JP3866903B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP3866903B2
JP3866903B2 JP2000151938A JP2000151938A JP3866903B2 JP 3866903 B2 JP3866903 B2 JP 3866903B2 JP 2000151938 A JP2000151938 A JP 2000151938A JP 2000151938 A JP2000151938 A JP 2000151938A JP 3866903 B2 JP3866903 B2 JP 3866903B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
graphite powder
average particle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000151938A
Other languages
Japanese (ja)
Other versions
JP2001332250A (en
Inventor
真一 住山
重人 野矢
誠司 和田
康子 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000151938A priority Critical patent/JP3866903B2/en
Publication of JP2001332250A publication Critical patent/JP2001332250A/en
Application granted granted Critical
Publication of JP3866903B2 publication Critical patent/JP3866903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ乾電池の改良に関する。さらに詳しくは、本発明は、高温保存後の放電性能に優れたアルカリ乾電池に関する。
【0002】
【従来の技術】
近年、優れた放電性能を必要とする携帯情報機器類が伸展している。これらの機器類は、自動車内に放置されるなど、高温環境下に曝されることが多い。高温環境下に曝される機器類にとって、従来のアルカリ乾電池は保存性能が低く、保存性能を改良した乾電池が要望されている。
【0003】
一方、アルカリ乾電池の放電性能を向上させる手段として、二酸化マンガンにオキシ水酸化ニッケル(NiOOH)を添加した正極活物質を用いることが提案され、実用化されている。例えば、二酸化マンガン50〜80重量%およびオキシ水酸化ニッケル20〜50重量%からなる正極活物質に、導電剤として黒鉛を添加した正極合剤を用いたアルカリ乾電池が知られている(特開昭57−49168号公報)。
そして、従来、黒鉛のBET比表面積は、導電性を保ちながら二酸化マンガン/黒鉛比(M/C比)を上昇させる観点から、10〜14m2/gのものが使用されている。
【0004】
【発明が解決しようとする課題】
しかし、オキシ水酸化ニッケルは自己放電して酸素を発生しやすい。電池の高温保存時には、その傾向が特に大きくなる。オキシ水酸化ニッケルが自己放電すると、電池の放電性能は低下する。
【0005】
本発明は、オキシ水酸化ニッケルの自己放電で発生した酸素が、正極合剤中の黒鉛と反応して消費され、オキシ水酸化ニッケルの自己放電反応を促進する方に平衡が移動しているという事実の発見に基づいてなされたものである。ここで、酸素は黒鉛と反応して、炭酸塩を生成していると考えられる。
【0006】
【課題を解決するための手段】
本発明では、正極合剤に含まれる黒鉛のBET比表面積を規制する。すなわち、黒鉛粉末のBET比表面積を小さくすることで、酸素と黒鉛粉末との反応が起こる反応面積を低減し、オキシ水酸化ニッケルの自己放電の促進を抑える。
【0007】
すなわち、本発明は、二酸化マンガンおよびオキシ水酸化ニッケルを活物質として含有する正極合剤、亜鉛からなる負極、およびアルカリ水溶液からなる電解液を有するアルカリ乾電池であって、前記正極合剤が、二酸化マンガンおよびオキシ水酸化ニッケルの合計100重量部に対して3〜10重量部の黒鉛粉末を含有し、前記黒鉛粉末は、BET比表面積が3〜4m2/gであることを特徴とするアルカリ乾電池に関する。
【0008】
なかでも、二酸化マンガンの平均粒径が20〜50μm、オキシ水酸化ニッケルの平均粒径が5〜15μm、および黒鉛粉末の平均粒径が8〜35μmであることが好ましい。
【0009】
【発明の実施の形態】
本発明は、二酸化マンガン(MnO2)およびオキシ水酸化ニッケル(NiOOH)を正極活物質として含有する正極合剤に、所定のBET比表面積を有する黒鉛粉末を含有させることを特徴とする。
【0010】
黒鉛粉末のBET比表面積は、本発明の顕著な効果を得るには、3〜4m2/gである必要がある。BET比表面積が3m2/g未満になると、電池の内部抵抗が上昇して導電性が損なわれ、4m2/gを超えると、反応面積が大きくなって酸素と黒鉛との反応を抑制することが困難となる。
【0011】
黒鉛粉末の平均粒径は8〜35μm、さらには8〜30μmであることが好ましい。平均粒径が8μm未満になると、反応面積が大きくなり、酸素と黒鉛との反応抑制が困難となり、35μmを超えると、導電性が低下し、内部抵抗が上昇する。
また、8〜30μmの粒径範囲に含まれる粒子を分級して用いることが好ましい。
【0012】
二酸化マンガンおよびオキシ水酸化ニッケルの合計100重量部に対する黒鉛粉末の配合割合は、3〜10重量部であることが好ましい。黒鉛粉末の配合割合が3重量部未満になると、電池の内部抵抗が大きくなり、10重量部を超えると、電池の容量が低下する。
【0013】
正極活物質は、二酸化マンガン20〜90重量%およびオキシ水酸化ニッケル10〜80重量%からなることが、電池の初度および高温保存後の放電性能が優れる点から好ましい。また、初度の放電性能に特に優れた電池を得る観点からは、正極活物質が、二酸化マンガンが20〜80重量%およびオキシ水酸化ニッケル20〜80重量%からなることが好ましい。
【0014】
二酸化マンガンの平均粒径としては、20〜50μmであることが好ましい。平均粒径が20μm未満になると、成形性が低下して電池容量が減少し、50μmを超えると、反応表面積が低下する。
【0015】
オキシ水酸化ニッケルの平均粒径としては、5〜15μmであることが好ましい。平均粒径が5μm未満になると、自己放電が起こりやすく、15μmを超えると、反応表面積が低下する。
【0016】
本発明のアルカリ乾電池の正極合剤には、活物質である二酸化マンガンとオキシ水酸化ニッケル、ならびに黒鉛粉末の他に、結着剤などを適量添加してもよい。
【0017】
本発明のアルカリ乾電池の負極には、周知のものを用いればよい。例えば、ポリアクリル酸ナトリウムなどのゲル化剤、アルカリ電解液、および負極活物質である亜鉛粉末からなるゲル状負極が好ましく用いられる。
【0018】
図1は、本発明の一実施の形態に係る単3サイズのアルカリ乾電池の半縦断面図である。アルカリ乾電池では、正極合剤は短筒状のペレットに成形されたのち、正極ケースに収容されるのが一般的である。
【0019】
図1において、外面に絶縁性のラベル外装9が施された正極ケース1の内部には、短筒状のペレットに成形された正極合剤2、セパレータ4、およびゲル状負極3が収容されている。正極ケース1としては、内面にニッケルメッキが施された鋼のケースなどが用いられる。正極合剤2は、正極ケース1の内面に密着した状態で複数個収容されている。正極合剤2のさらに内側にはセパレータ4が配され、さらにその内側にゲル状負極3が充填されている。
【0020】
ここで、正極ケース内には、一般にゲル状負極3の充填に先立って、正極合剤2およびセパレータ4を湿潤させための所定量の電解液が注液される。電解液としては、40重量%程度の水酸化カリウム水溶液が好ましく用いられる。そして、電解液の注液後、セパレータ4の内側にゲル状負極3が充填される。
【0021】
続いて、負極集電子6がゲル状負極3の中央に差し込まれる。なお、負極集電子6には、ガスケット5、絶縁ワッシャ7および負極端子を兼ねる底板8が一体化されている。
そして、正極ケース1の開口端部を、ガスケット5の端部を介して、底板8の周縁部にかしめつけ、正極ケース1の開口部を封口する。最後に、外装ラベル9で正極ケース1の外表面を被覆すると、アルカリ乾電池が完成する。
【0022】
【実施例】
次に、本発明のアルカリ乾電池について、実施例に基づいてさらに具体的に説明する。
以下の実施例および比較例では、単3サイズのアルカリ乾電池を作製し、その性能を評価した。
【0023】
《比較例1》
まず、二酸化マンガン(平均粒径40μm)50重量部、オキシ水酸化ニッケル(平均粒径10μm)50重量部、BET比表面積が2.0m2/gの人造黒鉛粉末(平均粒径22μm)5重量部、適量の結着剤および電解液である40重量%の水酸化カリウム水溶液1重量部からなる正極合剤をミキサーで均一に混合し、一定粒度に整粒した。なお、二酸化マンガンは粒径20〜50μm、オキシ水酸化ニッケルは粒径5〜15μm、および黒鉛粉末は粒径15〜25μmの範囲内のものを使用した。続いて、一定粒度に整粒された正極合剤を短筒状のペレットに成形した。
【0024】
ゲル状負極としては、ゲル化剤であるポリアクリル酸ナトリウム1重量部、40重量%の水酸化カリウム水溶液33重量部および亜鉛粉末66重量部からなるゲルを用いた。
【0025】
得られた正極合剤ペレット、ゲル状負極、および主としてポリビニルアルコール繊維とレーヨン繊維からなるセパレータを用いて、図1に示した電池と同様の構造を有する電池aを組み立てた。そして、電池aについて、以下の評価を行った。
【0026】
評価内容
電池aの初度および80℃で3日間保存後の放電性能を比較した。放電性能は、雰囲気温度20℃で、1000mAの電流で連続放電したときの終止電圧0.9Vに至るまでの放電時間で評価した。結果を表1に示す。
ここで、放電時間は、いずれも10個の電池の平均値であり、いずれも後で説明する比較例4の電池fの評価で得られた初度の放電時間を100としたときの相対値で示した。
【0027】
【表1】

Figure 0003866903
【0028】
《実施例1》
正極合剤における黒鉛粉末をBET比表面積が3.0m2/gの人造黒鉛粉末(平均粒径30μm)に変えたこと以外、電池aと同様の構成を有する電池bを組み立て、電池aと同様の評価を行った。結果を表1に示す。
【0029】
《実施例2》
正極合剤における黒鉛粉末をBET比表面積が4.0m2/gの人造黒鉛粉末(平均粒径25μm)に変えたこと以外、電池aと同様の構成を有する電池cを組み立て、電池aと同様の評価を行った。結果を表1に示す。
【0030】
《比較例2》
正極合剤における黒鉛粉末をBET比表面積が7.0m2/gの人造黒鉛粉末(平均粒径20μm)に変えたこと以外、電池aと同様の構成を有する電池dを組み立て、電池aと同様の評価を行った。結果を表1に示す。
【0031】
《比較例3》
正極合剤における黒鉛粉末をBET比表面積が10.0m2/gの人造黒鉛粉末(平均粒径15μm)に変えたこと以外、電池aと同様の構成を有する電池eを組み立て、電池aと同様の評価を行った。結果を表1に示す。
【0032】
《比較例4》
正極合剤における黒鉛粉末をBET比表面積が13.0m2/gの膨張黒鉛粉末(平均粒径10μm)に変えたこと以外、電池aと同様の構成を有する電池fを組み立て、電池aと同様の評価を行った。結果を表1に示す。
【0033】
表1において、BET比表面積が2m2/gの黒鉛粉末を用いた電池aは、80℃で3日間保存後の放電性能はかなり向上しているが、初度の放電性能が低下している。
一方、BET比表面積が3〜4m2/gの黒鉛粉末を用いた電池b、cの80℃で3日間保存後の放電性能は、電池aよりも、さらに向上している。また、初度の放電性能も良好である。
また、BET比表面積が4m2/gを超える黒鉛粉末を用いた電池d〜fは、80℃で3日間保存後の放電性能が、電池b、cに比べて、著しく低くなっている。
以上より、BET比表面積が3〜4m2/gの黒鉛粉末を用いた場合に、特異的に、初度の放電性能が良好であり、かつ、高温保存後の放電性能が飛躍的に向上したアルカリ乾電池を得ることができることがわかる。
【0034】
【発明の効果】
本発明によれば、高温保存後の放電性能に優れたアルカリ乾電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る単3サイズのアルカリ乾電池の半縦断面図である。
【符号の説明】
1 正極ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 絶縁ワッシャ
8 底板
9 ラベル外装[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an alkaline battery. More specifically, the present invention relates to an alkaline dry battery excellent in discharge performance after high-temperature storage.
[0002]
[Prior art]
In recent years, portable information devices that require excellent discharge performance have been developed. These devices are often exposed to a high temperature environment such as being left in an automobile. For devices exposed to high-temperature environments, conventional alkaline batteries have low storage performance, and there is a demand for dry batteries with improved storage performance.
[0003]
On the other hand, the use of a positive electrode active material in which nickel oxyhydroxide (NiOOH) is added to manganese dioxide has been proposed and put to practical use as means for improving the discharge performance of alkaline dry batteries. For example, an alkaline dry battery using a positive electrode mixture in which graphite is added as a conductive agent to a positive electrode active material composed of 50 to 80% by weight of manganese dioxide and 20 to 50% by weight of nickel oxyhydroxide is known (Japanese Patent Laid-Open No. Sho). 57-49168).
Conventionally, the BET specific surface area of graphite is 10 to 14 m 2 / g from the viewpoint of increasing the manganese dioxide / graphite ratio (M / C ratio) while maintaining conductivity.
[0004]
[Problems to be solved by the invention]
However, nickel oxyhydroxide tends to generate oxygen by self-discharge. This tendency is particularly great when batteries are stored at high temperatures. When nickel oxyhydroxide self-discharges, the discharge performance of the battery decreases.
[0005]
In the present invention, oxygen generated by self-discharge of nickel oxyhydroxide is consumed by reacting with graphite in the positive electrode mixture, and the equilibrium is shifted to promote the self-discharge reaction of nickel oxyhydroxide. It was made based on the discovery of facts. Here, oxygen is considered to react with graphite to produce carbonate.
[0006]
[Means for Solving the Problems]
In the present invention, the BET specific surface area of graphite contained in the positive electrode mixture is regulated. That is, by reducing the BET specific surface area of the graphite powder, the reaction area where the reaction between oxygen and the graphite powder occurs is reduced, and the promotion of self-discharge of nickel oxyhydroxide is suppressed.
[0007]
That is, the present invention is an alkaline dry battery having a positive electrode mixture containing manganese dioxide and nickel oxyhydroxide as active materials, a negative electrode made of zinc, and an electrolyte solution made of an alkaline aqueous solution, wherein the positive electrode mixture contains carbon dioxide. 3. An alkaline battery comprising 3 to 10 parts by weight of graphite powder with respect to 100 parts by weight of manganese and nickel oxyhydroxide, wherein the graphite powder has a BET specific surface area of 3 to 4 m 2 / g. About.
[0008]
Especially, it is preferable that the average particle diameter of manganese dioxide is 20-50 micrometers, the average particle diameter of nickel oxyhydroxide is 5-15 micrometers, and the average particle diameter of graphite powder is 8-35 micrometers.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that graphite powder having a predetermined BET specific surface area is contained in a positive electrode mixture containing manganese dioxide (MnO 2 ) and nickel oxyhydroxide (NiOOH) as a positive electrode active material.
[0010]
The BET specific surface area of the graphite powder needs to be 3 to 4 m 2 / g in order to obtain the remarkable effect of the present invention. When the BET specific surface area is less than 3 m 2 / g, the internal resistance of the battery increases and the conductivity is impaired. When the BET specific surface area exceeds 4 m 2 / g, the reaction area is increased to suppress the reaction between oxygen and graphite. It becomes difficult.
[0011]
The average particle size of the graphite powder is preferably 8 to 35 μm, more preferably 8 to 30 μm. When the average particle size is less than 8 μm, the reaction area becomes large and it becomes difficult to suppress the reaction between oxygen and graphite. When the average particle size exceeds 35 μm, the conductivity decreases and the internal resistance increases.
Moreover, it is preferable to classify and use the particle | grains contained in the particle size range of 8-30 micrometers.
[0012]
The blending ratio of the graphite powder with respect to 100 parts by weight of the total of manganese dioxide and nickel oxyhydroxide is preferably 3 to 10 parts by weight. When the blending ratio of the graphite powder is less than 3 parts by weight, the internal resistance of the battery increases, and when it exceeds 10 parts by weight, the capacity of the battery decreases.
[0013]
The positive electrode active material is preferably composed of 20 to 90% by weight of manganese dioxide and 10 to 80% by weight of nickel oxyhydroxide from the viewpoint of excellent initial performance of the battery and discharge performance after high-temperature storage. Further, from the viewpoint of obtaining a battery particularly excellent in initial discharge performance, the positive electrode active material is preferably composed of 20 to 80% by weight of manganese dioxide and 20 to 80% by weight of nickel oxyhydroxide.
[0014]
The average particle size of manganese dioxide is preferably 20 to 50 μm. When the average particle size is less than 20 μm, the moldability is lowered and the battery capacity is reduced, and when it exceeds 50 μm, the reaction surface area is reduced.
[0015]
The average particle diameter of nickel oxyhydroxide is preferably 5 to 15 μm. When the average particle size is less than 5 μm, self-discharge tends to occur, and when it exceeds 15 μm, the reaction surface area decreases.
[0016]
In addition to manganese dioxide and nickel oxyhydroxide, which are active materials, and graphite powder, an appropriate amount of a binder or the like may be added to the positive electrode mixture of the alkaline dry battery of the present invention.
[0017]
What is necessary is just to use a well-known thing for the negative electrode of the alkaline dry battery of this invention. For example, a gelled negative electrode composed of a gelling agent such as sodium polyacrylate, an alkaline electrolyte, and zinc powder as a negative electrode active material is preferably used.
[0018]
FIG. 1 is a half vertical sectional view of an AA alkaline battery according to an embodiment of the present invention. In an alkaline battery, the positive electrode mixture is generally formed into a short cylindrical pellet and then accommodated in a positive electrode case.
[0019]
In FIG. 1, a positive electrode mixture 2, molded into a short cylindrical pellet, a separator 4, and a gelled negative electrode 3 are accommodated in a positive electrode case 1 having an insulating label sheath 9 on the outer surface. Yes. As the positive electrode case 1, a steel case having an inner surface plated with nickel is used. A plurality of positive electrode mixtures 2 are accommodated in a state of being in close contact with the inner surface of the positive electrode case 1. A separator 4 is disposed further inside the positive electrode mixture 2, and a gelled negative electrode 3 is further filled therein.
[0020]
Here, a predetermined amount of electrolytic solution for wetting the positive electrode mixture 2 and the separator 4 is generally injected into the positive electrode case prior to filling the gelled negative electrode 3. As the electrolytic solution, an aqueous potassium hydroxide solution of about 40% by weight is preferably used. And after pouring electrolyte solution, the gelled negative electrode 3 is filled inside the separator 4.
[0021]
Subsequently, the negative electrode current collector 6 is inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 is integrated with a gasket 5, an insulating washer 7 and a bottom plate 8 that also serves as a negative electrode terminal.
And the opening edge part of the positive electrode case 1 is crimped on the peripheral part of the bottom plate 8 via the edge part of the gasket 5, and the opening part of the positive electrode case 1 is sealed. Finally, when the outer surface of the positive electrode case 1 is covered with the exterior label 9, the alkaline dry battery is completed.
[0022]
【Example】
Next, the alkaline dry battery of the present invention will be described more specifically based on examples.
In the following Examples and Comparative Examples, AA size alkaline batteries were prepared and their performance was evaluated.
[0023]
<< Comparative Example 1 >>
First, 50 parts by weight of manganese dioxide (average particle size: 40 μm), 50 parts by weight of nickel oxyhydroxide (average particle size: 10 μm), 5 wt. Of artificial graphite powder (average particle size: 22 μm) having a BET specific surface area of 2.0 m 2 / g A positive electrode mixture consisting of 1 part by weight of a part, an appropriate amount of a binder, and 40 parts by weight of an aqueous potassium hydroxide solution as an electrolytic solution was uniformly mixed with a mixer, and sized to a constant particle size. In addition, manganese dioxide having a particle diameter of 20 to 50 μm, nickel oxyhydroxide having a particle diameter of 5 to 15 μm, and graphite powder having a particle diameter of 15 to 25 μm were used. Subsequently, the positive electrode mixture sized to a constant particle size was formed into short cylindrical pellets.
[0024]
As the gelled negative electrode, a gel composed of 1 part by weight of sodium polyacrylate as a gelling agent, 33 parts by weight of 40% by weight potassium hydroxide aqueous solution and 66 parts by weight of zinc powder was used.
[0025]
A battery a having the same structure as that of the battery shown in FIG. 1 was assembled using the obtained positive electrode mixture pellet, gelled negative electrode, and a separator mainly composed of polyvinyl alcohol fibers and rayon fibers. And the following evaluation was performed about the battery a.
[0026]
Content of evaluation The discharge performance after storage for 3 days at 80 ° C. for the first time of battery a was compared. The discharge performance was evaluated by the discharge time until the final voltage of 0.9 V was obtained when continuous discharge was performed at an atmospheric temperature of 20 ° C. and a current of 1000 mA. The results are shown in Table 1.
Here, all the discharge times are average values of 10 batteries, and all are relative values when the initial discharge time obtained in the evaluation of the battery f of Comparative Example 4 described later is 100. Indicated.
[0027]
[Table 1]
Figure 0003866903
[0028]
Example 1
A battery b having the same configuration as the battery a was assembled, except that the graphite powder in the positive electrode mixture was changed to an artificial graphite powder (average particle size 30 μm) having a BET specific surface area of 3.0 m 2 / g. Was evaluated. The results are shown in Table 1.
[0029]
Example 2
A battery c having the same configuration as that of the battery a was assembled except that the graphite powder in the positive electrode mixture was changed to an artificial graphite powder (average particle size 25 μm) having a BET specific surface area of 4.0 m 2 / g. Was evaluated. The results are shown in Table 1.
[0030]
<< Comparative Example 2 >>
A battery d having the same configuration as that of the battery a was assembled except that the graphite powder in the positive electrode mixture was changed to an artificial graphite powder (average particle diameter 20 μm) having a BET specific surface area of 7.0 m 2 / g. Was evaluated. The results are shown in Table 1.
[0031]
<< Comparative Example 3 >>
A battery e having the same configuration as that of the battery a was assembled except that the graphite powder in the positive electrode mixture was changed to an artificial graphite powder (average particle size of 15 μm) having a BET specific surface area of 10.0 m 2 / g. Was evaluated. The results are shown in Table 1.
[0032]
<< Comparative Example 4 >>
A battery f having the same configuration as that of the battery a was assembled except that the graphite powder in the positive electrode mixture was changed to an expanded graphite powder (average particle size 10 μm) having a BET specific surface area of 13.0 m 2 / g, and the same as the battery a. Was evaluated. The results are shown in Table 1.
[0033]
In Table 1, the battery a using the graphite powder having a BET specific surface area of 2 m 2 / g has considerably improved the discharge performance after being stored at 80 ° C. for 3 days, but the initial discharge performance has been lowered.
On the other hand, the discharge performance after storage for 3 days at 80 ° C. of batteries b and c using graphite powder having a BET specific surface area of 3 to 4 m 2 / g is further improved as compared with battery a. Also, the initial discharge performance is good.
In addition, the batteries df using the graphite powder having a BET specific surface area exceeding 4 m 2 / g have remarkably lower discharge performance after storage at 80 ° C. for 3 days than the batteries b and c.
As described above, when graphite powder having a BET specific surface area of 3 to 4 m 2 / g is used, an alkali having a particularly good initial discharge performance and a dramatic improvement in discharge performance after high-temperature storage. It turns out that a dry cell can be obtained.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the alkaline dry battery excellent in the discharge performance after high temperature storage can be obtained.
[Brief description of the drawings]
FIG. 1 is a half vertical sectional view of an AA alkaline battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Insulation washer 8 Bottom plate 9 Label exterior

Claims (3)

二酸化マンガンおよびオキシ水酸化ニッケルを活物質として含有する正極合剤、亜鉛からなる負極、およびアルカリ水溶液からなる電解液を有するアルカリ乾電池であって、
前記正極合剤が、BET比表面積が3〜4m2/gの黒鉛粉末を含有することを特徴とするアルカリ乾電池。
An alkaline dry battery having a positive electrode mixture containing manganese dioxide and nickel oxyhydroxide as active materials, a negative electrode made of zinc, and an electrolyte solution made of an alkaline aqueous solution,
The alkaline dry battery, wherein the positive electrode mixture contains graphite powder having a BET specific surface area of 3 to 4 m 2 / g.
二酸化マンガンの平均粒径が20〜50μm、オキシ水酸化ニッケルの平均粒径が5〜15μm、および黒鉛粉末の平均粒径が8〜35μmである請求項1記載のアルカリ乾電池。The alkaline dry battery according to claim 1, wherein the average particle size of manganese dioxide is 20 to 50 µm, the average particle size of nickel oxyhydroxide is 5 to 15 µm, and the average particle size of graphite powder is 8 to 35 µm. 前記正極合剤における黒鉛粉末の含有量が、二酸化マンガンおよびオキシ水酸化ニッケルの合計100重量部に対して3〜10重量部である請求項1または2記載のアルカリ乾電池。3. The alkaline dry battery according to claim 1, wherein the content of the graphite powder in the positive electrode mixture is 3 to 10 parts by weight with respect to 100 parts by weight of the total of manganese dioxide and nickel oxyhydroxide.
JP2000151938A 2000-05-23 2000-05-23 Alkaline battery Expired - Fee Related JP3866903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151938A JP3866903B2 (en) 2000-05-23 2000-05-23 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151938A JP3866903B2 (en) 2000-05-23 2000-05-23 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2001332250A JP2001332250A (en) 2001-11-30
JP3866903B2 true JP3866903B2 (en) 2007-01-10

Family

ID=18657422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151938A Expired - Fee Related JP3866903B2 (en) 2000-05-23 2000-05-23 Alkaline battery

Country Status (1)

Country Link
JP (1) JP3866903B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882163B2 (en) * 2001-05-15 2012-02-22 ソニー株式会社 Positive electrode for alkaline zinc battery and alkaline zinc battery
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode
US20040248007A1 (en) * 2003-06-09 2004-12-09 Hiromi Tamakoshi Positive electrode for alkaline battery and alkaline battery using the same
JP2007226967A (en) * 2004-03-22 2007-09-06 Mitsubishi Corp Positive electrode for cell, and cell using the same
JP2006012493A (en) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd Alkaline battery
JP2006012533A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Alkaline battery
JP2006012670A (en) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd Alkaline battery
WO2006040907A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Alkaline battery

Also Published As

Publication number Publication date
JP2001332250A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP3866884B2 (en) Alkaline battery
AU2006317436B2 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
CN100407481C (en) Alkaline cell with improved cathode
JPH11176436A (en) Alkaline storage battery
JP3866903B2 (en) Alkaline battery
JPH07502145A (en) Cathode of zinc manganese dioxide battery with barium additive
JP3552194B2 (en) Alkaline battery
JP3022758B2 (en) Alkaline manganese battery
JP3866902B2 (en) Alkaline battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JP2005276698A (en) Alkaline battery
JP4255762B2 (en) Zinc alkaline battery
JP4767978B2 (en) Alkaline battery
JP2001068121A (en) Cylindrical alkaline battery
JP2003017078A (en) Zinc alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP3968248B2 (en) Aluminum battery
JP4503790B2 (en) Alkaline battery
JP2000173602A (en) Cylindrical alkaline battery
JP4292431B2 (en) Cylindrical alkaline battery
JP4265738B2 (en) Alkaline battery
JP4137417B2 (en) Alkaline battery
JP2007220374A (en) Alkaline zinc primary cell
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it
JP2002093426A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees