
MoOを正極活物質として用いる電池において、正極
の容量を負極の容量よりも大きく設定することにより、
正極の作動電位がLi+/Li電位に対して1.0V以
上の電位にすることができ、これによりMoO の構造
破壊を抑制して電池容量の低下を防止することができる
ことに着目し、さらに、MoO中にNa元素を含有さ
せることによって、結晶格子を強固にし、充放電サイク
ルを重ねても劣化が起きにくくなることに着目して本発
明を完成するに至ったものである。
That is, the present invention provides the above
MoO3In a battery using as a positive electrode active material, a positive electrode
By setting the capacity of the negative electrode larger than the capacity of the negative electrode,
The operating potential of the positive electrode is 1.0 V or less with respect to the Li + / Li potential
Higher potential, which allows MoO 3Structure of
Deterioration can be suppressed and battery capacity can be prevented from lowering
And MoO3Contains Na element in
This strengthens the crystal lattice and increases the charge / discharge cycle.
Focusing on the fact that deterioration is unlikely to occur even if
This is the end of the Ming.

【0011】すなわち、請求項1の本発明の非水溶媒二
次電池は、活物質がMoOである正極合剤を有する正
極と、Liが吸蔵された炭素材を含む負極合剤を有する
負極とを具備する非水溶媒二次電池において、前記正極
の作動電位は、Liの標準単極電位に対して、常時、
1.5V以上の値を示し、かつ前記負極の作動電位が上
昇しはじめた時点をもって放電を終了させるようにした
ことを特徴とする非水溶媒二次電池である。
That is, a non-aqueous solvent secondary battery according to the present invention is a negative electrode having a positive electrode mixture having an active material of MoO 3 and a negative electrode mixture containing a carbon material having occluded Li. In the non-aqueous solvent secondary battery comprising: the operating potential of the positive electrode, with respect to the standard single-electrode potential of Li,
A non-aqueous solvent secondary battery having a value of 1.5 V or more and discharging the battery when the operating potential of the negative electrode starts to increase.

【0012】また、請求項2の本発明は、上記非水溶媒
二次電池において、前記正極合剤と前記負極合剤との電
気容量比が、好ましくは、1.05〜1.20であるこ
とを特徴とするものである。
According to a second aspect of the present invention, in the above non-aqueous solvent secondary battery, the electric capacity ratio between the positive electrode mixture and the negative electrode mixture is preferably 1.05 to 1.20. It is characterized by the following.

【0013】また、請求項3の本発明は、上記非水溶媒
二次電池において、正極の活物質が、MoOにNa元
素を質量百分率で0.1〜10%含有させたものである
ことを特徴とするものである。
According to a third aspect of the present invention, in the non-aqueous solvent secondary battery, the active material of the positive electrode is MoO 3 containing 0.1 to 10% by mass of Na element in mass percentage. It is characterized by the following.

【0014】さらに、請求項4の本発明は、MoO
Na元素を質量百分率で0.1〜10%含有させること
を特徴とする正極活物質である。
Further, the present invention according to claim 4 is a positive electrode active material characterized in that MoO 3 contains 0.1 to 10% by mass of Na element in mass percentage.

【0015】[0015]

【発明の実施の形態】本発明の非水溶媒二次電池は、正
極活物質がMoOである正極合剤を有する正極と、炭
素材にLiが吸蔵されている負極活物質を有する負極と
が、保液性と電気絶縁性を有するセパレータを介して積
層されて発電要素を構成し、この発電要素が有機電解液
と一緒に電池缶の中に密封された構造になっている。本
発明においては、正極活物質はLi+/Li電位に対し
て2.4Vの放電電位を示すMoOから成り、また負
極活物質はLi+/Li電位に対して約0Vの放電電位
を示す炭素材にLiを吸蔵させたものである。したがっ
て、負極の作動電位は約0Vになるため、この電池の作
動電圧は2.4Vを示す。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous solvent secondary battery according to the present invention comprises a positive electrode having a positive electrode mixture whose positive electrode active material is MoO 3 , and a negative electrode having a negative electrode active material in which Li is occluded in a carbon material. Are laminated via a separator having a liquid retaining property and an electrical insulation property to form a power generating element, and the power generating element is sealed in a battery can together with an organic electrolytic solution. In the present invention, the positive electrode active material is composed of MoO 3 having a discharge potential of 2.4 V with respect to Li + / Li potential, and the negative electrode active material is a carbon material having a discharge potential of about 0 V with respect to Li + / Li potential. Is made to occlude Li. Therefore, since the operating potential of the negative electrode becomes about 0 V, the operating voltage of this battery indicates 2.4 V.

【0016】本発明の非水溶媒二次電池は、正極の作動
電位が、Li+/Li電位に対して常に1.5V以上に
なっている状態で動作し、負極の作動電位が0Vより上
昇した時点で放電を停止するように構成することによっ
て、所期の目的を達成するものである。
The non-aqueous solvent secondary battery of the present invention operates in a state where the operating potential of the positive electrode is always 1.5 V or higher with respect to the Li + / Li potential, and the operating potential of the negative electrode rises from 0 V. By configuring so as to stop the discharge at a point in time, the intended purpose is achieved.

【0017】本発明の上記電池のこのような条件を満足
するための手段としては、正極合剤の容量を負極合剤の
容量よりも大きくすることが挙げられる。より好ましく
は、正極合剤の容量と負極合剤の容量との比を1.05
〜1.20の範囲内に設定することである。この容量比
を1.05より小さくすると、大電流放電時に正極内の
MoOにおけるLi+の拡散速度が低下して負極近傍
に位置するMoOの放電電位がLi+/Li電位に対
して1.0Vより低くなり、そのため、結晶構造の破壊
を惹起して電池容量の低下が起こる。また、前期容量比
を1.20より大きくすることは、負極の容量を低くす
ることであって、電池の高容量化を阻害することになり
好ましくない。
Means for satisfying such conditions of the battery of the present invention include making the capacity of the positive electrode mixture larger than the capacity of the negative electrode mixture. More preferably, the ratio of the capacity of the positive electrode mixture to the capacity of the negative electrode mixture is 1.05
That is, it is set within the range of 1.21.20. If this capacity ratio is smaller than 1.05, the diffusion rate of Li + in MoO 3 in the positive electrode during a large current discharge decreases, and the discharge potential of MoO 3 located near the negative electrode becomes 1.0 V with respect to the Li + / Li potential. Lower, which leads to a destruction of the crystal structure and a reduction in battery capacity. On the other hand, setting the capacity ratio to be larger than 1.20 lowers the capacity of the negative electrode, which hinders the increase in the capacity of the battery, and is not preferable.

【0018】本発明において、上記容量比は、正極合剤
へのMoOの配合量と、負極合剤中における炭素材へ
のLiの吸蔵量とをそれぞれ調整することにより上記範
囲内に設定することができる。例えば所定の容量(これ
をC1とする)に相当する質量のLiを炭素材に吸蔵せ
しめて負極活物質を調製し、この炭素材を用いて負極合
剤を調製すると、当該負極合剤の容量(これをC2とす
る)は、前記炭素材が希釈された状態になっているので
C2<C1を満たす範囲に設定されることになる。また
同様に、正極合剤の調製時に、配合するMoO(容
量:250mAh/g)の量と導電材や結着剤との量を
適宜に選定すると、得られた正極合剤の容量はMoO
の容量が希釈された値(これをC3とする)となる。し
たがって、前記した容量C2を一定とした場合、上記し
た容量C3が、1.05≦C3/C2≦1.20の関係
を満足するように、MoOの量や、他の成分との割合
を勘案して正極合剤を調製すれば、この正極合剤と負極
合剤との容量比を1.05〜1.20の範囲内に設定さ
せることができる。
In the present invention, the above capacity ratio is set within the above range by adjusting the amount of MoO 3 mixed in the positive electrode mixture and the amount of Li stored in the carbon material in the negative electrode mixture. be able to. For example, when a negative electrode active material is prepared by absorbing Li having a mass corresponding to a predetermined capacity (hereinafter referred to as C1) into a carbon material, and a negative electrode mixture is prepared using this carbon material, the capacity of the negative electrode mixture is increased. (This is referred to as C2) is set in a range that satisfies C2 <C1 since the carbon material is in a diluted state. Similarly, when the amount of MoO 3 (capacity: 250 mAh / g) and the amount of the conductive material and the binder are appropriately selected during the preparation of the positive electrode mixture, the capacity of the obtained positive electrode mixture becomes MoO 3. 3
Is a diluted value (this is referred to as C3). Therefore, when the above-mentioned capacity C2 is fixed, the amount of MoO 3 and the ratio with other components are adjusted so that the above-mentioned capacity C3 satisfies the relationship of 1.05 ≦ C3 / C2 ≦ 1.20. When the positive electrode mixture is prepared in consideration of the above, the capacity ratio between the positive electrode mixture and the negative electrode mixture can be set in a range of 1.05 to 1.20.

【0019】具体的には、所定容量の正極合剤と負極合
剤を調製し、これらを用いて正極と負極を加工成形した
後、電池を組み立てる前にそれぞれの成形体の大きさや
厚みを変えることにより、この正極活物質と負極活物質
とを制御して上記した容量比を調整することができる。
例えば、一定値の容量の負極合剤を調製して所定の寸法
形状の負極を成形した後、この負極と組み合わせる正極
を成形する際に、その成形体の大きさや厚みを変えるこ
とによって、この正極に含まれる正極活物質の量を調整
することにより容易に正極合剤と負極合剤の容量比を調
整することができる。
Specifically, after preparing a positive electrode mixture and a negative electrode mixture of a predetermined capacity, working the positive electrode and the negative electrode using these, and changing the size and thickness of each molded body before assembling the battery. Thereby, the above-described capacity ratio can be adjusted by controlling the positive electrode active material and the negative electrode active material.
For example, after preparing a negative electrode mixture having a certain capacity and forming a negative electrode having a predetermined size and shape, when forming a positive electrode to be combined with the negative electrode, by changing the size and thickness of the formed body, this positive electrode By adjusting the amount of the positive electrode active material contained in the mixture, the volume ratio of the positive electrode mixture to the negative electrode mixture can be easily adjusted.

【0020】本発明において正極は、上記した活物質で
あるMoOの粉末と、例えばカーボンブラックのよう
な導電材と、例えばPTFEのような結着剤とを所定の
割合で混練して成る正極合剤を所定の形状に加圧成形し
て製造される。正極の製造に際しては、活物質であるM
oOとしてNa元素が質量百分率で0.1〜10%含
有しているものを用いることが好ましい。質量百分率が
0.1%より小さいものは、結晶格子を強固にさせる効
果が小さいため、電池の充放電サイクル特性の向上とい
う課題として有効であるとはいえないからである。ま
た、質量百分率が10%より大きくなると、MoO
有効な充放電容量が減少してしまうからである。
In the present invention, the positive electrode is prepared by kneading the above-mentioned powder of MoO 3 as an active material, a conductive material such as carbon black, and a binder such as PTFE at a predetermined ratio. It is manufactured by press-forming the mixture into a predetermined shape. When manufacturing the positive electrode, the active material M
It is preferable to use oO 3 containing 0.1 to 10% by mass of Na element in terms of mass percentage. If the mass percentage is less than 0.1%, the effect of strengthening the crystal lattice is small, so that it cannot be said that it is effective as a problem of improving the charge / discharge cycle characteristics of the battery. Also, when the mass percentage is more than 10%, the effective charge / discharge capacity of MoO 3 decreases.

【0021】本発明において、正極合剤に用いる導電材
としては、カーボンブラック、人造黒鉛、カーボンブラ
ック(例えばアセチレンブラックなど)、金属粉末など
を用いることができる。また、結着剤としては、PTF
E(ポリテトラフルオロエチレン)、PVdF(ポリビ
ニリデンフルオライド)などを用いることができる。こ
れらの内、PTFEが、作業性、安定性の点で最も好ま
しい。かかる正極合剤における正極活物質と導電助剤と
結着剤との配合割合は、質量比にして100:20:1
0〜100:2:1の範囲が好ましい。導電助剤および
結着剤の比率がこの範囲を上回ると、正極活物質の量が
減少するため容量の低下が生じ、また、導電助剤の比率
がこの範囲を下回ると、正極の内部抵抗が上昇して電池
の内部抵抗が上昇する。また、結着剤の比率がこの範囲
を下回ると正極の機械的強度が低下して電池製造時に正
極の破壊が発生しやすくなり電池製造の歩留まりが低下
して、いずれも好ましくない。
In the present invention, as the conductive material used for the positive electrode mixture, carbon black, artificial graphite, carbon black (eg, acetylene black), metal powder, and the like can be used. PTF is used as a binder.
E (polytetrafluoroethylene), PVdF (polyvinylidene fluoride), or the like can be used. Of these, PTFE is most preferred in terms of workability and stability. The mixing ratio of the positive electrode active material, the conductive auxiliary agent, and the binder in such a positive electrode mixture is 100: 20: 1 in mass ratio.
A range of 0 to 100: 2: 1 is preferred. If the ratio of the conductive additive and the binder exceeds this range, the amount of the positive electrode active material decreases, resulting in a decrease in capacity.If the ratio of the conductive additive falls below this range, the internal resistance of the positive electrode increases. And the internal resistance of the battery rises. On the other hand, if the ratio of the binder is less than this range, the mechanical strength of the positive electrode decreases, and the positive electrode is likely to be broken during the production of the battery.

【0022】本発明において負極は、多孔構造の炭素材
と結着剤とを混練して成る負極合剤を所定の形状に加圧
成形したのち、予めLiを吸蔵させてから電池を組み立
てる。また電池の組み立て時に、前記成形体に例えば金
属Liの箔を圧着することにより製造することも可能で
ある。この金属Li箔は電池の組み立て後に、有機電解
液に溶解して前記炭素材の空隙部に吸蔵される。本発明
において負極合剤と、Li箔との使用比率は、負極合剤
が吸蔵可能な量と実際に吸蔵させるLiの比で1:0.
8〜1.0の範囲が好ましい。Li箔の量がこの範囲よ
り少ないと容量の低下が起こり、一方この範囲を上回る
とLiが完全には炭素剤に吸蔵されずに残存しLiデン
ドライトなどの問題を引き起こすこととなり、好ましく
ない。
In the present invention, the negative electrode is prepared by kneading a negative electrode mixture formed by kneading a porous carbon material and a binder into a predetermined shape, and then preliminarily absorbing Li before assembling the battery. Further, at the time of assembling the battery, the battery can be manufactured by press-bonding, for example, a metal Li foil to the compact. After assembling the battery, the metal Li foil is dissolved in the organic electrolyte and occluded in the voids of the carbon material. In the present invention, the use ratio of the negative electrode mixture to the Li foil is 1: 0.
A range from 8 to 1.0 is preferred. If the amount of the Li foil is less than this range, the capacity is reduced. On the other hand, if the amount is more than this range, Li is not completely occluded in the carbon agent and remains, causing problems such as Li dendrite, which is not preferable.

【0023】本発明において多孔構造の炭素材として
は、炭素粉末、人造黒鉛粉末、カーボンブラック(例え
ばアセチレンブラックなど)、メゾフェーズピッチ炭化
物などの材料を用いることができる。特にメゾフェーズ
ピッチ炭化物を用いることが、サイクル容量維持、電圧
安定性などの点で好ましい。また、結着剤としては、ス
チレン・ブタジエンゴム、アクリロニトリル・ブタジエ
ンゴムなどの材料を用いることができる。特に、スチレ
ン・ブタジエンゴムを用いることが作業性、安定性の点
で好ましい。かかる負極合剤における炭素材と結着剤と
の配合割合は、質量比にして100:1〜100:1の
範囲が望ましい。炭素材の比率がこの範囲を上回ると、
負極の機械的強度が低下して電池組み立て時に負極が破
壊されやすく電池製造の歩留まりが低下する。一方、炭
素材の比率がこの範囲を下回ると、Liの吸蔵量が低下
するため、容量の低下が生じ、いずれも好ましくない。
In the present invention, materials such as carbon powder, artificial graphite powder, carbon black (for example, acetylene black), and mesophase pitch carbide can be used as the carbon material having a porous structure. In particular, it is preferable to use a mesophase pitch carbide in terms of maintaining cycle capacity and voltage stability. In addition, materials such as styrene / butadiene rubber and acrylonitrile / butadiene rubber can be used as the binder. In particular, the use of styrene-butadiene rubber is preferred in terms of workability and stability. The mixing ratio of the carbon material and the binder in such a negative electrode mixture is desirably in the range of 100: 1 to 100: 1 by mass ratio. If the ratio of carbon material exceeds this range,
The mechanical strength of the negative electrode is reduced, so that the negative electrode is easily broken at the time of assembling the battery, and the yield of battery production is reduced. On the other hand, if the ratio of the carbon material falls below this range, the amount of Li occluded is reduced, resulting in a reduction in capacity, which is not preferable.

【0024】本発明において有機電解液としては、例え
ば、エチレンカーボネート(EC)、プロピレンカーボ
ネート(PC)、ブチレンカーボネ−ト(BC)、γ−
ブチロラクトン(γ−BL)、1,2−ジエトキシエタ
ン(DEE)、1,2−ジメトキシエタン(DME)、
ジエチルカーボネート(DEC),メチルエチルカーボ
ネート(MEC)のような非水溶媒の1種または2種以
上の混合溶媒に、例えばLiClO、LiBF、L
iCFSO、LiPF、LiN(CFSO
のような電解質の所定量を溶解せしめたものが用いら
れる。その場合、目的とする電池の要求特性との関係で
用いる有機電解液が適宜に選択されるが、例えば、充放
電サイクル特性や保存特性を高めようとする場合は、電
解質としてLiPFやLiN(CFSOを用
いることが好適である。
In the present invention, examples of the organic electrolyte include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and γ-
Butyrolactone (γ-BL), 1,2-diethoxyethane (DEE), 1,2-dimethoxyethane (DME),
One or more non-aqueous solvents such as diethyl carbonate (DEC) and methyl ethyl carbonate (MEC) may be mixed in a solvent such as LiClO 4 , LiBF 4 , L
iCF 3 SO 3 , LiPF 6 , LiN (CF 3 SO 2 )
A solution obtained by dissolving a predetermined amount of an electrolyte such as 2 is used. In this case, the organic electrolyte to be used is appropriately selected depending on the required characteristics of the intended battery. For example, in the case where charge-discharge cycle characteristics and storage characteristics are to be enhanced, LiPF 6 or LiN ( It is preferable to use CF 3 SO 2 ) 2 .

【0025】[0025]

【実施例】実施例1〜7、比較例1〜4 (1)正極の構造 NaMoO溶液とHCl溶液を混合、加熱し、得ら
れた沈殿物を空気中で500℃で12時間焼成して、表
1のようなNa含有量が異なるMoO粉末を合成した
(実施例1〜7)。これらのMoO粉末100重量部
に対し、カーボンブラック10重量部、PTFE粉末5
重量部を配合したのち攪拌し,得られた混合物を加圧成
形して,表1で示したようなNa含有量及び、充放電容
量の異なる直径16mmの各種ペレットを製造した。つ
いで、これらペレットを温度150℃で5時間乾燥して
正極とした。
EXAMPLES Examples 1 to 7 and Comparative Examples 1 to 4 (1) Structure of Positive Electrode A Na 2 MoO 4 solution and an HCl solution were mixed and heated, and the obtained precipitate was fired at 500 ° C. for 12 hours in air. Then, MoO 3 powders having different Na contents as shown in Table 1 were synthesized (Examples 1 to 7). For 100 parts by weight of these MoO 3 powders, 10 parts by weight of carbon black and 5 parts by weight of PTFE powder
After mixing by weight, the mixture was stirred, and the resulting mixture was molded under pressure to produce various pellets having a Na content and a charge / discharge capacity of 16 mm in diameter as shown in Table 1. Next, these pellets were dried at a temperature of 150 ° C. for 5 hours to obtain a positive electrode.

【0026】(2)負極前駆体の製造 メソフェーズピッチをN雰囲気下で2800℃に焼成
して炭素材を製造した。この炭素材の粉末100重量部
に対し、スチレン・ブタジエンゴム5.3重量部を配合
したのち攪拌し、得られた混合物を加圧成形し、直径1
6mmのペレットを製造した。ついで、これらペレット
を温度150℃で5時間乾燥して負極前駆体とした。
(2) Production of Negative Electrode Precursor A mesophase pitch was fired at 2800 ° C. in an N 2 atmosphere to produce a carbon material. To 100 parts by weight of the carbon material powder, 5.3 parts by weight of a styrene-butadiene rubber were blended, and the mixture was stirred.
6 mm pellets were produced. Next, these pellets were dried at a temperature of 150 ° C. for 5 hours to obtain a negative electrode precursor.

【0027】(3)電池の組み立て 表1で示した正極と負極前駆体を組み合わせて図1で示
したコイン型Li二次電池を次のようにして組み立て
た。まず、ステンレス鋼製の負極容器8の底面に、直径
10mm、厚み0.05mmのNi製エキスパンドメタ
ル7を負極集電体として溶接し、内壁部には絶縁ガスケ
ット3を配置した。ついで、負極集電体7の上に金属L
i箔を配置し、その上に、負極前駆体6を着設した。な
お、この金属Li箔は、電池組み立て後、負極前駆体の
炭素材に吸蔵されて活物質として機能する。なお、この
ときの金属Li箔の寸法形状は、それに着設させる負極
前駆体6の理論容量に相当する容量となるように設定し
た。ついで、EC:MECが1:1(体積比)である有
機溶媒にLiPFを1モル/lの濃度となるように溶
解して電解液を調製し、これをポリプロピレン不織布に
含浸せしめたセパレータ5を前記負極前駆体6の上に載
置したのち、表1で示した正極4を載置した。そして最
後に、内面にコロイダルカーボン2が塗布されている正
極容器1を嵌合し、全体に加締め加工を行って外径20
mm、高さ2.5mmの電池を組み立てた。
(3) Assembly of Battery The coin-type Li secondary battery shown in FIG. 1 was assembled as follows by combining the positive electrode and the negative electrode precursor shown in Table 1. First, a Ni expanded metal 7 having a diameter of 10 mm and a thickness of 0.05 mm was welded to the bottom surface of a stainless steel negative electrode container 8 as a negative electrode current collector, and an insulating gasket 3 was disposed on the inner wall. Then, a metal L is placed on the negative electrode current collector 7.
The i-foil was arranged, and the negative electrode precursor 6 was mounted thereon. After the battery is assembled, the metal Li foil is occluded by the carbon material of the negative electrode precursor and functions as an active material. The dimensions and shape of the metal Li foil at this time were set so as to have a capacity corresponding to the theoretical capacity of the negative electrode precursor 6 attached to the metal Li foil. Then, an electrolyte was prepared by dissolving LiPF 6 in an organic solvent having an EC: MEC ratio of 1: 1 (volume ratio) so as to have a concentration of 1 mol / l. Was mounted on the negative electrode precursor 6, and then the positive electrode 4 shown in Table 1 was mounted. Finally, the positive electrode container 1 having the inner surface coated with the colloidal carbon 2 is fitted, and the whole is caulked to form an outer diameter 20 mm.
A battery having a height of 2.5 mm and a height of 2.5 mm was assembled.

【0028】(4)電池特性の測定 こうして製作した12種類の電池につき、0.5mAの
定電流で電池の作動電圧1.0Vから3.0Vまでの充
放電を行った。図2には、各電池の各サイクル時におけ
る放電容量を示した。また、表1に初期の放電容量を併
せて示す。これらの結果から次のことが明らかである。
図2および表1で明らかなように、比較例1、3の電池
のサイクル寿命は短く、比較例2、4の電池は、サイク
ル寿命は良好だが電気容量が少ない。これに反し、本発
明の電池は、いずれも、20サイクルの充放電経過後に
あっても良好な容量維持率を示し、その充放電サイクル
特性は優れたものになっている。
(4) Measurement of Battery Characteristics With respect to the twelve types of batteries thus manufactured, the batteries were charged and discharged from a working voltage of 1.0 V to 3.0 V at a constant current of 0.5 mA. FIG. 2 shows the discharge capacity of each battery at each cycle. Table 1 also shows the initial discharge capacity. The following is clear from these results.
As is clear from FIG. 2 and Table 1, the batteries of Comparative Examples 1 and 3 have a short cycle life, and the batteries of Comparative Examples 2 and 4 have good cycle life but small electric capacity. In contrast, the batteries of the present invention all show a good capacity retention ratio even after 20 cycles of charge / discharge, and have excellent charge / discharge cycle characteristics.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上の説明で明らかなように、本発明の
非水溶媒二次電池はその作動電圧が約2.4Vであり、
また正極と負極の容量を制御し、さらにNaを含有させ
ることにより、充放電時における容量低下が小さく、過
充放電時の容量低下の小さい電池を得ることができ、
2.4V級の水溶液系二次電池の代替品としてその工業
的価値は大である。
As apparent from the above description, the non-aqueous solvent secondary battery of the present invention has an operating voltage of about 2.4 V,
Further, by controlling the capacity of the positive electrode and the negative electrode, and further containing Na, it is possible to obtain a battery with a small capacity decrease during charge and discharge and a small capacity decrease during overcharge and discharge,
As an alternative to the 2.4 V class aqueous secondary battery, its industrial value is great.

【0031】また、正極活物質であるMoOにNa元
素を添加することによって結晶格子が安定化し充放電特
性が大きく改善され、種々の負極活物質と組み合わせる
ことによってサイクル寿命のすぐれた電池を実現でき
る。
Further, by adding Na element to MoO 3 as a positive electrode active material, a crystal lattice is stabilized and charge / discharge characteristics are greatly improved, and a battery having excellent cycle life is realized by combining with various negative electrode active materials. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用することのできるコイン型Li二
次電池の1例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a coin-type Li secondary battery to which the present invention can be applied.

【図2】本発明実施例および比較例で製作した電池の放
電容量維持率の推移を示すグラフである。
FIG. 2 is a graph showing a change in a discharge capacity retention ratio of batteries manufactured in Examples of the present invention and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極容器 2 コロイダルカーボン 3 絶縁ガスケット 4 正極 5 セパレータ 6 負極前駆体(組み立て後の負極) 7 負極集電体 8 負極容器 REFERENCE SIGNS LIST 1 positive electrode container 2 colloidal carbon 3 insulating gasket 4 positive electrode 5 separator 6 negative electrode precursor (negative electrode after assembly) 7 negative electrode current collector 8 negative electrode container

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AK02 AK11 AL07 AL08 AM03 AM04 AM05 AM07 BJ03 HJ01 HJ02 HJ18 HJ19 5H050 AA07 BA17 CA02 CA17 CB08 CB09 HA01 HA02 HA18 HA19 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AK02 AK11 AL07 AL08 AM03 AM04 AM05 AM07 BJ03 HJ01 HJ02 HJ18 HJ19 5H050 AA07 BA17 CA02 CA17 CB08 CB09 HA01 HA02 HA18 HA19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活物質がMoOである正極合剤を有する
正極と、Liが吸蔵された炭素材を含む負極合剤を有す
る負極とを具備する非水溶媒二次電池において、前記正
極の作動電位が、Liの標準単極電位に対し、常時、
1.5V以上の値を示し、かつ前記負極の作動電位が上
昇しはじめた時点をもって放電を終了させるようにした
ことを特徴とする非水溶媒二次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode having a positive electrode mixture whose active material is MoO 3 and a negative electrode having a negative electrode mixture containing a carbon material in which Li has been occluded, The working potential is always
A non-aqueous solvent secondary battery having a value of 1.5 V or more and discharging the battery when the operating potential of the negative electrode starts to rise.
【請求項2】前記正極合剤と前記負極合剤との電気容量
比を、1.05〜1.20とすることを特徴とする請求
項1に記載の非水溶媒二次電池。
2. The non-aqueous solvent secondary battery according to claim 1, wherein an electric capacity ratio between the positive electrode mixture and the negative electrode mixture is 1.05 to 1.20.
【請求項3】前記正極の活物質が、MoOにNa元素
を質量百分率で0.1〜10%含有させたものであるこ
とを特徴とする請求項1および請求項2のいずれかに記
載の非水溶媒二次電池。
3. The positive electrode active material according to claim 1, wherein MoO 3 contains 0.1 to 10% by mass of a Na element in mass percentage. Non-aqueous solvent secondary batteries.
【請求項4】MoOにNa元素を質量百分率で0.1
〜10%含有させたことを特徴とする正極活物質。
4. MoO 3 contains 0.1% by mass of Na element in mass percentage.
A positive electrode active material characterized by containing 10 to 10%.
JP2000197191A 2000-06-29 2000-06-29 Nonaqueous solvent secondary cell and positive active material for the same Pending JP2002015775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197191A JP2002015775A (en) 2000-06-29 2000-06-29 Nonaqueous solvent secondary cell and positive active material for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197191A JP2002015775A (en) 2000-06-29 2000-06-29 Nonaqueous solvent secondary cell and positive active material for the same

Publications (1)

Publication Number Publication Date
JP2002015775A true JP2002015775A (en) 2002-01-18

Family

ID=18695551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197191A Pending JP2002015775A (en) 2000-06-29 2000-06-29 Nonaqueous solvent secondary cell and positive active material for the same

Country Status (1)

Country Link
JP (1) JP2002015775A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2008536271A (en) * 2005-04-15 2008-09-04 アヴェスター リミティッド パートナーシップ Lithium rechargeable battery with surplus LiFePO4 based cathode relative to Li4Ti5O12 based anode
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
CN103879132A (en) * 2014-04-02 2014-06-25 中国电子科技集团公司第四十五研究所 Three-dimensional adjusting device for manual or semi-automatic workbench
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment
CN113270572A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Negative electrode for lithium ion secondary battery and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273330A (en) * 1975-12-17 1977-06-20 Hitachi Maxell Nonnaqueous electrolyte battery
JPS55157861A (en) * 1979-05-25 1980-12-08 Matsushita Electric Ind Co Ltd Cell
JPS63314762A (en) * 1987-06-17 1988-12-22 Kanebo Ltd Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JPH01246146A (en) * 1988-03-28 1989-10-02 Furukawa Battery Co Ltd:The Production of molybdenum trioxide active substance for lithium cell and anode plate using same
JPH02192669A (en) * 1988-11-28 1990-07-30 Showa Denko Kk Secondary cell
JPH02265167A (en) * 1989-04-03 1990-10-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
JP2000164210A (en) * 1998-11-24 2000-06-16 Fuji Photo Film Co Ltd Non-aqueous secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273330A (en) * 1975-12-17 1977-06-20 Hitachi Maxell Nonnaqueous electrolyte battery
JPS55157861A (en) * 1979-05-25 1980-12-08 Matsushita Electric Ind Co Ltd Cell
JPS63314762A (en) * 1987-06-17 1988-12-22 Kanebo Ltd Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JPH01246146A (en) * 1988-03-28 1989-10-02 Furukawa Battery Co Ltd:The Production of molybdenum trioxide active substance for lithium cell and anode plate using same
JPH02192669A (en) * 1988-11-28 1990-07-30 Showa Denko Kk Secondary cell
JPH02265167A (en) * 1989-04-03 1990-10-29 Sony Corp Nonaqueous electrolyte secondary battery
JPH05151995A (en) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
JP2000164210A (en) * 1998-11-24 2000-06-16 Fuji Photo Film Co Ltd Non-aqueous secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
US8153295B2 (en) 2003-07-17 2012-04-10 Gs Yuasa International Ltd. Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2008536271A (en) * 2005-04-15 2008-09-04 アヴェスター リミティッド パートナーシップ Lithium rechargeable battery with surplus LiFePO4 based cathode relative to Li4Ti5O12 based anode
CN103879132A (en) * 2014-04-02 2014-06-25 中国电子科技集团公司第四十五研究所 Three-dimensional adjusting device for manual or semi-automatic workbench
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment
CN113270572A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Negative electrode for lithium ion secondary battery and method for producing same
CN113270572B (en) * 2020-02-17 2023-12-15 丰田自动车株式会社 Negative electrode for lithium ion secondary battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP2007194202A (en) Lithium ion secondary battery
JP2008243684A (en) Lithium secondary battery
JP2009199874A (en) Anode and secondary battery
JP5412843B2 (en) battery
JP2005317446A (en) Electrolyte and battery using the same
JP3244389B2 (en) Lithium secondary battery
JP2009206091A (en) Nonaqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP2009164053A (en) Battery
JP2008103311A (en) Battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP4503964B2 (en) Nonaqueous electrolyte secondary battery
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JP5103698B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2007042439A (en) Electrolyte and battery
JP2007157538A (en) Battery
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
JP2002216759A (en) Lithium ion secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JP2000277111A (en) Lithium secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP4088850B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026