JP2002008668A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JP2002008668A
JP2002008668A JP2000186278A JP2000186278A JP2002008668A JP 2002008668 A JP2002008668 A JP 2002008668A JP 2000186278 A JP2000186278 A JP 2000186278A JP 2000186278 A JP2000186278 A JP 2000186278A JP 2002008668 A JP2002008668 A JP 2002008668A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
zinc oxide
potassium hydroxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000186278A
Other languages
Japanese (ja)
Other versions
JP4503790B2 (en
Inventor
Keisuke Narumi
恵介 成海
Ayako Kobayashi
彩子 小林
Kiyoto Yoda
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2000186278A priority Critical patent/JP4503790B2/en
Publication of JP2002008668A publication Critical patent/JP2002008668A/en
Application granted granted Critical
Publication of JP4503790B2 publication Critical patent/JP4503790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a battery having a high energy density and an improved discharge duration, by suppressing generation of hydrogen gas by self-discharge while maintaining high average actuation voltage, in the alkaline battery. SOLUTION: The battery improved in the above purpose is obtained by using iron (VI) acid salt as a positive electrode active material, and an electrolyte containing potassium hydroxide and zinc oxide. The best effect is acquired by making potassium hydroxide concentration in the electrolyte at 30 to 48 mass %, and making zinc oxide concentration at 2 to 6 mass %, especially.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー密度
を有するアルカリ電池に関する。
[0001] The present invention relates to an alkaline battery having a high energy density.

【0002】[0002]

【従来の技術】従来、ビデオカメラやヘッドフォンステ
レオ等の電子機器においては、小型化が進んでおり、エ
ネルギー密度の大きな電池が求められてきている。こう
した小型化した電子機器に用いるための電池としては、
これまで、マンガン電池や、このマンガン電池より大容
量の得られる水酸化カリウム水溶液等のアルカリ電解液
を用いたアルカリマンガン電池等の一次電池が多用され
ている。また、酸化銀電池や、リチウム電池なども実用
化されてきている。ところで近年、電子機器の多機能
化、小型化、高性能化によって、これら電子機器の電源
となる電池の高性能化、すなわち、一次電池の品質の向
上、寿命の改善、特に放電持続時間の改善に対する要求
が高まっている。
2. Description of the Related Art Conventionally, electronic devices such as video cameras and headphone stereos have been reduced in size, and batteries having a large energy density have been demanded. As batteries for use in such miniaturized electronic devices,
Until now, primary batteries such as manganese batteries and alkaline manganese batteries using an alkaline electrolyte such as an aqueous potassium hydroxide solution having a larger capacity than the manganese batteries have been widely used. Also, silver oxide batteries, lithium batteries, and the like have been put into practical use. By the way, in recent years, due to the multifunctionality, miniaturization, and high performance of electronic devices, the performance of batteries serving as power sources for these electronic devices has been improved, that is, the quality and life of primary batteries have been improved, and particularly the discharge duration has been improved. The demand for is increasing.

【0003】電池の品質向上特に電池容量の増加のため
には、正極合剤中における正極活物質の含有量を増加さ
せる必要があるが、このためには、必然的に正極合剤中
に含有されている添加成分を低減させる必要があり、導
電助剤である炭素粉末の含有量も低下させることにな
る。ところが、添加成分を含まない正極活物質のみから
なる正極合剤は、成形が困難であるばかりでなく、導電
助剤を含まないため内部抵抗が増加し、電池性能の低下
をもたらすことになる。一方、内部抵抗を低減化させる
ため炭素粉末の含有量を増加させると、電池の内部抵抗
は下がるものの、正極活物質の量が減るために放電容量
の低下につながって、これらの要求は、二律背反の関係
となり両者を同時に満足することは困難であった。
[0003] In order to improve the quality of the battery, particularly to increase the battery capacity, it is necessary to increase the content of the positive electrode active material in the positive electrode mixture. It is necessary to reduce the amount of the added component, and the content of the carbon powder as the conductive assistant is also reduced. However, a positive electrode mixture comprising only a positive electrode active material containing no additive component is not only difficult to mold, but also does not contain a conductive auxiliary, so that the internal resistance increases and the battery performance deteriorates. On the other hand, when the content of the carbon powder is increased to reduce the internal resistance, the internal resistance of the battery is reduced, but the amount of the positive electrode active material is reduced, which leads to a decrease in the discharge capacity. And it was difficult to satisfy both at the same time.

【0004】一方、高エネルギー密度の鉄(VI)酸塩を
正極活物質として用いた電池が検討されている。この電
池は、従来のアルカリ電池より長寿命の電池であるとさ
れ、正極活物質としてMFe(VI)Oを、負極活物質
として亜鉛合金を、また電解液として水酸化カリウム水
溶液をそれぞれ用いた一次電池である。ところで、この
鉄(VI)酸塩を正極活物質として用いて電池を構成した
場合、高エネルギー密度の電池は得られるものの、実放
電持続時間は、従来のアルカリ電池と比較して期待され
るほど長い放電持続時間の電池が得られないという課題
があった。
On the other hand, batteries using ferrite (VI) having a high energy density as a positive electrode active material have been studied. This battery is considered to have a longer life than the conventional alkaline battery, and uses MFe (VI) O 4 as a positive electrode active material, a zinc alloy as a negative electrode active material, and an aqueous potassium hydroxide solution as an electrolyte. It is a primary battery. By the way, when a battery is constructed using this ferrate (VI) as a positive electrode active material, a battery with a high energy density can be obtained, but the actual discharge duration is as long as expected compared to a conventional alkaline battery. There is a problem that a battery having a long discharge duration cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、平均作動電
圧を低下させることなく、自己放電による水素ガスの発
生を抑制し、放電持続時間の改善された高エネルギー密
度電池を実現することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high energy density battery which suppresses the generation of hydrogen gas due to self-discharge without lowering the average operating voltage and has an improved discharge duration. And

【0006】[0006]

【課題を解決するための手段】本発明に係る電池は、正
極、負極および電解液から構成される電池において、前
記正極の活物質として鉄(VI)酸塩を用い、また電解液
として水酸化カリウムおよび酸化亜鉛を含有するアルカ
リ溶液を用いるを特徴とする。
According to the present invention, there is provided a battery comprising a positive electrode, a negative electrode and an electrolytic solution, wherein iron (VI) salt is used as an active material of the positive electrode, and hydroxide is used as an electrolytic solution. It is characterized by using an alkaline solution containing potassium and zinc oxide.

【0007】また請求項2の本発明は、前記電解液の濃
度として、水酸化カリウムを30〜48質量%、および
酸化亜鉛を2〜6質量%の濃度範囲とすることを特徴と
するものである。
According to a second aspect of the present invention, the concentration of the electrolytic solution is 30 to 48% by mass of potassium hydroxide and 2 to 6% by mass of zinc oxide. is there.

【0008】さらに、請求項2の本発明において、電解
液の水酸化カリウムの濃度を30〜48質量%の範囲に
することにより最適の伝導度を、酸化亜鉛の濃度を2〜
6質量%の範囲にすることにより自己放電を抑制するこ
とができ、高容量を維持できる。また、酸化亜鉛の濃度
が上記範囲を上回ると、放電持続時間が短くなる。一
方、酸化亜鉛の濃度が上記範囲を下回ると、水素ガス発
生の抑制効果が低下し、電池作製後電池内部の圧力が高
まり、容器が変形するおそれがあり望ましくない。ま
た、上記本発明のアルカリ電解液において酸化亜鉛は、
水酸化カリウム溶液中に溶解して状態で存在している。
Further, in the present invention according to claim 2, the optimum conductivity is obtained by setting the concentration of potassium hydroxide in the electrolytic solution in the range of 30 to 48% by mass, and the concentration of zinc oxide is set to 2 to
When the content is in the range of 6% by mass, self-discharge can be suppressed, and high capacity can be maintained. When the concentration of zinc oxide exceeds the above range, the discharge duration becomes short. On the other hand, when the concentration of zinc oxide is lower than the above range, the effect of suppressing the generation of hydrogen gas decreases, the pressure inside the battery increases after the battery is manufactured, and the container may be undesirably deformed. Further, in the alkaline electrolyte of the present invention, zinc oxide is
It dissolves in potassium hydroxide solution and exists in a state.

【0009】前記の構成を有する本発明によれば、正
極、負極および電解液から構成される電池において、前
記正極の材料として鉄(VI)酸塩がアルカリ電解液中で
安定に存在し、高い作動電圧の電池を実現することがで
きる。
According to the present invention having the above structure, in a battery comprising a positive electrode, a negative electrode and an electrolyte, ferrate (VI) is stably present in an alkaline electrolyte as a material for the positive electrode, A battery with an operating voltage can be realized.

【0010】[0010]

【発明の実施の形態】以下、本発明の電池を、図面を参
照して詳細に説明する。図1は、本発明をLR44形ボ
タン電池に応用した例である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the battery of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to an LR44 button battery.

【0011】図1に示すように、ステンレス鋼等ででき
た正極ケース7内には、正極合剤6が収納されており、
セパレータ4が、前記正極合剤6上に配置されている。
前記セパレータ4表面には、微孔性ポリエチレンフィル
ムやセロハンからできたバリヤー3が配置されており、
このセパレータ4に電解液が含浸保持されている。一
方、上記正極ケース7より小径の負極ケース1内にはゲ
ル状の負極6が配置され、この負極ケース1は、前記正
極ケース7と例えばポリアミド樹脂からなっているガス
ケット5を介して該正極ケース7内に嵌装され正極ケー
スをかしめ加工することにより相互に液密に密閉固定さ
れる。
As shown in FIG. 1, a positive electrode mixture 6 is accommodated in a positive electrode case 7 made of stainless steel or the like.
A separator 4 is disposed on the positive electrode mixture 6.
On the surface of the separator 4, a barrier 3 made of a microporous polyethylene film or cellophane is arranged,
The electrolytic solution is impregnated and held in the separator 4. On the other hand, a gelled negative electrode 6 is disposed in the negative electrode case 1 having a smaller diameter than the positive electrode case 7. The negative electrode case 1 is connected to the positive electrode case 7 via a gasket 5 made of, for example, a polyamide resin. 7 and are caulked to the positive electrode case to be liquid-tightly sealed and fixed to each other.

【0012】次に、正極合剤、ゲル状負極、およびセパ
レータについて詳細に説明する。
Next, the positive electrode mixture, the gelled negative electrode, and the separator will be described in detail.

【0013】(1) 正極合剤 本発明の正極合剤は、正極活物質である鉄(VI)酸塩
と、正極内の電子移動速度を加速するための導電助剤と
を含む混合物を加圧成形することにより作成される。
(1) Positive Electrode Mixture The positive electrode mixture of the present invention is obtained by adding a mixture containing ferrate (VI), which is a positive electrode active material, and a conductive additive for accelerating the electron transfer speed in the positive electrode. It is created by pressing.

【0014】本発明で用いられる正極活物質は、化学式
AFeOで表される鉄(VI)酸塩である。式中、Aは
アルカリ金属、アルカリ土類金属及び2価金属の内から
選択することができる。具体的には、KFeO、N
FeO、LiFeO 、CsFeO、Ag
FeO、SrFeO、MgFeO、CaFeO
、BaFeO、ZnFeO、などが挙げられ、こ
れらは単独または混合して用いることができるが、特に
これらの物質の内、KFeOが、理論容量が高いの
で好ましい。
The positive electrode active material used in the present invention has a chemical formula
AFeO4Is a ferrate (VI) salt represented by Where A is
From among alkali metals, alkaline earth metals and divalent metals
You can choose. Specifically, K2FeO4, N
a2FeO4, Li2FeO 4, Cs2FeO4, Ag
2FeO4, SrFeO4, MgFeO4, CaFeO
4, BaFeO4, ZnFeO4, Etc.
These can be used alone or in combination.
Of these substances, K2FeO4But the theoretical capacity is high
Is preferred.

【0015】これらの鉄(VI)酸塩(AFeO)は、
次のような方法によって製造することができる。鉄(V
I)酸ナトリウム(NaFeO)は、硝酸鉄(III)
(Fe(NO)を濃厚な水酸化ナトリウム(Na
OH)水溶液中で次亜塩素酸ナトリウム(NaClO)
を用いて酸化することにより製造することができる。鉄
(VI)酸カリウム(KFeO)は、カリウムアミド
(KNH)を酸化して生成した過酸化カリウム(K
)と酸化鉄(III)(Fe)とを、酸素気流
中で350〜370℃で加熱することによって製造する
ことができる。また、鉄と硝酸カリウム(KNO)と
の混合物を空気中で燃焼反応させることによっても製造
することができる。さらに、鉄(VI)酸ナトリウム(N
FeO)の水溶液に水酸化カリウム(KOH)を
添加して複分解することによっても製造することができ
る。さらに、次亜塩素酸カリウム(KClO)と水酸化
カリウム(KOH)との混合水溶液に硝酸鉄(Fe(N
)を添加することによっても製造することがで
きる。また、鉄(VI)酸バリウム(BaFeO)は、
鉄(VI)酸カリウム(KFeO)の水溶液に、塩化
バリウム(BaCl)を添加して析出した結晶を10
0℃で乾燥することにより製造することができる。その
他の物質も、これらに準じた方法により製造することが
できる。
These ferrates (VI) (AFeO 4 )
It can be manufactured by the following method. Iron (V
I) Sodium acid salt (Na 2 FeO 4 ) is iron (III) nitrate
(Fe (NO 3 ) 3 ) with concentrated sodium hydroxide (Na
OH) Sodium hypochlorite (NaClO) in aqueous solution
It can be produced by oxidation using Iron (VI) potassium (K 2 FeO 4) is potassium peroxide generated by oxidation of potassium amide (KNH 2) (K 2
O 2 ) and iron (III) oxide (Fe 2 O 3 ) can be produced by heating at 350 to 370 ° C. in an oxygen stream. It can also be produced by burning a mixture of iron and potassium nitrate (KNO 3 ) in air. In addition, sodium ferrate (VI) (N
It can also be produced by adding potassium hydroxide (KOH) to an aqueous solution of a 2 FeO 4 ) and subjecting it to metathesis. Further, a mixed aqueous solution of potassium hypochlorite (KClO) and potassium hydroxide (KOH) is added to an aqueous solution of iron nitrate (Fe (N
It can also be produced by adding O 3 ) 3 ). In addition, barium ferrate (VI) (BaFeO 4 )
Barium chloride (BaCl 2 ) was added to an aqueous solution of potassium ferrate (VI) (K 2 FeO 4 ) to precipitate crystals.
It can be produced by drying at 0 ° C. Other substances can also be produced by a method according to these.

【0016】本発明においては、正極活物質の導電性を
改善するために、導電助剤が正極活物質に混合されて使
用される。本発明において用いられる導電助剤として
は、炭素系材料粒子が好ましく、例えば、人造黒鉛や、
アセチレンブラック、ケッチェンブラック、ファーネス
ブラックなどの無定形炭素材料などの粒子が挙げられ
る。これらの物質の内、特に人造黒鉛や、アセチレンブ
ラックなどの無定形炭素材料粒子を用いることが、成形
性や保液性にすぐれている点で好ましい。本発明におけ
る炭素系材料粒子としては、平均粒径が1〜100μm
の範囲のものが望ましい。平均粒径がこの範囲を上回っ
た場合、導電助剤が均一に分散しない問題が発生し、一
方平均粒径がこの範囲を下回った場合、成形後の強度低
下の問題が発生し好ましくない。
In the present invention, in order to improve the conductivity of the positive electrode active material, a conductive auxiliary is used by being mixed with the positive electrode active material. As the conductive auxiliary used in the present invention, carbon-based material particles are preferable, for example, artificial graphite,
Examples include particles of an amorphous carbon material such as acetylene black, Ketjen black, and furnace black. Among these substances, it is particularly preferable to use amorphous carbon material particles such as artificial graphite and acetylene black in terms of excellent moldability and liquid retention. The carbon-based material particles in the present invention have an average particle size of 1 to 100 μm.
It is desirable to have a range of When the average particle size exceeds this range, a problem occurs in that the conductive auxiliary agent is not uniformly dispersed. On the other hand, when the average particle size is below this range, there is a problem in that strength after molding is reduced, which is not preferable.

【0017】前記導電助剤の正極合剤中における配合割
合は、3〜20質量%の範囲とすることが好ましい。導
電助剤の量がこの範囲を上回ると、放電容量の低下し放
電持続時間が低下して好ましくない。一方、この範囲を
下回ると、内部抵抗が増加して好ましくない。
The mixing ratio of the conductive additive in the positive electrode mixture is preferably in the range of 3 to 20% by mass. If the amount of the conductive additive exceeds this range, the discharge capacity decreases and the discharge duration decreases, which is not preferable. On the other hand, below this range, the internal resistance increases, which is not preferable.

【0018】(2) 負極 本発明で用いられる負極2は、負極活物質である粒状亜
鉛を、ゲル化剤および水酸化カリウムと酸化亜鉛を含有
する本発明の電解液を用いてゲル化することが好まし
い。粒状亜鉛は、一般のアルカリ乾電池において用いら
れている粒状亜鉛もしくは亜鉛合金を使用することがで
き、特に無汞化亜鉛粒子が環境汚染問題のおそれのない
ことから最も望ましい。ゲル化剤としては、ポリビニル
アルコール、ポリアクリル酸塩、CMC、アルギン酸、
などを用いることができる。特に、ポリアクリル酸塩
が、強アルカリに対する耐薬品性にすぐれているため好
ましい。
(2) Negative Electrode The negative electrode 2 used in the present invention is obtained by gelling granular zinc as the negative electrode active material using the gelling agent and the electrolytic solution of the present invention containing potassium hydroxide and zinc oxide. Is preferred. As the granular zinc, granular zinc or a zinc alloy used in a general alkaline dry battery can be used, and in particular, the non-melted zinc particles are most preferable because there is no risk of environmental pollution. As the gelling agent, polyvinyl alcohol, polyacrylate, CMC, alginic acid,
Etc. can be used. In particular, polyacrylates are preferable because they have excellent chemical resistance to strong alkalis.

【0019】(3) セパレータ 本発明においてセパレータ4は、正極材と負極材とを物
理的に接触しないように分離するもので、それ自身電気
絶縁性を有し、電解液を保持した状態で電解質の透過性
に優れ、電解液に対して化学的に安定な材料が用いられ
る。かかる材料としては、例えばポリプロピレン不織
布、ポリエチレン不織布、アセタール化ポリビニルアル
コール不織布等があげられる。
(3) Separator In the present invention, the separator 4 separates the positive electrode material and the negative electrode material so that they do not come into physical contact with each other. A material having excellent permeability and being chemically stable to the electrolytic solution is used. Examples of such a material include a polypropylene nonwoven fabric, a polyethylene nonwoven fabric, and an acetalized polyvinyl alcohol nonwoven fabric.

【0020】[0020]

【実施例】以下、本発明の電池に関する実施例及び比較
例を説明する。
EXAMPLES Examples and comparative examples relating to the battery of the present invention will be described below.

【0021】(実施例1〜12)まず、正極活物質であ
る鉄(VI)酸カリウム粉末と、導電助剤である人造黒鉛
を用い、導電助剤が正極活物質に対し10質量%となる
ように攪拌混合し、加圧成形して正極合剤6を調製し
た。一方、負極には粒状亜鉛と、下記表1に記載した濃
度の水酸化カリウム、および同じく下記表1に記載した
濃度の酸化亜鉛を含むアルカリ電解液及びゲル化剤とし
てのポリアクリル酸ナトリウムを攪拌混合してゲル状亜
鉛負極2を調製した。こうして得られた正負極を用い
て、正極ケース7内に正極合剤6を充填し、セパレータ
4とバリヤー3を載置し、一方、負極ケース1内に負極
2を充填した。これら両者をガスケット5を介して組合
わせ、正極ケース7の開口部をプレスで内方へ折り曲げ
て密閉した。このようにして、図1に示すようなLR4
4形ボタン電池12種類を各20個組み立てた。以上の
ようにして得られた電池について、30mA連続放電の
平均作動電圧、放電持続時間及び電池総高(調査数20
個の平均値)を測定した。その結果を表1に示す。
(Examples 1 to 12) First, using potassium ferrate (VI) powder as a positive electrode active material and artificial graphite as a conductive auxiliary, the conductive auxiliary becomes 10% by mass based on the positive electrode active material. The mixture was stirred and mixed as described above, and was molded under pressure to prepare a positive electrode mixture 6. On the other hand, the negative electrode was stirred with granular zinc, potassium hydroxide having the concentration shown in Table 1 below, and an alkaline electrolyte containing zinc oxide also having the concentration shown in Table 1 and sodium polyacrylate as a gelling agent. By mixing, a gelled zinc negative electrode 2 was prepared. Using the positive and negative electrodes thus obtained, the positive electrode mixture 6 was filled in the positive electrode case 7, the separator 4 and the barrier 3 were placed, and the negative electrode 2 was filled in the negative electrode case 1. These two were combined via a gasket 5, and the opening of the positive electrode case 7 was bent inward by a press to seal it. Thus, LR4 as shown in FIG.
Twelve types of four type button batteries were assembled. With respect to the batteries obtained as described above, the average operating voltage of 30 mA continuous discharge, the discharge duration, and the total battery height (number of surveys: 20)
(Mean value). Table 1 shows the results.

【0022】(比較例1)アルカリ電解液として、酸化
亜鉛を配合しないものを用いたこと以外、実施例1と同
様にして電池20個を組み立て、実施例1と同様にして
電池特性の評価を行った。その結果を表1に併せて示
す。
Comparative Example 1 Twenty batteries were assembled in the same manner as in Example 1 except that a zinc oxide was not used as the alkaline electrolyte, and the battery characteristics were evaluated in the same manner as in Example 1. went. The results are shown in Table 1.

【0023】(比較例2)正極活物質として二酸化マン
ガンを用い、またアルカリ電解液の濃度を表1に示すも
のとしたこと以外は実施例1と同様にして電池20個を
作製し、実施例1と同様にして電池特性の評価を行っ
た。その結果を表1に併せて示す。
Comparative Example 2 Twenty batteries were prepared in the same manner as in Example 1 except that manganese dioxide was used as the positive electrode active material and the concentration of the alkaline electrolyte was as shown in Table 1. The battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、実施例1〜3及
び比較例2によれば、正極に鉄(VI)酸塩を用いたもの
は、平均作動電圧が高く、放電持続時間が従来のアルカ
リマンガン電池と比較して約30%伸びていることがわ
かる。比較例1によれば、酸化亜鉛が無いものは、放電
持続時間は長くなるが、水素ガス発生の抑制がないた
め、電池総高の増加が見られる。また、実施例4,5,
10,11によれば、アルカリ電解液の酸化亜鉛濃度が
少ないものは、水素ガス発生の抑制が不十分となり、電
池総高の増加が見られる。さらに、実施例6,9によれ
ば、アルカリ電解液の酸化亜鉛濃度が多いものは放電持
続時間が短くなることが判明した。また、水酸化カリウ
ム濃度が28質量%で酸化亜鉛濃度を7質量%とした場
合、酸化亜鉛が完全には溶解せず、一部固形部分が残存
していた。電池機能としては特に支障は無かったが、不
均一系の溶液となるため、酸化亜鉛が完全に溶解する濃
度範囲を選ぶ方が望ましいことがわかった。以上の結果
から、水酸化カリウム濃度は30〜48質量%、酸化亜
鉛濃度は2〜6質量%の範囲が最も望ましいことがわか
った。
As is clear from Table 1, according to Examples 1 to 3 and Comparative Example 2, those using ferrate (VI) for the positive electrode had a high average operating voltage and a long discharge duration. It can be seen that it is increased by about 30% as compared with the alkaline manganese battery. According to Comparative Example 1, the battery without zinc oxide has a longer discharge duration, but has no suppression of hydrogen gas generation, so that the total battery height is increased. Examples 4, 5,
According to Examples 10 and 11, when the concentration of zinc oxide in the alkaline electrolyte is low, the suppression of hydrogen gas generation is insufficient and the total battery height is increased. Further, according to Examples 6 and 9, it was found that those having a high zinc oxide concentration in the alkaline electrolyte had a shorter discharge duration. When the concentration of potassium hydroxide was 28% by mass and the concentration of zinc oxide was 7% by mass, zinc oxide was not completely dissolved, and a solid portion remained partially. Although there was no particular problem in terms of the battery function, it was found that it was preferable to select a concentration range in which zinc oxide was completely dissolved, since the solution was a heterogeneous solution. From the above results, it was found that the potassium hydroxide concentration and the zinc oxide concentration were most preferably in the range of 30 to 48% by mass and 2 to 6% by mass, respectively.

【0026】なお、本実験例以外のアルカリ電解液と亜
鉛合金を使用した電池でも、正極作用物質として鉄(V
I)酸塩を用いることにより、高性能化、長寿命化が達
成できる事を確認した。さらに、本実験例以外の形態の
電池、例えば円筒型でも同様の効果を確認している。
It should be noted that even in batteries using an alkaline electrolyte and a zinc alloy other than those in this experimental example, iron (V
I) It was confirmed that high performance and long life could be achieved by using an acid salt. Further, similar effects have been confirmed with batteries having a form other than the experimental example, for example, a cylindrical type.

【0027】[0027]

【発明の効果】以上詳述した如く、本発明の正極活物
質、アルカリ電解液を用いることにより、高エネルギー
密度で放電持続時間が長く水素ガス発生が低減した高性
能な電池を提供することができる。
As described in detail above, by using the positive electrode active material and the alkaline electrolyte of the present invention, it is possible to provide a high-performance battery having a high energy density, a long discharge duration and a reduced generation of hydrogen gas. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるLR44形ボタン電池を示す断
面図。
FIG. 1 is a sectional view showing an LR44 button battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…負極ケース 2…負極 3…バリヤー 4…セパレータ 5…ガスケット 6…正極 7…正極ケース DESCRIPTION OF SYMBOLS 1 ... Negative electrode case 2 ... Negative electrode 3 ... Barrier 4 ... Separator 5 ... Gasket 6 ... Positive electrode 7 ... Positive case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 依田 清人 東京都品川区南品川3丁目4番10号 東芝 電池株式会社 Fターム(参考) 5H024 AA02 AA14 CC03 EE06 FF09 FF10 GG01 GG04 GG06 HH02 5H050 AA00 AA08 BA04 BA11 CA07 CB13 DA02 DA09 DA13 EA12 FA17 HA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyoto Yoda 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H024 AA02 AA14 CC03 EE06 FF09 FF10 GG01 GG04 GG06 HH02 5H050 AA00 AA08 BA04 BA11 CA07 CB13 DA02 DA09 DA13 EA12 FA17 HA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極、負極およびアルカリ電解液から構成
される電池において、前記正極の活物質として鉄(VI)
酸塩を用い、また電解液として水酸化カリウムおよび酸
化亜鉛を含有するアルカリ溶液を用いたことを特徴とす
るアルカリ電池。
1. A battery comprising a positive electrode, a negative electrode and an alkaline electrolyte, wherein iron (VI) is used as an active material of the positive electrode.
An alkaline battery using an acid salt and an alkaline solution containing potassium hydroxide and zinc oxide as an electrolytic solution.
【請求項2】前記アルカリ電解液が、30〜48質量%
の水酸化カリウム、および2〜6質量%の酸化亜鉛を含
有するものであることを特徴とする請求項1に記載のア
ルカリ電池。
2. The method according to claim 1, wherein the alkaline electrolyte is 30 to 48% by mass.
2. The alkaline battery according to claim 1, comprising potassium hydroxide and 2 to 6% by mass of zinc oxide.
JP2000186278A 2000-06-21 2000-06-21 Alkaline battery Expired - Fee Related JP4503790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186278A JP4503790B2 (en) 2000-06-21 2000-06-21 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186278A JP4503790B2 (en) 2000-06-21 2000-06-21 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2002008668A true JP2002008668A (en) 2002-01-11
JP4503790B2 JP4503790B2 (en) 2010-07-14

Family

ID=18686470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186278A Expired - Fee Related JP4503790B2 (en) 2000-06-21 2000-06-21 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4503790B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135776A (en) * 1991-11-13 1993-06-01 Hitachi Maxell Ltd Cylindrical alkaline battery
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
JPH07134986A (en) * 1993-11-11 1995-05-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07240196A (en) * 1994-02-28 1995-09-12 Seiko Electronic Components Ltd Alkaline battery and containing method for alkaline battery
JPH08222194A (en) * 1995-02-15 1996-08-30 Hitachi Maxell Ltd Button type alkaline battery
JPH09180736A (en) * 1995-12-26 1997-07-11 Fuji Elelctrochem Co Ltd Alkaline manganese battery
JPH1040926A (en) * 1996-07-25 1998-02-13 Dowa Mining Co Ltd Electrolyte, negative electrode material and zinc alloy powder for alkaline manganese battery
WO1998050970A1 (en) * 1997-05-05 1998-11-12 Chemergy Ltd. An iron-based storage battery
JP2000251924A (en) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd Sealed alkaline zinc storage battery
JP2001126722A (en) * 1999-10-28 2001-05-11 Toshiba Corp Iron compound oxide electrode and alkali cell using the same
JP2001283850A (en) * 2000-03-30 2001-10-12 Toshiba Corp Iron composite oxide battery
JP2001319650A (en) * 2000-05-10 2001-11-16 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135776A (en) * 1991-11-13 1993-06-01 Hitachi Maxell Ltd Cylindrical alkaline battery
JPH06163080A (en) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd Secondary battery
JPH07134986A (en) * 1993-11-11 1995-05-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH07240196A (en) * 1994-02-28 1995-09-12 Seiko Electronic Components Ltd Alkaline battery and containing method for alkaline battery
JPH08222194A (en) * 1995-02-15 1996-08-30 Hitachi Maxell Ltd Button type alkaline battery
JPH09180736A (en) * 1995-12-26 1997-07-11 Fuji Elelctrochem Co Ltd Alkaline manganese battery
JPH1040926A (en) * 1996-07-25 1998-02-13 Dowa Mining Co Ltd Electrolyte, negative electrode material and zinc alloy powder for alkaline manganese battery
WO1998050970A1 (en) * 1997-05-05 1998-11-12 Chemergy Ltd. An iron-based storage battery
JP2000251924A (en) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd Sealed alkaline zinc storage battery
JP2001126722A (en) * 1999-10-28 2001-05-11 Toshiba Corp Iron compound oxide electrode and alkali cell using the same
JP2001283850A (en) * 2000-03-30 2001-10-12 Toshiba Corp Iron composite oxide battery
JP2001319650A (en) * 2000-05-10 2001-11-16 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4503790B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US3956018A (en) Primary electric current-producing dry cell using a (CFx)n cathode and an aqueous alkaline electrolyte
CN100405639C (en) Alkaline cell with improved cathode comprising silver copper oxides
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
US7763383B2 (en) Sealed nickel-zinc primary cell
JPH0756809B2 (en) Rechargeable manganese dioxide / zinc battery
CN100407481C (en) Alkaline cell with improved cathode
JP2007516568A (en) Lithium battery with improved cathode
JP3866903B2 (en) Alkaline battery
JP2002093413A (en) Battery
JP3022758B2 (en) Alkaline manganese battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JP3523145B2 (en) Iron composite oxide battery
JP4503790B2 (en) Alkaline battery
JP4503791B2 (en) battery
JP2003017079A (en) Zinc alkaline battery
JP4307864B2 (en) Sealed alkaline zinc primary battery
JP2002093426A (en) Battery
JPS63232266A (en) Alkaline dry battery
JP2002050354A (en) Alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2003197206A (en) Sealed alkaline zinc primary battery
JP2003257423A (en) Sealed alkaline zinc primary battery, and alkaline zinc compound positive electrode mix used in the same
JP2004164863A (en) Sealed type nickel zinc primary cell
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees