JPH0443387B2 - - Google Patents

Info

Publication number
JPH0443387B2
JPH0443387B2 JP58198195A JP19819583A JPH0443387B2 JP H0443387 B2 JPH0443387 B2 JP H0443387B2 JP 58198195 A JP58198195 A JP 58198195A JP 19819583 A JP19819583 A JP 19819583A JP H0443387 B2 JPH0443387 B2 JP H0443387B2
Authority
JP
Japan
Prior art keywords
cathode
mixture
anode
battery
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58198195A
Other languages
Japanese (ja)
Other versions
JPS6091562A (en
Inventor
Kenichi Shinoda
Akihide Izumi
Kunyoshi Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP19819583A priority Critical patent/JPS6091562A/en
Publication of JPS6091562A publication Critical patent/JPS6091562A/en
Publication of JPH0443387B2 publication Critical patent/JPH0443387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は円筒形アルカリ電池に関し、特に、
電池性能を低下させることなしにコストを低減さ
せる改良に関する。 周知のように、円筒形アルカリ電池では、円筒
形の電池ケース内に陽極合剤とセパレータおよび
陰極合剤が外側からこの順で同心状に装填されて
いる。 ここで陽極と陰極の容量(体積)比について
は、用いられる活物質の電気化学的性質によつて
基本的に決まるもので、電池ケースの容積が決ま
れば、電気化学的観点から陽極合剤と陰極合剤の
それぞれの理想容量が求まる。しかし、実際に電
池ケース内に組込まれた活物質は必ずしも理想的
に消費されるわけではない。活物質を効率良く消
費するには、陽極と陰極の対向面積(反応面積)
が極めて重要な要素となる。この対向面積が大き
い程反応効率は良くなる。 従来、二酸化マンガンを陽極活物質とし、ゲル
状亜鉛を陰極活物質とする円筒形のアルカリマン
ガン電池においては、陽・陰極容量比は電池の使
用目的(放電条件)に応じて P=陽/陰=1.2〜0.8 の範囲で適宜に選定されている。ここで陽・陰極
の容積を同時に変化させることは電池の設計変更
につながるため、一般には陰極容量を変化させる
ことで、上記容量比Pの調整を行なつている。 すなわち従来は、容量比Pの高い(陽極リツ
チ)電池の場合、陰極ゲルの充填量を減少させる
か、あるいはゲル容積を減らさずに、それに含ま
れる亜鉛の密度を低下させていた。しかし、陰極
ゲルの充填量を少くしたものでは、陽極活物質の
内周面の高さに対して陰極ゲルの外周面の高さが
低下することにより、前述の陰陽極の対向面積
(反応面積)が減少し、反応効率が悪くなるとい
う欠点があつた。また、上記の対向面積を低下さ
せないために亜鉛密度を低下させるものでは、そ
のために相当のコストを要するという問題の他、
ゲル粘度の調整が困難となり、ゲル充填量のバラ
ツキが生じるという欠点があつた。 この発明は上述したような技術的背景に鑑みて
なされたもので、その目的は、低コストかつ製作
容易な手段によつて陽極リツチでかつ高性能の円
筒形アルカリ電池を提供することにある。 上記の目的を達成するために、この発明の円筒
形アルカリ電池は、円筒形電池ケース内に陽極合
剤とセパレータと陰極合剤を外側からこの順で同
心状に装填するとともに陽極の容量の方を陰極の
容量よりも大きくしてなる陽極リツチな円筒形ア
ルカリ電池において、上記陰極合剤が粒径75〜
300μmの亜鉛粉末とゲル化剤を加えた混合物中
に、粒径500〜2000μmの合成樹脂粉末を増量剤と
して混入してなることを特徴とする。 以下、この発明の一実施例を図面に基づいて詳
細に説明する。 図はこの発明が適用される円筒形アルカリ電池
を示している。円筒形の陽極缶1(電池ケース)
内に、陽極合剤3と筒状のセパレータ4と陰極合
剤5が外側からこの順で同心状に装填されてい
る。また、陰極合剤5内には金属集電棒9が挿入
されている。陽極缶1の開口部は、電気絶縁性の
ガスケツト7を介して陰極端子板8によつて封止
されている。 陽極合剤3は、活物質としての二酸化マンガン
等の金属酸化物と導電物質である黒鉛やアセチレ
ンブラツク等を適量混合して合剤とし、円筒形状
に成形したものである。セパレータ4にはアルカ
リ電解液が含浸されている。陰極合剤5は汞化し
た亜鉛粉末とゲル化剤を混合してなる陰極ゲル中
に、亜鉛粉末より粒径の大きなポリスチレンビー
ズが増量剤として混入されている。 陰極合剤5について詳述する。亜鉛粉末の粒径
は一般に75〜300μm程度であり、これに対して粒
径が500〜2000μmと大きなポリスチレンビーズが
増量剤として混入されている。この増量剤の量
は、陰極合剤5の全体体積に対して好ましくは約
10%の比率で混入されている。 このポリスチレンビーズは極めて安価である
し、また電池反応には全く悪影響を及ぼさない。
そして、陰極合剤5の体積が同じで上記増量剤の
混入されていない従来の電池と、約10%が増量剤
である本発明の電池とでは、放電電気容量等の特
性は殆ど同じである。そのため、陽極リツチな電
池の場合に、陰極亜鉛粉末の充填量を減少させて
も増量剤を添加することによつて陰極合材3全体
の体積を増し、セパレータ4を介して陽極合剤5
との対向部を所望の面積に維持する。すなわち、
本発明の電池は、その特性を損なうこと無く陽陰
極の対向面積を所望の値に維持することができ
る。従つて、安価な増量剤に置換した分だけコス
トは低減されることになる。 次に、発明の上述した効果を従来の電池と比較
した試験結果に基づいて説明する。 次の表は従来の円筒形アルカリ電池において、
陰極合剤の量を変化させることで放電時間がどの
ように変化するかを示している。ここでは最大の
放電時間が得られた陰極合剤の量を100とし、(前
述したように、このときの陰極合剤の量は電気化
学的に求まる比率よりも多い)、これに対して陰
極合剤の量(体積)を95,90,85と変化させたと
きの放電時間を示している。表から明らかなよう
に陰極合剤の量を減らすと、これと陽極合剤との
反応面積が小さくなり、その結果反応効率が低下
して放電時間が短くなつている。
This invention relates to a cylindrical alkaline battery, and in particular:
This invention relates to improvements that reduce costs without reducing battery performance. As is well known, in a cylindrical alkaline battery, an anode mixture, a separator, and a cathode mixture are concentrically loaded in this order from the outside in a cylindrical battery case. The capacity (volume) ratio of the anode and cathode is basically determined by the electrochemical properties of the active material used, and once the volume of the battery case is determined, the anode mixture and the The ideal capacity of each cathode mixture is determined. However, the active material actually incorporated into the battery case is not necessarily consumed ideally. In order to efficiently consume the active material, the opposing area (reaction area) of the anode and cathode must be
is an extremely important element. The larger the opposing area, the better the reaction efficiency. Conventionally, in cylindrical alkaline manganese batteries in which manganese dioxide is used as an anode active material and gelled zinc is used as a cathode active material, the anode/cathode capacity ratio depends on the purpose of use of the battery (discharge conditions): P = anode/anode = 1.2 to 0.8. Since changing the volumes of the anode and cathode at the same time would lead to a change in the design of the battery, the capacity ratio P is generally adjusted by changing the capacity of the cathode. That is, conventionally, in the case of a battery with a high capacity ratio P (anode rich), the filling amount of the cathode gel was reduced, or the density of zinc contained therein was reduced without reducing the gel volume. However, when the amount of cathode gel filled is small, the height of the outer circumferential surface of the cathode gel is lower than the height of the inner circumferential surface of the anode active material. ) decreases, resulting in poor reaction efficiency. In addition, methods that reduce the zinc density without reducing the facing area mentioned above have the problem of requiring a considerable amount of cost.
The drawback was that it was difficult to adjust the gel viscosity, resulting in variations in the gel filling amount. The present invention has been made in view of the above-mentioned technical background, and its object is to provide a cylindrical alkaline battery with a rich anode and high performance using means that is low cost and easy to manufacture. In order to achieve the above object, the cylindrical alkaline battery of the present invention has an anode mixture, a separator, and a cathode mixture concentrically loaded in this order from the outside in a cylindrical battery case, and the capacity of the anode is In a cylindrical alkaline battery with an anode rich in which the capacity of the cathode is larger than the capacity of the cathode, the above cathode mixture has a particle size of 75~
It is characterized in that synthetic resin powder with a particle size of 500 to 2000 μm is mixed as an extender into a mixture of 300 μm zinc powder and a gelling agent. Hereinafter, one embodiment of the present invention will be described in detail based on the drawings. The figure shows a cylindrical alkaline battery to which the present invention is applied. Cylindrical anode can 1 (battery case)
Inside, an anode mixture 3, a cylindrical separator 4, and a cathode mixture 5 are concentrically loaded in this order from the outside. Further, a metal current collector rod 9 is inserted into the cathode mixture 5. The opening of the anode can 1 is sealed with a cathode terminal plate 8 via an electrically insulating gasket 7. The anode mixture 3 is a mixture prepared by mixing an appropriate amount of a metal oxide such as manganese dioxide as an active material and a conductive material such as graphite or acetylene black to form a mixture into a cylindrical shape. The separator 4 is impregnated with an alkaline electrolyte. The cathode mixture 5 is a cathode gel made by mixing aqueous zinc powder and a gelling agent, and polystyrene beads having a larger particle size than the zinc powder are mixed as an extender. The cathode mixture 5 will be explained in detail. The particle size of zinc powder is generally about 75 to 300 μm, whereas large polystyrene beads with a particle size of 500 to 2000 μm are mixed as an extender. The amount of this filler is preferably about
It is mixed in at a rate of 10%. These polystyrene beads are extremely inexpensive and have no adverse effect on cell reactions.
The conventional battery in which the volume of the cathode mixture 5 is the same and the filler is not mixed in, and the battery of the present invention in which the volume is about 10% filler are almost the same in characteristics such as discharge capacity. . Therefore, in the case of an anode-rich battery, even if the filling amount of the cathode zinc powder is reduced, the overall volume of the cathode mixture 3 can be increased by adding an extender, and the anode mixture 3 can be passed through the separator 4.
Maintain the area facing the desired area. That is,
The battery of the present invention can maintain the facing area of the anode and cathode at a desired value without impairing its characteristics. Therefore, the cost will be reduced by the amount replaced by an inexpensive filler. Next, the above-mentioned effects of the invention will be explained based on test results compared with conventional batteries. The following table shows that for conventional cylindrical alkaline batteries,
It shows how the discharge time changes by changing the amount of cathode mixture. Here, the amount of cathode mixture that yielded the maximum discharge time is assumed to be 100 (as mentioned above, the amount of cathode mixture at this time is greater than the ratio determined electrochemically), and It shows the discharge time when the amount (volume) of the mixture was changed to 95, 90, and 85. As is clear from the table, when the amount of the cathode mixture is reduced, the reaction area between the cathode mixture and the anode mixture becomes smaller, and as a result, the reaction efficiency decreases and the discharge time becomes shorter.

【表】 これに対し、次に示す表は本発明品の円筒形ア
ルカリ電池についてのものである。ここでは上記
増量剤を含んだ陰極合剤5の量(体積)を、先の
従来品の最良の特性が得られた場合の量100と同
じにし、その中に占めるポリスチレンビーズの量
(体積)を5%、10%、15%にした場合のそれぞ
の放電時間を示している。表から明らかなよう
に、増量剤を5%および10%加えた例では従来品
の最良の放電時間13時間と同じ特性が得られてお
り、15%加えたものでも殆ど同じ放電時間であ
る。このため、亜鉛粉末にゲル化剤を加えた混合
物の量を減らした分だけコストダウンに繋がるの
である。
[Table] On the other hand, the following table is for the cylindrical alkaline battery of the present invention. Here, the amount (volume) of the cathode mix 5 containing the above-mentioned filler is the same as the amount 100 used when the best characteristics of the conventional product were obtained, and the amount (volume) of the polystyrene beads in it is It shows the discharge time when the ratio is set to 5%, 10%, and 15%. As is clear from the table, the examples with 5% and 10% filler added had the same characteristics as the conventional product, which had the best discharge time of 13 hours, and the ones with 15% added had almost the same discharge time. Therefore, reducing the amount of the mixture of zinc powder and gelling agent leads to cost reduction.

【表】 上記の従来品と本発明品の比較は勿論同じ条件
の試験結果である。つまり、電池の形式はLR20
型であり、20℃の温度において2Ωの連続放電を
行なつたときの放電時間である(放電終止電圧は
0.9V)。 次に、本発明の円筒形電池における増量剤とし
てのポリスチレンビーズの粒径が電池性能にどの
ような影響を与えるかについて説明する。次に示
す表は、ポリスチレンビーズを陰極合剤5中に10
%混入した電池において、そのポリスチレンビー
ズの粒径を変化させた場合の放電時間を示してい
る。
[Table] The above comparison of the conventional product and the product of the present invention is, of course, the test results under the same conditions. In other words, the battery format is LR20
This is the discharge time when a continuous discharge of 2Ω is performed at a temperature of 20℃ (the discharge end voltage is
0.9V). Next, how the particle size of polystyrene beads as an extender in the cylindrical battery of the present invention affects battery performance will be explained. The following table shows how to add polystyrene beads to 10% of the cathode mixture.
The figure shows the discharge time when the particle size of the polystyrene beads was changed in a battery containing 1% polystyrene.

【表】 この表から明らかなように、ポリスチレンビー
ズの粒径が小さくて亜鉛粉末の粒径に近い場合、
放電時間は短くなる。即ち、ポリスチレンビーズ
の粒径が亜鉛粉末の粒径と同程度に小さくなる
と、亜鉛粉末間の接触性がポリスチレンビーズに
よつて阻害されたり、ポリスチレンビーズがセパ
レータ層に密着しすぎて陽陰極の反応効率を損う
こととなり、この結果放電時間が短くなる。一
方、ポリスチレンビーズの粒径が2000μm以上の
大粒になると、前記粒径別の試験結果から分かる
ように増量剤は陰極合剤全体の約10%が適量であ
るため、このポリスチレンビーズが大粒になつた
ことに伴いその数は減少するため陰極合剤内での
亜鉛粉末の均一分散の困難性を生じ、且つその影
響から亜鉛粉末間の距離が安定せず均一の放電が
行われない問題が生じてしまう。 これらの試験等を鑑みて、ポリスチレンビーズ
の粒径が500〜2000μmの範囲にあれば、亜鉛粉末
の量を減らしても、陽極合剤と陰極合剤の対向面
積をほぼ同じに維持して、従来品の最良の放電時
間と殆ど同じにする事が出来、亜鉛粉末を安価な
ポリスチレンビーズと置換した分だけ電池の製造
コストを低減させることができる。 以上詳細に説明したように、この発明に係る円
筒形アルカリ電池によれば、電池性能を低下させ
ることなしに、陰極合剤に要するコストが低減さ
れる。
[Table] As is clear from this table, when the particle size of polystyrene beads is small and close to the particle size of zinc powder,
Discharge time becomes shorter. In other words, if the particle size of the polystyrene beads becomes as small as the particle size of the zinc powder, the contact between the zinc powders may be inhibited by the polystyrene beads, or the polystyrene beads may adhere too closely to the separator layer, causing a reaction between the anode and cathode. This results in a loss of efficiency, resulting in a shorter discharge time. On the other hand, when the particle size of the polystyrene beads becomes large (2000 μm or more), as can be seen from the test results for each particle size, the appropriate amount of filler is about 10% of the total cathode mixture, so the polystyrene beads become large. As a result, the number of zinc powders decreases, making it difficult to uniformly disperse the zinc powder in the cathode mixture, and as a result, the distance between the zinc powders becomes unstable, causing a problem in which uniform discharge cannot occur. I end up. Considering these tests, we found that if the particle size of the polystyrene beads is in the range of 500 to 2000 μm, even if the amount of zinc powder is reduced, the facing area of the anode mixture and the cathode mixture can be maintained almost the same. The discharge time can be almost the same as the best discharge time of conventional products, and the manufacturing cost of the battery can be reduced by replacing the zinc powder with inexpensive polystyrene beads. As described above in detail, according to the cylindrical alkaline battery according to the present invention, the cost required for the cathode mixture is reduced without deteriorating the battery performance.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明が適用される円筒形アルカリ電池
の断面図である。 1…陽極缶(電池ケース)、3…陽極合剤、4
…セパレータ、5…陰極合剤、7…ガスケツト、
8…陰極端子板、9…金属集電棒。
The figure is a sectional view of a cylindrical alkaline battery to which the present invention is applied. 1... Anode can (battery case), 3... Anode mixture, 4
... Separator, 5... Cathode mixture, 7... Gasket,
8...Cathode terminal plate, 9...Metal current collector rod.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒形電池ケース内に陽極合剤とセパレータ
と陰極合剤を外側からこの順で同心状に装填する
とともに陽極の容量の方を陰極の容量よりも大き
くしてなる陽極リツチな円筒形アルカリ電池にお
いて、上記陰極合剤が粒径75〜300μmの亜鉛粉末
とゲル化剤を加えた混合物中に、粒径500〜
2000μmの合成樹脂粉末を増量剤として混入して
なることを特徴とする円筒形アルカリ電池。
1 An anode-rich cylindrical alkaline battery in which an anode mixture, a separator, and a cathode mixture are loaded concentrically in this order from the outside in a cylindrical battery case, and the capacity of the anode is larger than the capacity of the cathode. In , the above cathode mixture is added to a mixture of zinc powder with a particle size of 75 to 300 μm and a gelling agent, and the particle size is 500 to 300 μm.
A cylindrical alkaline battery characterized by containing 2000μm synthetic resin powder as an extender.
JP19819583A 1983-10-25 1983-10-25 Cylindrical alkali battery Granted JPS6091562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19819583A JPS6091562A (en) 1983-10-25 1983-10-25 Cylindrical alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19819583A JPS6091562A (en) 1983-10-25 1983-10-25 Cylindrical alkali battery

Publications (2)

Publication Number Publication Date
JPS6091562A JPS6091562A (en) 1985-05-22
JPH0443387B2 true JPH0443387B2 (en) 1992-07-16

Family

ID=16387048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19819583A Granted JPS6091562A (en) 1983-10-25 1983-10-25 Cylindrical alkali battery

Country Status (1)

Country Link
JP (1) JPS6091562A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617847A4 (en) * 1991-12-16 1996-01-24 Matsi Inc Collapsing foam anode backing for zinc-air battery.
US5458988A (en) * 1993-08-10 1995-10-17 Matsi, Inc. Metal-air-cells having improved anode assemblies
JP5999968B2 (en) * 2012-05-02 2016-09-28 セイコーインスツル株式会社 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP6130012B2 (en) * 2016-03-22 2017-05-17 セイコーインスツル株式会社 Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751483U (en) * 1980-09-08 1982-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751483U (en) * 1980-09-08 1982-03-24

Also Published As

Publication number Publication date
JPS6091562A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
US4091178A (en) Rechargeable alkaline MnO2 -zinc cell
JP2001015106A (en) Alkaline battery
US4060668A (en) Primary electrochemical cell
US3961985A (en) Nickel-zinc cell
US4118334A (en) Primary electrochemical cell
JP3022758B2 (en) Alkaline manganese battery
JPH0443387B2 (en)
US3698956A (en) Alkaline electrolyte-zinc anode air-depolarized battery
JP3866903B2 (en) Alkaline battery
JPH09180708A (en) Alkaline dry cell
JPH048899B2 (en)
JP2000048827A (en) Alkaline battery
JP4255762B2 (en) Zinc alkaline battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JP2002025519A (en) Battery container, electronic apparatus using it, and method of using battery
JP2001068121A (en) Cylindrical alkaline battery
JPH0512824B2 (en)
JP2003017042A (en) Sealed alkaline-zinc primary battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH01151158A (en) Manufacture of positive electrode for nonaqueous solvent cell
JP4265738B2 (en) Alkaline battery
JP2878294B2 (en) Lithium battery
JPS5928025B2 (en) Alkaline battery manufacturing method
JP2006179429A (en) Alkaline dry battery
JPS60241646A (en) Alkali-manganese cell