JP3022758B2 - Alkaline manganese battery - Google Patents

Alkaline manganese battery

Info

Publication number
JP3022758B2
JP3022758B2 JP33913295A JP33913295A JP3022758B2 JP 3022758 B2 JP3022758 B2 JP 3022758B2 JP 33913295 A JP33913295 A JP 33913295A JP 33913295 A JP33913295 A JP 33913295A JP 3022758 B2 JP3022758 B2 JP 3022758B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
weight
potassium hydroxide
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33913295A
Other languages
Japanese (ja)
Other versions
JPH09180736A (en
Inventor
清英 筒井
秀二 村上
秀典 都築
国良 西田
彰英 泉
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP33913295A priority Critical patent/JP3022758B2/en
Publication of JPH09180736A publication Critical patent/JPH09180736A/en
Application granted granted Critical
Publication of JP3022758B2 publication Critical patent/JP3022758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリマンガン電
池に関する。
TECHNICAL FIELD The present invention relates to an alkaline manganese battery.

【0002】[0002]

【従来の技術】従来のアルカリマンガン電池にあって
は、図1のLR6形電池の断面図に示すように、電池ケ
ースを兼ねる有底円筒形の正極缶1内に、二酸化マンガ
ン(電解二酸化マンガン:EMD)と黒鉛等を混合して
円筒状に成形した2つの正極2,2が同心に積み重ねら
れた状態で装填されている。この正極2,2の中空部内
にはビニロンやパルプ繊維等の不織布からなる筒状のセ
パレータ3が配設され、これには水酸化カリウム(KO
H)のアルカリ電解液が含浸されている。さらにセパレ
ータ3内にはゲル状負極4が充填されており、この負極
4は、酸化亜鉛(ZnO)を含む水酸化カリウム電解液
に対して亜鉛粉末を主体としてゲル化剤および高吸水性
ポリマーを適量混合した構成となっている。
2. Description of the Related Art In a conventional alkaline manganese battery, as shown in a sectional view of an LR6 type battery in FIG. 1, manganese dioxide (electrolytic manganese dioxide) is placed in a bottomed cylindrical positive electrode can 1 also serving as a battery case. : EMD) and graphite and the like are mixed, and two positive electrodes 2 and 2 formed in a cylindrical shape are loaded in a state of being concentrically stacked. A cylindrical separator 3 made of a nonwoven fabric such as vinylon or pulp fiber is disposed in the hollow portion of each of the positive electrodes 2 and 2, and includes a potassium hydroxide (KO).
H) The alkaline electrolyte is impregnated. Further, the separator 3 is filled with a gelled negative electrode 4. The negative electrode 4 is made of a potassium hydroxide electrolyte containing zinc oxide (ZnO) and a gelling agent and a superabsorbent polymer mainly composed of zinc powder. It is configured to mix an appropriate amount.

【0003】この負極4の中央には集電棒5が挿入さ
れ、セパレータ3の下端開口部は、ホットメルト樹脂等
からなる絶縁材6によって閉塞され、これによって負極
4と正極缶1の内底面とが互いに絶縁している。そし
て、正極缶1の上端開口部に封口ガスケット7を介して
負極端子板8が嵌合され、正極缶1の開口端縁を内側へ
カール成形することによって密封されている。
A current collecting rod 5 is inserted into the center of the negative electrode 4, and an opening at the lower end of the separator 3 is closed by an insulating material 6 made of a hot melt resin or the like. Are insulated from each other. A negative electrode terminal plate 8 is fitted to the upper end opening of the positive electrode can 1 via a sealing gasket 7, and the opening edge of the positive electrode can 1 is curled inward to be sealed.

【0004】このようなアルカリマンガン電池におい
て、その放電容量を大きくできるものが特公平5−12
824号公報に示されており、同公報に示された電池に
あっては正極の配合比率を工夫することにより放電容量
の増大を図っている。
[0004] Among such alkaline manganese batteries, those capable of increasing the discharge capacity are disclosed in Japanese Patent Publication No. 5-12.
No. 824, in the battery disclosed therein, the discharge capacity is increased by devising the mixing ratio of the positive electrode.

【0005】具体的に説明すると、正極としては、活物
質としての二酸化マンガンと導電剤としての黒鉛とを、
重量比で9/1〜32/1の範囲で混合した合剤が用い
られる。つまり、黒鉛の含有率を正極2の合剤固形分に
対して3〜10重量%の範囲としている。
More specifically, as a positive electrode, manganese dioxide as an active material and graphite as a conductive agent are used.
A mixture mixed in a weight ratio of 9/1 to 32/1 is used. That is, the graphite content is in the range of 3 to 10% by weight based on the solid content of the mixture of the positive electrode 2.

【0006】即ち、黒鉛の含有率を10%以上にする
と、二酸化マンガンの容量減少が顕著となり、放電容量
の大きな低下を招くので好ましくない。また、黒鉛の含
有率を3%以下にすると正極2中の導電性が低くなりす
ぎるため、内部抵抗の増加、短絡電流の減少が顕著にな
り、やはり好ましくない。
That is, if the content of graphite is 10% or more, the capacity of manganese dioxide is remarkably reduced, and the discharge capacity is greatly reduced, which is not preferable. Further, when the content of graphite is set to 3% or less, the conductivity in the positive electrode 2 becomes too low, so that the internal resistance increases and the short-circuit current decreases significantly, which is not preferable.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
たように正極合剤の配合比率を工夫しただけでは、例え
ば1500mA程度の極めて大きな放電電流を必要とす
る超高負荷に対しては対応できないといった問題があっ
た。
However, as described above, simply devising the mixing ratio of the positive electrode mixture cannot cope with an extremely high load requiring an extremely large discharge current of, for example, about 1500 mA. was there.

【0008】例えばノート型パソコン等の超高負荷に対
してその動作電力を供給するための電源としてアルカリ
マンガン電池を用いようとすると、ノート型パソコンの
フロッピーディスク駆動装置の動作時に1500mA程
度の極めて大きな放電電流が必要とされる。ところが、
前述したような従来のアルカリマンガン電池にあっては
このような超高負荷に対して満足な放電容量を得ること
ができなかった。
For example, when an alkaline manganese battery is used as a power supply for supplying an operation power to an ultra-high load such as a notebook personal computer, an extremely large amount of about 1500 mA is required when the floppy disk drive of the notebook personal computer is operated. A discharge current is required. However,
In the conventional alkaline manganese battery as described above, a satisfactory discharge capacity cannot be obtained under such an extremely high load.

【0009】そこで、前述したような正極合剤の配合比
率を工夫したアルカリマンガン電池に対して改良を施す
ことにより本発明に至ったのであり、その目的は超高負
荷に対する放電特性の優れたアルカリマンガン電池を提
供することにある。
Accordingly, the present invention was made by improving the alkaline manganese battery in which the mixing ratio of the positive electrode mixture was devised as described above, and an object of the present invention was to provide an alkaline manganese battery having an excellent discharge characteristic against an extremely high load. It is to provide a manganese battery.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
請求項1に係る本発明は、正極活物質としての二酸化マ
ンガンに混合される導電剤として平均粒径が10〜20
μmの黒鉛を3〜10重量%の範囲で含有する正極合剤
固形分に対し、正極用水酸化カリウム電解液を含浸させ
た正極と、酸化亜鉛を含む負極用水酸化カリウム電解液
に対して負極活物質としての亜鉛粉末、ゲル化剤、およ
び高吸水性ポリマーを混合したゲル状負極とを備えたア
ルカリマンガン電池において、前記正極と前記負極との
電気容量比率を100:105〜100:125の範囲
とし、且つ前記正極用水酸化カリウム電解液の水酸化カ
リウム濃度を40重量%とするとともに、前記正極合剤
固形分と前記正極用水酸化カリウム電解液との体積比率
を100:25〜100:35の範囲とした。
According to the first aspect of the present invention, there is provided a conductive agent mixed with manganese dioxide as a positive electrode active material having an average particle diameter of 10 to 20.
A positive electrode impregnated with a potassium hydroxide electrolyte solution for a positive electrode and a negative electrode active solution containing a potassium hydroxide electrolyte solution for a negative electrode containing zinc oxide were added to a solid content of a positive electrode mixture containing 3 to 10% by weight of graphite having a thickness of 3 μm. In an alkaline manganese battery including a gelled negative electrode in which zinc powder as a substance, a gelling agent, and a superabsorbent polymer are mixed, the electric capacity ratio between the positive electrode and the negative electrode is in the range of 100: 105 to 100: 125. And the hydroxide of potassium hydroxide electrolyte for the positive electrode
The lithium concentration is 40% by weight, and the positive electrode mixture is
Volume ratio of solid content to the potassium hydroxide electrolyte for the positive electrode
In the range of 100: 25 to 100: 35 .

【0011】ここで正極または負極の電気容量とは次に
示す計算式によって定まる理論容量のことである。
Here, the electric capacity of the positive electrode or the negative electrode is a theoretical capacity determined by the following formula.

【0012】〔正極の電気容量:1電子反応として〕 (二酸化マンガンの当量に対する正極に用いた二酸化マ
ンガンの質量の割合)×(96500/3600) 〔負極の電気容量:2電子反応として〕 (亜鉛の当量に対する負極に用いた亜鉛粉末の質量の割
合)×(96500/3600)
[Electric Capacity of Positive Electrode: 1 Electron Reaction] (Ratio of Mass of Manganese Dioxide Used for Positive Electrode to Equivalent of Manganese Dioxide) × (96500/3600) [Electric Capacity of Negative Electrode: 2 Electron Reaction] (Zinc Ratio of the mass of zinc powder used for the negative electrode to the equivalent weight of the negative electrode) × (96500/3600)

【0013】また、前記目的を達成するため請求項2に
係る本発明は、前記負極用水酸化カリウム電解液の水酸
化カリウム濃度を40重量%とするとともに、前記負極
用水酸化カリウム電解液に対する前記酸化亜鉛の濃度を
4重量%とした。
[0013] In order to achieve the above object, the present invention according to claim 2 is directed to a method for producing a negative electrode , comprising:
The concentration of potassium iodide was 40% by weight,
The concentration of the zinc oxide with respect to the potassium hydroxide electrolyte for
4% by weight.

【0014】[0014]

【0015】[0015]

【0016】前述したような構成の本発明にあっては次
のような作用を奏する。
The present invention having the above-described structure has the following effects.

【0017】正極と負極との電気容量比率を100:1
05〜100:125の範囲として負極側の電気容量を
大きくすることにより、正極および負極の放電利用率を
向上させ、例えば1500m A程度の大放電流を必要と
する超高負荷に対してその放電時間を長くすることがで
きる。
The electric capacity ratio between the positive electrode and the negative electrode is 100: 1.
By increasing the electric capacity on the negative electrode side in the range of from 0.5 to 100: 125, the discharge utilization rate of the positive electrode and the negative electrode is improved, and the discharge is performed for an extremely high load that requires a large discharge current of, for example, about 1500 mA. Time can be lengthened.

【0018】前記電気容量比率において負極側が105
より小さいと、正極側の二酸化マンガンに対して負極側
の亜鉛粉末の量が少ないため正極および負極の活物質の
放電利用率が低下し、超高負荷に対する放電容量が小さ
くなり好ましくない。また、前記電気容量比率において
負極側が125より大きいと、正極側の二酸化マンガン
に対して負極側の亜鉛粉末の量が多すぎるためゲル負極
が電池の所定容積に入りきらず製造困難となり好ましく
ない。
In the above electric capacity ratio, the negative electrode side is 105
If it is smaller, the amount of zinc powder on the negative electrode side is smaller than that on the manganese dioxide on the positive electrode side, so that the discharge utilization rate of the active materials of the positive electrode and the negative electrode decreases, and the discharge capacity under an extremely high load is undesirably reduced. On the other hand, if the electric capacity ratio is greater than 125 on the negative electrode side, the amount of zinc powder on the negative electrode side is too large relative to manganese dioxide on the positive electrode side, so that the gel negative electrode does not fit in the predetermined volume of the battery, which is not preferable.

【0019】正極合剤固形分と40重量%正極用水酸化
カリウム電解液との体積比率を100:25〜100:
35の範囲とすることにより、正極および負極の放電利
用率を向上させ、例えば1500mA程度の大放電流を
必要とする超高負荷に対してその放電時間を長くするこ
とができる。
The volume ratio between the solid content of the positive electrode mixture and the 40% by weight potassium hydroxide electrolyte for the positive electrode is 100: 25 to 100: 100.
By setting the range to 35, the discharge utilization rate of the positive electrode and the negative electrode can be improved, and the discharge time can be extended for an extremely high load requiring a large discharge current of, for example, about 1500 mA.

【0020】前記体積比率において水酸化カリウム電解
液側が25より小さいと、イオン電導性の低下を生じて
正極合剤の放電利用率が低下するため、超高負荷に対す
る放電容量が小さくなり好ましくない。前記体積比率に
おいて水酸化カリウム電解液側が35より大きいと、こ
の電解液が多すぎて電池として組み立てると保存条件に
よっては漏液が発生する可能性があり好ましくない。
If the potassium hydroxide electrolyte side is smaller than 25 in the above volume ratio, the ion conductivity is reduced, and the discharge utilization rate of the positive electrode mixture is reduced. If the potassium hydroxide electrolyte side is larger than 35 in the above volume ratio, this electrolyte is too much, and if assembled as a battery, there is a possibility that a leakage may occur depending on storage conditions, which is not preferable.

【0021】負極用水酸化カリウム電解液の水酸化カリ
ウム濃度を40重量%とするとともに、負極用水酸化カ
リウム電解液に対する前記酸化亜鉛の濃度を4重量%と
すれば、前述したような超高負荷の放電特性をより向上
できる。
When the potassium hydroxide concentration of the potassium hydroxide electrolyte for the negative electrode is set to 40% by weight and the concentration of the zinc oxide relative to the potassium hydroxide electrolyte for the negative electrode is set to 4% by weight, the ultra-high load as described above is obtained. Discharge characteristics can be further improved.

【0022】[0022]

【発明の実施の形態】本発明の実施の形態にあっては、
正極、負極および電解液を構成する要素は前述した従来
の技術と同様であるが、これら構成要素のうち次の乃
至についてその比率または濃度を特定している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention,
Elements constituting the positive electrode, the negative electrode, and the electrolytic solution are the same as those in the above-described conventional technology, but the ratio or concentration of the following elements is specified.

【0023】電池に対するゲル負極の充填量を調整す
ることにより、正極と負極との電気容量比率を100:
105〜100:125の範囲として負極側の電気容量
を大きくする。
The electric capacity ratio between the positive electrode and the negative electrode is adjusted to 100:
The electric capacity on the negative electrode side is increased in the range of 105 to 100: 125.

【0024】正極合剤固形分と40重量%の正極用水
酸化カリウム電解液との体積比率を100:25〜10
0:35の範囲とする。
The volume ratio between the solid content of the positive electrode mixture and 40% by weight of the potassium hydroxide electrolyte for the positive electrode is 100: 25 to 10
The range is 0:35.

【0025】40重量%の負極用水酸化カリウム電解
液に対する酸化亜鉛の濃度を4重量%とする。
The concentration of zinc oxide with respect to 40% by weight of the potassium hydroxide electrolyte for the negative electrode is 4% by weight.

【0026】正極合剤は、電解二酸化マンガン65.0
重量部に対して粒度分布が1〜200μm、平均粒径
(50重量%)18μmの膨張化黒鉛を3.25重量部
を加えることにより正極合剤の固形分に対する黒鉛の含
有率を4.7重量%とし、前述した従来の技術と同様
に、3〜10重量%の範囲内として放電容量の増大を図
った。この正極合剤の成形密度は3.3g/cm3 とし
た。この正極合剤に対して40重量%の水酸化カリウム
電解液を2.10重量部含浸させた。
The positive electrode mixture was 65.0 electrolytic manganese dioxide.
By adding 3.25 parts by weight of expanded graphite having a particle size distribution of 1 to 200 μm and an average particle size (50% by weight) of 18 μm with respect to parts by weight, the content ratio of graphite to the solid content of the positive electrode mixture is 4.7. %, And the discharge capacity was increased within the range of 3 to 10% by weight in the same manner as in the above-described conventional technique. The molding density of this positive electrode mixture was 3.3 g / cm 3 . The positive electrode mixture was impregnated with 2.10 parts by weight of a 40% by weight potassium hydroxide electrolytic solution.

【0027】尚、さらに放電容量の増加を図れるように
平均粒径が10μmより小さな膨張化黒鉛を用い、二酸
化マンガン比率を高めた正極合剤を試作したが、成形し
た正極合剤の強度が低く、製造困難となった。また、膨
張化黒鉛の平均粒径を変えた本形態の正極合剤と後述す
るゲル負極とを用いたLR6形電池を試作して初度の内
部抵抗を測定した。その結果、膨張化黒鉛の平均粒径が
20μm以下の場合には内部抵抗が0.1オーム以下と
なったのに対して、これが20μmを越えると内部抵抗
が例えば0.2オームとなったりして大きくなってしま
い、実用的ではないことが判明した。したがって、膨張
化黒鉛の平均粒径は10〜20μmの範囲であることが
好ましい。
In order to further increase the discharge capacity, a positive electrode mixture with an increased manganese dioxide ratio using expanded graphite having an average particle diameter smaller than 10 μm was trial-produced, but the strength of the molded positive electrode mixture was low. , Production became difficult. Further, a prototype LR6 battery using the positive electrode mixture of the present embodiment in which the average particle size of expanded graphite was changed and a gel negative electrode described later was prototyped, and the initial internal resistance was measured. As a result, when the average particle size of the expanded graphite is 20 μm or less, the internal resistance becomes 0.1 ohm or less, whereas when the average particle diameter exceeds 20 μm, the internal resistance becomes, for example, 0.2 ohm. Turned out to be impractical. Therefore, the average particle size of the expanded graphite is preferably in the range of 10 to 20 μm.

【0028】ゲル負極は、40重量%の水酸化カリウム
に対して酸化亜鉛を4重量%混合した電解液92重量部
に対して、200重量部の亜鉛粉末、ゲル化剤としてポ
リアクリル酸を0.9重量部、高吸水性ポリマーとして
ポリアクリル酸ナトリウムを0.9重量部をそれぞれ混
合することにより構成した。
The gel negative electrode was prepared by mixing 200 parts by weight of zinc powder and 0 parts by weight of polyacrylic acid as a gelling agent with respect to 92 parts by weight of an electrolyte obtained by mixing 4% by weight of zinc oxide with 40% by weight of potassium hydroxide. 9.9 parts by weight, and 0.9 parts by weight of sodium polyacrylate as a superabsorbent polymer.

【0029】このような構成のアルカリ電池について、
前記、で示した各比率を変えた前記図1のLR6形
(No.1〜12)に適用して超高負荷放電試験を行っ
た。このとき各電池は正極について体積、電気容量、成
形密度(3.3g/cm3 )および黒鉛の含有率(4.7
重量%)を一定とするとともに、前記の通り、負極に
ついて40重量%の水酸化カリウム電解液に対する酸化
亜鉛の濃度を4重量%とし、20℃の雰囲気中で放電終
止電圧0.9Vで1500mAの定電流放電時間を測定
した。この試験結果を表1に示す。
With regard to the alkaline battery having such a structure,
An ultra-high load discharge test was performed by applying to the LR6 type (Nos. 1 to 12) shown in FIG. At this time, each battery had a volume, an electric capacity, a molding density (3.3 g / cm 3 ) and a graphite content (4.7 g) of the positive electrode.
Wt%), and as described above, the concentration of zinc oxide with respect to the potassium hydroxide electrolyte solution of 40 wt% for the negative electrode was set to 4 wt%, and at a discharge end voltage of 0.9 V and 1500 mA in an atmosphere of 20 ° C. The constant current discharge time was measured. Table 1 shows the test results.

【0030】[0030]

【表1】 先ず、No.1〜6の電池にあっては正極と負極との電
気容量比率を変えたものであり、No.2〜5の負極側
の比率がそれぞれ105、114、120、125のも
のは、No.1の負極側の比率が100の従来品に比
べ、放電時間が明らかに向上している。これは、正極側
の二酸化マンガンに対して負極側の亜鉛粉末の量が多い
ため正極および負極の活物質の放電利用率が向上し、超
高負荷に対する放電容量が大きくなったためと考えられ
る。No.6の負極側の比率が130のものは、正極側
の二酸化マンガンに対して負極側の亜鉛粉末の量が多す
ぎるためゲル負極が電池の所定容積に入りきらず製造困
難となった。
[Table 1] First, no. In the batteries of Nos. 1 to 6, the electric capacity ratio between the positive electrode and the negative electrode was changed. Nos. 2 to 5 having a negative electrode side ratio of 105, 114, 120, and 125, respectively, The discharge time is clearly improved as compared with the conventional product in which the ratio of 1 on the negative electrode side is 100. This is presumably because the amount of zinc powder on the negative electrode side was larger than that on the manganese dioxide on the positive electrode side, so that the discharge utilization rates of the active materials of the positive electrode and the negative electrode were improved, and the discharge capacity under an extremely high load was increased. No. When the ratio of the negative electrode side of No. 6 to the negative electrode side was 130, the amount of the zinc powder on the negative electrode side was too large relative to the manganese dioxide on the positive electrode side, so that the gel negative electrode could not fit in the predetermined volume of the battery, making the production difficult.

【0031】次に、No.7〜11の電池にあっては正
極合剤固形分と40重量%の水酸化カリウム電解液との
体積比率を変えたものであり、No.8〜10の電解液
側の比率がそれぞれ25%、30%、35%のものは、
No.7の電解液側の比率が20のものに比し、放電時
間が明らかに向上している。これは正極合剤固形分に対
して水酸化カリウム電解液が多くなることによりイオン
導電性が向上して正極合剤の放電利用率が高くなったた
めと考えられる。No.11の電解液側の比率が40%
のものは高温多湿貯蔵試験において不具合が発生したた
め採用できない。具体的には、温度60℃で湿度90%
の雰囲気下で20日間保存したところ漏液が発生した。
なお、No.11以外の電池についてはこの高温多湿貯
蔵試験において不具合は発生しなかった。
Next, No. In the batteries of Nos. 7 to 11, the volume ratio between the solid content of the positive electrode mixture and the 40% by weight potassium hydroxide electrolyte was changed. When the ratio of the electrolyte side of 8 to 10 is 25%, 30%, and 35%, respectively,
No. The discharge time is clearly improved as compared with the case where the ratio of 7 on the electrolyte side is 20. It is considered that this is because the ion conductivity was improved and the discharge utilization rate of the positive electrode mixture was increased by increasing the amount of the potassium hydroxide electrolyte with respect to the solid content of the positive electrode mixture. No. Electrolyte side ratio of 11 is 40%
Can not be used because of a failure in the high-temperature and high-humidity storage test. Specifically, a temperature of 60 ° C. and a humidity of 90%
When stored for 20 days under an atmosphere of, a liquid leak occurred.
In addition, No. No problem occurred in the batteries other than 11 in the high-temperature and high-humidity storage test.

【0032】また、No.12に示すように、正極と負
極との電気容量比率を100:120とするとともに、
正極合剤固形分と40重量%の水酸化カリウム電解液と
の体積比率を100:35とすると、放電時間を25.
0分と各No.の電池の中で最も大きくすることができ
た。
In addition, No. As shown in FIG. 12, while the electric capacity ratio between the positive electrode and the negative electrode is 100: 120,
Assuming that the volume ratio between the solid content of the positive electrode mixture and the 40% by weight potassium hydroxide electrolyte is 100: 35, the discharge time is 25.
0 minutes and each No. Battery could be the largest.

【0033】なお、本発明にあっては、正極および負極
に対して用いられる水酸化カリウム電解液の濃度を40
重量%とすることが最も良く、40重量%未満では貯蔵
後の放電性能の低下が見られて好ましくない。
In the present invention, the concentration of the potassium hydroxide electrolyte used for the positive electrode and the negative
% Is best, and if it is less than 40% by weight, the discharge performance after storage is lowered, which is not preferable.

【0034】[0034]

【発明の効果】本発明のアルカリ電池にあっては、正極
および負極の放電利用率を向上させることにより、例え
ば1500mA程度の大放電流を必要とする超高負荷に
対してその放電時間を長くすることができ、超高負荷放
電特性を向上させることができる。
According to the alkaline battery of the present invention, by improving the discharge utilization of the positive electrode and the negative electrode, the discharge time can be extended for an extremely high load requiring a large discharge current of, for example, about 1500 mA. And the ultra-high load discharge characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来および本発明によるアルカリマンガン電池
の断面図である。
FIG. 1 is a cross-sectional view of a conventional alkaline manganese battery according to the present invention.

【符号の説明】 1 正極缶 2 正極 3 セパレータ 4 ゲル状負極 5 集電棒 6 絶縁材 7 封口ガスケット 8 負極端子板[Description of Signs] 1 Positive electrode can 2 Positive electrode 3 Separator 4 Gelled negative electrode 5 Current collector rod 6 Insulating material 7 Sealing gasket 8 Negative electrode terminal plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 国良 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 泉 彰英 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平4−284362(JP,A) 特開 平7−122276(JP,A) 特公 平5−12824(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 6/06 - 6/08 H01M 4/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kuniyoshi Nishida, 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Akihide Izumi 5-36-11, Shimbashi, Minato-ku, Tokyo (56) References JP-A-4-284362 (JP, A) JP-A-7-122276 (JP, A) JP-B-5-12824 (JP, B2) (58) Field (Int.Cl. 7 , DB name) H01M 6/06-6/08 H01M 4/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極活物質としての二酸化マンガンに混
合される導電剤として平均粒径が10〜20μmの黒鉛
を3〜10重量%の範囲で含有する正極合剤固形分に対
し、正極用水酸化カリウム電解液を含浸させた正極
(2)と、酸化亜鉛を含む負極用水酸化カリウム電解液
に対して負極活物質としての亜鉛粉末、ゲル化剤、およ
び高吸水性ポリマーを混合したゲル状負極(4)とを備
えたアルカリマンガン電池において、該正極と該負極と
の電気容量比率を100:105〜100:125の範
囲とし、且つ該正極用水酸化カリウム電解液の水酸化カ
リウム濃度を40重量%とするとともに、該正極合剤固
形分と該正極用水酸化カリウム電解液との体積比率を1
00:25〜100:35の範囲としてなることを特徴
とするアルカリマンガン電池。
The present invention relates to a positive electrode mixture containing a graphite having an average particle size of 10 to 20 μm in a range of 3 to 10% by weight as a conductive agent mixed with manganese dioxide as a positive electrode active material. A positive electrode (2) impregnated with a potassium electrolyte, and a gelled negative electrode obtained by mixing zinc powder as a negative electrode active material, a gelling agent, and a superabsorbent polymer with a potassium hydroxide electrolyte for a negative electrode containing zinc oxide ( in alkaline manganese battery having a 4), the positive electrode and the negative electrode and the electric capacity ratio of 100: 105 to 100: in the range of 125, and hydroxide mosquito positive electrode for potassium hydroxide electrolyte
The lithium concentration to 40% by weight and
The volume ratio of the form component and the potassium hydroxide electrolyte for the positive electrode is 1
00: 25-100: alkaline manganese batteries, characterized by comprising a 35 range.
【請求項2】 前記負極用水酸化カリウム電解液の水酸
化カリウム濃度を40重量%とするとともに、該負極用
水酸化カリウム電解液に対する前記酸化亜鉛の濃度を4
重量%としてなることを特徴とする請求項1に記載の
ルカリマンガン電池。
2. Hydroxide of the potassium hydroxide electrolyte for the negative electrode
The concentration of potassium iodide was 40% by weight, and the
The concentration of the zinc oxide in the potassium hydroxide electrolyte is 4
The alkaline manganese battery according to claim 1, wherein the content is expressed as a percentage by weight .
JP33913295A 1995-12-26 1995-12-26 Alkaline manganese battery Expired - Fee Related JP3022758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33913295A JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33913295A JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Publications (2)

Publication Number Publication Date
JPH09180736A JPH09180736A (en) 1997-07-11
JP3022758B2 true JP3022758B2 (en) 2000-03-21

Family

ID=18324553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33913295A Expired - Fee Related JP3022758B2 (en) 1995-12-26 1995-12-26 Alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP3022758B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
ATE385347T1 (en) * 1997-12-31 2008-02-15 Duracell Inc ALKALINE ELECTROCHEMICAL CELL WITH BALANCED ACTIVE CONTENT
JP4292431B2 (en) * 1998-10-06 2009-07-08 東芝電池株式会社 Cylindrical alkaline battery
US6207322B1 (en) * 1998-11-16 2001-03-27 Duracell Inc Alkaline cell with semisolid cathode
JP4503790B2 (en) * 2000-06-21 2010-07-14 東芝電池株式会社 Alkaline battery
JP2006500742A (en) * 2002-09-20 2006-01-05 エヴァレディー バッテリー カンパニー インコーポレイテッド Battery with increased electrode interface surface area and increased active material
EP2538476B1 (en) * 2011-04-18 2014-03-12 Panasonic Corporation Alkaline primary battery
JP5022526B1 (en) * 2011-04-18 2012-09-12 パナソニック株式会社 Alkaline primary battery

Also Published As

Publication number Publication date
JPH09180736A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
US3870564A (en) Alkaline cell
EP1958278B1 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
CN114667626A (en) Aqueous electrochemical cell using polymer gel electrolyte
JP3022758B2 (en) Alkaline manganese battery
JPH113710A (en) Lithium secondary battery
JP3866903B2 (en) Alkaline battery
JP3552194B2 (en) Alkaline battery
GB2038537A (en) Lithium-lead sulphate primary electrochemical cell
JPH10144304A (en) Alkali battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP4255762B2 (en) Zinc alkaline battery
WO2021133898A1 (en) Dual electrolyte approach to increase energy density of metal-based batteries
JP2000182600A (en) Lithium battery
JPH0542779B2 (en)
JP2001068121A (en) Cylindrical alkaline battery
JP2003017081A (en) Alkaline dry battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JPH0443387B2 (en)
JPS60240056A (en) Alkaline-manganese cell
JP2552393B2 (en) Lithium battery
JP2867458B2 (en) Alkaline battery
JP4503790B2 (en) Alkaline battery
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees