JPH07134986A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH07134986A
JPH07134986A JP5305839A JP30583993A JPH07134986A JP H07134986 A JPH07134986 A JP H07134986A JP 5305839 A JP5305839 A JP 5305839A JP 30583993 A JP30583993 A JP 30583993A JP H07134986 A JPH07134986 A JP H07134986A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
battery
composite oxide
iron composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5305839A
Other languages
Japanese (ja)
Other versions
JP3268924B2 (en
Inventor
Mikiya Yamazaki
幹也 山崎
Takeshi Maeda
丈志 前田
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30583993A priority Critical patent/JP3268924B2/en
Publication of JPH07134986A publication Critical patent/JPH07134986A/en
Application granted granted Critical
Publication of JP3268924B2 publication Critical patent/JP3268924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase a battery capacity by using lithium-iron composite oxides, in which a mole percentage between lithium and iron is in the specific range, as a positive electrode active material. CONSTITUTION:A nonaqueous electrolyte battery is provided with a positive electrode and a negative electrode using a substance that can store/discharge metallic lithium or lithium ion as a negative electrode material. As an active material for the positive electrode, lithium-iron composite oxides shown by a formula LixFeOx (1.25<=X<=5.05, 1.8<=y<=4.025) are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に関す
る。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
金属リチウム又はリチウムイオンを吸蔵、放出すること
が可能な合金若しくは炭素材料を負極材料とする非水電
解質電池が、高容量化が可能な電池として注目されてい
る。
2. Description of the Related Art In recent years,
A non-aqueous electrolyte battery that uses an alloy or a carbon material capable of inserting and extracting metallic lithium or lithium ions as a negative electrode material has been attracting attention as a battery that can have a high capacity.

【0003】この種の電池に用いられる正極活物質とし
ては、種々のリチウム−遷移金属複合酸化物が提案され
ており、例えばリチウム−コバルト複合酸化物(LiC
oO2 など)及びリチウム−ニッケル複合酸化物(Li
NiO2 など)は、既に実用されており、原材料を所定
の割合で混合し、焼成するだけで、100〜120mA
h/gもの大きな容量を有するものが得られる。
Various lithium-transition metal composite oxides have been proposed as the positive electrode active material used in this type of battery, for example, lithium-cobalt composite oxide (LiC).
oO 2 ) and lithium-nickel composite oxide (Li
NiO 2 etc.) has already been put to practical use, and 100 to 120 mA can be obtained by simply mixing the raw materials at a predetermined ratio and firing.
Those having a large capacity of h / g can be obtained.

【0004】しかしながら、リチウム−遷移金属複合酸
化物のうちリチウム−鉄複合酸化物は、鉄が自然に豊富
に存在する資源であることから安価に供給し得るという
製造コスト面での利点があるにもかかわらず、従来、こ
の種の電池の正極活物質として、実用化はもとより、殆
ど検討すらされていなかった。これは、LiFeO2
容量が20mAh/g程度と小さいことから、リチウム
−鉄複合酸化物は、総じて容量が小さく非水電解質電池
の正極活物質としては使用し得ないものと誤信されてい
たためである。
However, among the lithium-transition metal composite oxides, the lithium-iron composite oxide has an advantage in terms of manufacturing cost that iron can be supplied inexpensively because it is a resource in which iron is naturally abundant. Nonetheless, as a positive electrode active material for this type of battery, it has not been practically studied or even studied so far. This is because the capacity of LiFeO 2 was as small as about 20 mAh / g, and it was mistakenly believed that the lithium-iron composite oxide had a small capacity in general and could not be used as the positive electrode active material of a non-aqueous electrolyte battery. is there.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、LiNiO2 など
と比較しても遜色のない大きな容量を有するリチウム−
鉄複合酸化物を正極活物質とする新規、有用な非水電解
質電池を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium battery having a large capacity comparable to that of LiNiO 2.
It is to provide a new and useful non-aqueous electrolyte battery using an iron composite oxide as a positive electrode active material.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解質電池(以下「本発明電池」と
称する。)は、正極と、金属リチウム又はリチウムイオ
ンを吸蔵、放出することが可能な物質を負極材料とする
負極とを備える非水電解質電池において、前記正極の活
物質として、式:Lix FeOy (但し、1.25≦x
≦5.05、1.8≦y≦4.025)で表されるリチ
ウム−鉄複合酸化物が用いられてなる。
A non-aqueous electrolyte battery according to the present invention (hereinafter referred to as "the battery of the present invention") according to the present invention for achieving the above object stores a positive electrode and metallic lithium or lithium ions. In a non-aqueous electrolyte battery including a negative electrode using a substance that can be used as a negative electrode material, the positive electrode active material has the formula: Li x FeO y (where 1.25 ≦ x
≦ 5.05, 1.8 ≦ y ≦ 4.025) is used.

【0007】式:Lix FeOy 中のx、すなわちLi
とFeとのモル比の値が1.25〜5.05に規制され
るのは、xがこの範囲を外れると容量が急激に低下する
からである。式:Lix FeOy 中のyは、xが大きく
なるにつれて大きくなり、1.25≦x≦5.05にお
いて、yは1.8〜4.025の範囲で変動する。
Formula: x in Li x FeO y , that is, Li
The reason why the molar ratio of Fe to Fe is regulated to 1.25 to 5.05 is that when x is out of this range, the capacity sharply decreases. Y in the formula: Li x FeO y increases as x increases, and y changes in the range of 1.8 to 4.025 when 1.25 ≦ x ≦ 5.05.

【0008】式:Lix FeOy 中のx及びyが、それ
ぞれ3.0≦x≦5.0、3.0≦y≦4.0であるリ
チウム−鉄複合酸化物が、容量が140mAh/g程度
と極めて大きいので、好ましい。
Formula: Li x FeO y where x and y are 3.0 ≦ x ≦ 5.0 and 3.0 ≦ y ≦ 4.0, respectively, the lithium-iron composite oxide has a capacity of 140 mAh / Since it is extremely large, about g, it is preferable.

【0009】本発明におけるリチウム−鉄複合酸化物
は、例えばリチウム化合物(LiOHなど)と鉄化合物
(FeOOHなど)とを、LiとFeとのモル比がx:
1(1.25≦x≦5.05)となるように混合し、乾
燥空気雰囲気下で、500〜900°Cの温度で6〜4
0時間熱処理することにより得られる。
The lithium-iron composite oxide in the present invention comprises, for example, a lithium compound (LiOH or the like) and an iron compound (FeOOH or the like), and the molar ratio of Li and Fe is x:
1 (1.25 ≦ x ≦ 5.05) and mixed in a dry air atmosphere at a temperature of 500 to 900 ° C. for 6 to 4
Obtained by heat treatment for 0 hours.

【0010】本発明においては、負極材料として金属リ
チウム又はリチウムイオンを吸蔵、放出することが可能
な物質が用いられる。リチウムイオンを吸蔵、放出する
ことが可能な物質としては、黒鉛、コークス、有機物焼
成体等の炭素材料が例示される。
In the present invention, a material capable of inserting and extracting metallic lithium or lithium ions is used as the negative electrode material. Examples of the substance capable of occluding and releasing lithium ions include carbon materials such as graphite, coke, and a fired organic material.

【0011】本発明は、LiとFeとのモル比が特定の
範囲内にあるリチウム−鉄複合酸化物がLiNiO2
どの従来汎用されているものと比較しても遜色の無い、
大きな容量を有するとの知見に基づきなされたものであ
り、リチウム−鉄複合酸化物の実用化の途を切り開いた
ものである。それゆえ、非水電解質などの電池を構成す
る他の部材については、従来提案され、或いは、実用さ
れている種々の材料を特に制限なく用いることが可能で
ある。
The present invention compares favorably with lithium-iron composite oxides in which the molar ratio of Li and Fe is within a specific range, such as LiNiO 2 which has been conventionally used.
This is based on the finding that it has a large capacity, and has opened the way to the practical application of lithium-iron composite oxides. Therefore, for other members constituting the battery such as the non-aqueous electrolyte, various materials that have been proposed or put into practical use can be used without particular limitation.

【0012】例えば、液状非水電解質(非水電解液)の
溶媒としては、エチレンカーボネート、ビニレンカーボ
ネート、プロピレンカーボネートなどの有機溶媒や、こ
れらとジメチルカーボネート、ジエチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、エトキシメトキシエタンなどの低沸点溶媒との混合
溶媒が例示され、また、その溶質としては、LiClO
4 、LiPF6 、LiCF3 SO3 が例示される。漏液
の虞れが無い信頼性の高い電池を得るべく固体電解質を
用いることももとより可能である。
For example, as the solvent of the liquid non-aqueous electrolyte (non-aqueous electrolyte), organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, dimethyl carbonate and diethyl carbonate,
A mixed solvent with a low boiling point solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane or ethoxymethoxyethane is exemplified, and its solute is LiClO 2.
4 , LiPF 6 , and LiCF 3 SO 3 are exemplified. It is of course possible to use a solid electrolyte in order to obtain a highly reliable battery without the risk of liquid leakage.

【0013】[0013]

【作用】正極活物質としてLiとFeとのモル比が特定
の範囲内にあるリチウム−鉄複合酸化物が用いられてい
るので、LiFeO2 などを用いた場合に比し、電池容
量が実用可能な程度まで増大する。
Since a lithium-iron composite oxide having a molar ratio of Li and Fe within a specific range is used as the positive electrode active material, the battery capacity can be practically used as compared with the case of using LiFeO 2. Increase to any extent.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0015】(実施例1)扁平型の非水電解液電池(本
発明電池)を作製した。
Example 1 A flat non-aqueous electrolyte battery (the battery of the present invention) was produced.

【0016】〔正極〕LiOHとFeOOHとを、Li
とFeとのモル比が1.25:1となるように混合した
後、乾燥空気雰囲気下で、600°Cで20時間焼成し
て、組成式:Li1.25FeO2.05で表される正極活物質
としてのリチウム−鉄複合酸化物を得た。このリチウム
−鉄複合酸化物をらいかいミキサーで粉砕して得た粉末
と、導電剤としてのアセチレンブラックと、結着剤とし
てのフッ素樹脂粉末とを、重量比90:6:4の比率で
混合して正極合剤を調製し、この正極合剤を成形圧2ト
ン/cm2 で直径20mmの円板状に加圧成形し、25
0°Cで2時間熱処理して正極を作製した。
[Positive electrode] LiOH and FeOOH are mixed with Li
And Fe so as to have a molar ratio of 1.25: 1, and then baked in a dry air atmosphere at 600 ° C. for 20 hours to obtain a positive electrode active material represented by a composition formula: Li 1.25 FeO 2.05. As a result, a lithium-iron composite oxide was obtained. A powder obtained by crushing the lithium-iron composite oxide with a raix mixer, acetylene black as a conductive agent, and fluororesin powder as a binder are mixed at a weight ratio of 90: 6: 4. To prepare a positive electrode mixture, and the positive electrode mixture is pressure-molded at a molding pressure of 2 ton / cm 2 into a disk shape having a diameter of 20 mm.
A positive electrode was produced by heat treatment at 0 ° C. for 2 hours.

【0017】〔負極〕所定厚みのリチウム圧延板から直
径20mmの円板を打ち抜いて負極を作製した。
[Negative Electrode] A negative electrode was produced by punching a disk having a diameter of 20 mm from a rolled lithium plate having a predetermined thickness.

【0018】〔電解液〕プロピレンカーボネート(P
C)と1,2−ジメトキシエタン(DME)との等体積
混合溶媒に、LiClO4 を1M(モル/リットル)の
割合で溶かして、非水電解液を調製した。
[Electrolyte] Propylene carbonate (P
LiClO 4 was dissolved in an equal volume mixed solvent of C) and 1,2-dimethoxyethane (DME) at a ratio of 1 M (mol / liter) to prepare a non-aqueous electrolytic solution.

【0019】〔電池の作製〕以上の正負両極及び電解液
を用いて本発明電池A1(電池寸法:直径24.0m
m、厚さ3.0mm)を作製した。なお、セパレータと
しては、ポリプロピレン製の微多孔膜(ヘキストセラニ
ーズ社製、商品名「セルガード」)を使用し、これに先
に述べた非水電解液を含浸させた。
[Production of Battery] The battery A1 of the present invention (battery size: diameter 24.0 m) using the positive and negative electrodes and the electrolytic solution described above.
m, thickness 3.0 mm). As the separator, a polypropylene microporous film (manufactured by Hoechst Celanese Co., Ltd., trade name “Celgard”) was used and impregnated with the above-mentioned non-aqueous electrolyte.

【0020】図1は、作製した本発明電池A1を模式的
に示す断面図であり、同図に示す本発明電池A1は、正
極1、負極2、これら両電極1,2を互いに離間するセ
パレータ3、正極缶4、負極缶5、正極集電体6、負極
集電体7及びポリプロピレン製の絶縁パッキング8など
からなる。
FIG. 1 is a cross-sectional view schematically showing the produced battery A1 of the present invention. The battery A1 of the present invention shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and a separator for separating these electrodes 1 and 2 from each other. 3, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0021】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other through a separator 3 impregnated with a non-aqueous electrolyte solution, and the positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0022】(実施例2)LiOHとFeOOHとを、
LiとFeとのモル比が1.5:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li1.5 FeO2.25で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、本発明電池A2を作製した。
(Example 2) LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 1.5 FeO 2.25 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 1.5: 1 and fired. A battery A2 of the present invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0023】(実施例3)LiOHとFeOOHとを、
LiとFeとのモル比が2.2:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li2.2 FeO2.6 で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、本発明電池A3を作製した。
(Example 3) LiOH and FeOOH
A lithium-iron composite oxide represented by the composition formula: Li 2.2 FeO 2.6 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 2.2: 1 and fired. A battery A3 of the invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0024】(実施例4)LiOHとFeOOHとを、
LiとFeとのモル比が3.0:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li3.0 FeO3.0 で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、本発明電池A4を作製した。
(Example 4) LiOH and FeOOH
A lithium-iron composite oxide represented by the composition formula: Li 3.0 FeO 3.0 , in the same manner as in Example 1 except that Li and Fe were mixed so that the molar ratio was 3.0: 1 and fired. A battery A4 of the present invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0025】(実施例5)LiOHとFeOOHとを、
LiとFeとのモル比が4.0:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li4.0 FeO3.5 で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、本発明電池A5を作製した。
(Example 5) LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 4.0 FeO 3.5 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 4.0: 1 and fired. A battery A5 of the present invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0026】(実施例6)LiOHとFeOOHとを、
LiとFeとのモル比が5.0:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li5.0 FeO4で表されるリチウム−鉄複合酸化
物粉末を調製し、このリチウム−鉄複合酸化物粉末を正
極活物質として用いたこと以外は実施例1と同様にし
て、本発明電池A6を作製した。
(Example 6) LiOH and FeOOH
Lithium-iron composite oxide represented by the composition formula: Li 5.0 FeO 4 in the same manner as in Example 1 except that Li and Fe were mixed so that the molar ratio was 5.0: 1 and fired. A battery A6 of the present invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0027】(実施例7)LiOHとFeOOHとを、
LiとFeとのモル比が5.05:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li5.05FeO4.025 で表されるリチウム−鉄複合
酸化物粉末を調製し、このリチウム−鉄複合酸化物粉末
を正極活物質として用いたこと以外は実施例1と同様に
して、本発明電池A7を作製した。
(Example 7) LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 5.05 FeO 4.025 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so that the molar ratio was 5.05: 1 and fired. A battery A7 of the present invention was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0028】(比較例1)LiOHとFeOOHとを、
LiとFeとのモル比が1:1となるように混合し、焼
成したこと以外は実施例1と同様にして、組成式:Li
FeO2 で表されるリチウム−鉄複合酸化物粉末を調製
し、このリチウム−鉄複合酸化物粉末を正極活物質とし
て用いたこと以外は実施例1と同様にして、比較電池B
1を作製した。
(Comparative Example 1) LiOH and FeOOH
Compositional formula: Li was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 1: 1 and fired.
Comparative battery B was prepared in the same manner as in Example 1 except that a lithium-iron composite oxide powder represented by FeO 2 was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.
1 was produced.

【0029】(比較例2)LiOHとFeOOHとを、
LiとFeとのモル比が1.2:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li1.2 FeO2.05で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、比較電池B2を作製した。
(Comparative Example 2) LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 1.2 FeO 2.05 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 1.2: 1 and fired. A comparative battery B2 was prepared in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0030】(比較例3)LiOHとFeOOHとを、
LiとFeとのモル比が5.07:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li5.07FeO4.035 で表されるリチウム−鉄複合
酸化物粉末を調製し、このリチウム−鉄複合酸化物粉末
を正極活物質として用いたこと以外は実施例1と同様に
して、比較電池B3を作製した。
Comparative Example 3 LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 5.07 FeO 4.035 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 5.07: 1 and fired. A comparative battery B3 was produced in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0031】(比較例4)LiOHとFeOOHとを、
LiとFeとのモル比が5.1:1となるように混合
し、焼成したこと以外は実施例1と同様にして、組成
式:Li5.1 FeO4.05で表されるリチウム−鉄複合酸
化物粉末を調製し、このリチウム−鉄複合酸化物粉末を
正極活物質として用いたこと以外は実施例1と同様にし
て、比較電池B4を作製した。
Comparative Example 4 LiOH and FeOOH
A lithium-iron composite oxide represented by a composition formula: Li 5.1 FeO 4.05 was prepared in the same manner as in Example 1 except that Li and Fe were mixed so as to have a molar ratio of 5.1: 1 and fired. Comparative Battery B4 was prepared in the same manner as in Example 1 except that a powder was prepared and this lithium-iron composite oxide powder was used as the positive electrode active material.

【0032】本発明電池A1〜A7及び比較電池B1〜
B4の作製に用いた各リチウム−鉄複合酸化物の組成を
表1にまとめて示す。
Inventive batteries A1 to A7 and comparative batteries B1 to
Table 1 collectively shows the composition of each lithium-iron composite oxide used for the production of B4.

【0033】[0033]

【表1】 [Table 1]

【0034】〔放電容量特性〕本発明電池A1〜A7及
び比較電池B1〜B4について、充電電流1mAで充電
終止電圧4.3Vまで充電した後、放電電流3mAで放
電終止電圧3Vまで放電して、各電池の放電容量特性を
調べた。結果を先の表1及び図2に示す。
[Discharge Capacity Characteristics] The batteries A1 to A7 of the present invention and the comparative batteries B1 to B4 were charged at a charging current of 1 mA to a charge end voltage of 4.3 V, and then discharged at a discharge current of 3 mA to a discharge end voltage of 3 V. The discharge capacity characteristics of each battery were examined. The results are shown in Table 1 and FIG. 2 above.

【0035】図2は、各電池の放電容量特性を、縦軸に
リチウム−鉄複合酸化物1g当たりの放電容量(mAh
/g)を、また横軸に用いたリチウム−鉄複合酸化物中
のLiとFeとのモル比の値x(x in Lix Fe
y )をとって示したグラフであり、同図に示すように
本発明電池A1〜A7は、放電容量が120〜140m
Ah/gと大きいのに対して、比較電池B1〜B4は放
電容量が20〜60mAh/gと小さい。このことか
ら、LiとFeとのモル比の値xが1.25〜5.05
のリチウム−鉄複合酸化物を用いることにより、放電容
量の大きい非水電解質電池が得られることが分かる。な
かでも、LiとFeとのモル比の値xが3.0〜5.0
であるリチウム−鉄複合酸化物を用いた本発明電池A4
〜A6は、放電容量が140mAh/gと極めて大き
く、このことからxが3.0〜5.0のリチウム−鉄複
合酸化物を用いることが、高容量の非水電解質電池を得
る上で好ましいことが分かる。
FIG. 2 shows the discharge capacity characteristics of each battery, with the vertical axis representing the discharge capacity per 1 g of lithium-iron composite oxide (mAh).
/ G), and the value x (x in Li x Fe) of the molar ratio of Li and Fe in the lithium-iron composite oxide used on the horizontal axis.
O y ), the discharge capacities of the batteries A1 to A7 of the present invention are 120 to 140 m as shown in FIG.
The comparative batteries B1 to B4 have small discharge capacities of 20 to 60 mAh / g, while they are large as Ah / g. From this, the value x of the molar ratio of Li and Fe is 1.25 to 5.05.
It can be seen that a non-aqueous electrolyte battery having a large discharge capacity can be obtained by using the above lithium-iron composite oxide. Above all, the value x of the molar ratio of Li and Fe is 3.0 to 5.0.
Battery A4 of the present invention using the lithium-iron composite oxide
-A6 have an extremely large discharge capacity of 140 mAh / g. Therefore, it is preferable to use a lithium-iron composite oxide having x of 3.0 to 5.0 in order to obtain a high capacity non-aqueous electrolyte battery. I understand.

【0036】叙上の実施例では、本発明を非水電解液電
池に適用する場合を例に挙げて説明したが、本発明は固
体電解質を用いた一次又は二次電池にも適用し得るもの
であり、この場合においても実施例で示したものと同様
の高容量の非水電解質電池が得られる。
In the above embodiments, the case where the present invention is applied to a non-aqueous electrolyte battery has been described as an example, but the present invention can also be applied to a primary or secondary battery using a solid electrolyte. Even in this case, a high capacity non-aqueous electrolyte battery similar to that shown in the examples can be obtained.

【0037】[0037]

【発明の効果】正極活物質としてLiとFeとのモル比
が特定の範囲内にあるリチウム−鉄複合酸化物が用いら
れているので、電池容量が大きい。
Since the lithium-iron composite oxide having a molar ratio of Li and Fe within a specific range is used as the positive electrode active material, the battery capacity is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of a flat type battery of the present invention.

【図2】本発明電池及び比較電池の各放電容量特性を示
すグラフである。
FIG. 2 is a graph showing respective discharge capacity characteristics of a battery of the present invention and a comparative battery.

【符号の説明】 A1 本発明電池 1 正極 2 負極 3 セパレータDESCRIPTION OF SYMBOLS A1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5 Keihan-hondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、金属リチウム又はリチウムイオン
を吸蔵、放出することが可能な物質を負極材料とする負
極とを備える非水電解質電池において、前記正極の活物
質として、式:Lix FeOy (但し、1.25≦x≦
5.05、1.8≦y≦4.025)で表されるリチウ
ム−鉄複合酸化物が用いられていることを特徴とする非
水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode and a negative electrode comprising a material capable of inserting and extracting metallic lithium or lithium ions as a negative electrode material, wherein the positive electrode active material has the formula: Li x FeO 2. y (however, 1.25 ≦ x ≦
5.05, 1.8 ≤ y ≤ 4.025), which is a non-aqueous electrolyte battery using a lithium-iron composite oxide.
【請求項2】正極と、金属リチウム又はリチウムイオン
を吸蔵、放出することが可能な物質を負極材料とする負
極とを備える非水電解質電池において、前記正極の活物
質として、式:Lix FeOy (但し、3.0≦x≦
5.0、3.0≦y≦4.0)で表されるリチウム−鉄
複合酸化物が用いられていることを特徴とする非水電解
質電池。
2. A non-aqueous electrolyte battery comprising a positive electrode and a negative electrode using, as a negative electrode material, a material capable of occluding and releasing metallic lithium or lithium ions, a positive electrode active material having the formula: Li x FeO 2. y (However, 3.0 ≦ x ≦
5.0, 3.0 ≦ y ≦ 4.0) A non-aqueous electrolyte battery comprising a lithium-iron composite oxide represented by the formula:
JP30583993A 1993-11-11 1993-11-11 Non-aqueous electrolyte battery Expired - Fee Related JP3268924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30583993A JP3268924B2 (en) 1993-11-11 1993-11-11 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30583993A JP3268924B2 (en) 1993-11-11 1993-11-11 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH07134986A true JPH07134986A (en) 1995-05-23
JP3268924B2 JP3268924B2 (en) 2002-03-25

Family

ID=17949998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30583993A Expired - Fee Related JP3268924B2 (en) 1993-11-11 1993-11-11 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3268924B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008668A (en) * 2000-06-21 2002-01-11 Toshiba Battery Co Ltd Alkaline battery
JP2002008669A (en) * 2000-06-23 2002-01-11 Toshiba Battery Co Ltd Battery
JP2012030988A (en) * 2010-07-28 2012-02-16 Tayca Corp Method for producing iron-containing lithium titanate
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JP2020053314A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JPWO2021029357A1 (en) * 2019-08-09 2021-02-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445210B (en) * 2017-07-03 2020-03-27 电子科技大学 High-capacity iron-based lithium ion battery anode material α -LiFeO2Preparation method of (1)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008668A (en) * 2000-06-21 2002-01-11 Toshiba Battery Co Ltd Alkaline battery
JP2002008669A (en) * 2000-06-23 2002-01-11 Toshiba Battery Co Ltd Battery
JP2012030988A (en) * 2010-07-28 2012-02-16 Tayca Corp Method for producing iron-containing lithium titanate
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JP2020053314A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JPWO2021029357A1 (en) * 2019-08-09 2021-02-18

Also Published As

Publication number Publication date
JP3268924B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JP3436600B2 (en) Rechargeable battery
JPH06243871A (en) Nonaqueous secondary battery
JP3197779B2 (en) Lithium battery
JP3244389B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3717544B2 (en) Lithium secondary battery
JP2000100434A (en) Lithium secondary battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2002025609A (en) Lithium secondary battery
JP3188032B2 (en) Lithium secondary battery
JPH08171936A (en) Lithium secondary battery
JP3519766B2 (en) Non-aqueous secondary battery
JPH06111820A (en) Nonaqueous battery
JP3670895B2 (en) Lithium secondary battery
JP3188108B2 (en) Non-aqueous electrolyte secondary battery
JPH10144291A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode
JPH06243869A (en) Nonaqueous secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JP3167577B2 (en) Lithium battery
JP3615416B2 (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3167518B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees