JP2006179429A - Alkaline dry battery - Google Patents

Alkaline dry battery Download PDF

Info

Publication number
JP2006179429A
JP2006179429A JP2004374196A JP2004374196A JP2006179429A JP 2006179429 A JP2006179429 A JP 2006179429A JP 2004374196 A JP2004374196 A JP 2004374196A JP 2004374196 A JP2004374196 A JP 2004374196A JP 2006179429 A JP2006179429 A JP 2006179429A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
negative electrode
weight
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004374196A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文生 加藤
Hidekatsu Izumi
秀勝 泉
Yasuo Mukai
保雄 向井
Shigeto Noya
重人 野矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004374196A priority Critical patent/JP2006179429A/en
Publication of JP2006179429A publication Critical patent/JP2006179429A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline dry battery restrained from drying-up of electrolyte liquid of a gelatinous anode at the last period of charging, with improved strength of a cathode mixture, excellent in a preservation property by restraining self-discharge caused by nickel oxyhydroxide. <P>SOLUTION: The cathode mixture of the alkaline dry battery comprises manganese dioxide and nickel oxyhydroxide as activators, graphite as conductive agent, polyethylene as binder, the electrolyte, and at least one kind of additives selected from ZnO, Ca(OH)<SB>2</SB>, and Y<SB>2</SB>O<SB>3</SB>. the density of the cathode mixture before injecting the electrolyte liquid is 3.2 to 3.5 g/cm<SP>3</SP>, and porosity of the cathode mixture is 10 to 18%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活物質としてオキシ水酸化ニッケルを正極合剤中に含み、インサイドアウト構造を採用したアルカリ乾電池に関する。   The present invention relates to an alkaline battery including nickel oxyhydroxide as an active material in a positive electrode mixture and employing an inside-out structure.

アルカリ乾電池は、正極端子を兼ねる有底円筒状の電池缶の中に、電池缶に密着して二酸化マンガンを含む中空円筒状のペレット状正極合剤を配置し、その中央にセパレータを介してゲル状の亜鉛負極を配置したインサイドアウト型の構造を有する。
近年のデジタル機器の普及に伴い、機器の負荷電力は増大している。このため、デジタル機器の電源に用いられる電池は優れた強負荷放電特性を有することが要望されている。強負荷放電特性を向上させる方法としては、電池の正極合剤にオキシ水酸化ニッケルを混合することが提案されており(例えば、特許文献1)、この電池が実用化されて広く普及するに到っている。
In alkaline dry batteries, a hollow cylindrical pellet positive electrode mixture containing manganese dioxide is placed in close contact with the battery can in a bottomed cylindrical battery can that also serves as a positive electrode terminal, and a gel is placed in the center via a separator. It has an inside-out type structure in which a zinc negative electrode is arranged.
With the spread of digital devices in recent years, the load power of devices has increased. For this reason, the battery used for the power supply of a digital device is requested | required to have the outstanding heavy load discharge characteristic. As a method for improving the heavy load discharge characteristics, it has been proposed to mix nickel oxyhydroxide with the positive electrode mixture of the battery (for example, Patent Document 1), and this battery is put into practical use and widely spread. ing.

ここで、上記のアルカリ乾電池で用いられるオキシ水酸化ニッケルには、特許文献2のようなアルカリ蓄電池用途に使用される球状または鶏卵状の水酸化ニッケルを、次亜塩素酸ナトリウム水溶液等の酸化剤で酸化したものを使用するのが一般的である。このとき、電池内への充填性をよくするために、原料に嵩密度(タップ密度)の大きいβ型の球状水酸化ニッケルを用い、これを酸化して得られたβ型の球状オキシ水酸化ニッケルが用いられる。   Here, for the nickel oxyhydroxide used in the above alkaline dry battery, a spherical or egg-shaped nickel hydroxide used for alkaline storage battery as in Patent Document 2 is replaced with an oxidizing agent such as an aqueous sodium hypochlorite solution. It is common to use one oxidized with At this time, β-type spherical oxyhydroxide obtained by oxidizing β-type spherical nickel hydroxide having a large bulk density (tap density) and oxidizing it in order to improve the filling into the battery. Nickel is used.

ところで、従来から、上記のオキシ水酸化ニッケルを用いたアルカリ乾電池の設計条件について種々に検討されている。
例えば特許文献3では、正極合剤中の活物質の配合について、電池特性・製造コスト等のバランスから、二酸化マンガンの含有率を20〜90重量%とし、オキシ水酸化ニッケルの含有率を10〜80重量%とすることが提案されている。
また、特許文献4では、電解液量/正極理論容量の値を1.0〜1.6cm/Ahとすることが提案されている。
通常、これらの活物質と導電剤や結着剤等との混合物を円筒中空状に加圧成型して密度3g/cm程度(多孔度として約20%)の正極合剤を得、これにセパレータを介してゲル状負極を充填しアルカリ電解液を注入して電池を作製する。この際、過放電時の漏液対策(過放電時に正極が転極して水素発生し、電池内圧が急激に上昇するのを防ぐための対策)から、負極の亜鉛(活物質)量はできるだけ少なくして設計するのが一般的である。
特開昭57−72266号公報 特開平4-80513号公報 特開2001−15106号公報 国際公開第02/41422A1号パンフレット
By the way, conventionally, various design conditions for alkaline dry batteries using the above nickel oxyhydroxide have been studied.
For example, in Patent Document 3, regarding the blending of the active material in the positive electrode mixture, the content of manganese dioxide is set to 20 to 90% by weight and the content of nickel oxyhydroxide is set to 10 to 10% from the balance of battery characteristics, manufacturing cost, and the like. It has been proposed to be 80% by weight.
Patent Document 4 proposes that the value of the electrolytic solution amount / the positive electrode theoretical capacity is 1.0 to 1.6 cm 3 / Ah.
Usually, a mixture of these active materials and a conductive agent, a binder or the like is pressed into a hollow cylindrical shape to obtain a positive electrode mixture having a density of about 3 g / cm 3 (porosity of about 20%). A gelled negative electrode is filled through a separator and an alkaline electrolyte is injected to produce a battery. At this time, the amount of zinc (active material) in the negative electrode is as much as possible because of measures for leakage during overdischarge (a measure to prevent the positive electrode from reversing and generating hydrogen during overdischarge and the battery internal pressure to rise rapidly). It is common to design with fewer.
JP-A-57-72266 Japanese Patent Laid-Open No. 4-80513 JP 2001-15106 A International Publication No. 02 / 41422A1 Pamphlet

しかしながら、上述したような従来のオキシ水酸化ニッケル含有アルカリ乾電池の設計では、正極合剤の密度が低い(多孔度が高い)ため、放電末期に電解液が正極合剤側に偏ってゲル状負極中の電解液が枯渇しやすいという問題があった。
ここで、オキシ水酸化ニッケル含有アルカリ乾電池の放電反応を下記の式(1)〜(4)に示す。なお、式(1)および(2)は、正極合剤中の放電反応を、式(3)および(4)は、ゲル状負極中の放電反応を示す。
<正極>
NiOOH + H2O + e → Ni(OH) + OH (1)
MnO + HO + e → MnOOH + OH (2)
<負極>
Zn + 2OH → Zn(OH) + 2e (3)
Zn + 2OH → ZnO + HO + 2e (4)
However, in the design of the conventional nickel oxyhydroxide-containing alkaline battery as described above, since the density of the positive electrode mixture is low (the porosity is high), the electrolyte is biased toward the positive electrode mixture side at the end of discharge, and the gelled negative electrode There was a problem that the electrolyte inside was easily depleted.
Here, the discharge reaction of the nickel oxyhydroxide-containing alkaline battery is represented by the following formulas (1) to (4). Formulas (1) and (2) show the discharge reaction in the positive electrode mixture, and formulas (3) and (4) show the discharge reaction in the gelled negative electrode.
<Positive electrode>
NiOOH + H 2 O + e → Ni (OH) 2 + OH (1)
MnO 2 + H 2 O + e - → MnOOH + OH - (2)
<Negative electrode>
Zn + 2OH → Zn (OH) 2 + 2e (3)
Zn + 2OH → ZnO + H 2 O + 2e (4)

正極の放電反応はオキシ水酸化ニッケルおよび二酸化マンガンともに水の消費反応であるのに対し、負極の放電反応は水の生成を含まない式(3)の反応を含むため、電池全体として、放電に伴い水が減少する。そして、この際に生ずるアルカリ電解液の濃度勾配が駆動力となって、ゲル状負極中の電解液(水)が正極合剤側へ拡散する。従って、一般に放電末期にはゲル状負極中の電解液が枯渇する現象が起こり、十分に容量を取り出せない場合がある。   While the discharge reaction of the positive electrode is a water consumption reaction for both nickel oxyhydroxide and manganese dioxide, the discharge reaction of the negative electrode includes the reaction of formula (3) that does not include the generation of water. Along with this, water decreases. Then, the concentration gradient of the alkaline electrolyte generated at this time becomes a driving force, and the electrolyte (water) in the gelled negative electrode diffuses toward the positive electrode mixture side. Therefore, generally, a phenomenon occurs in which the electrolyte in the gelled negative electrode is depleted at the end of discharge, and the capacity may not be taken out sufficiently.

特に、アルカリ乾電池を長期間保存すると、ゲル状負極中で下記に示す式(5)の反応(水の消費反応)により亜鉛粉が酸化劣化する。この反応によっても、負極中の電解液(水)が減少するため、放電末期の負極では電解液が枯渇しやすい。
Zn + HO → ZnO + H (5)
このため、できるだけ電解液を多く注液することが重要と考えられるが、一方で電解液量が過剰になると、電池内のエアスペースが減少するため、過放電時における電池内圧の上昇や漏液の発生を抑制するのが困難となる。つまり、電解液の増量による対策にも限界がある。
そこで、本発明は、上記の従来の問題を解決するために、放電末期のゲル状負極におけるアルカリ電解液の枯渇を抑制し、ゲル状負極の活物質利用率を高めることにより、高容量のアルカリ乾電池を提供することを目的とする。また、正極合剤の強度を高め、オキシ水酸化ニッケルによる自己放電を抑制することにより、保存特性に優れたアルカリ乾電池を提供することを目的とする。
In particular, when an alkaline battery is stored for a long period of time, zinc powder is oxidized and deteriorated by the reaction of formula (5) shown below (water consumption reaction) in a gelled negative electrode. Also by this reaction, the electrolyte solution (water) in the negative electrode decreases, so that the electrolyte solution tends to be depleted in the negative electrode at the end of discharge.
Zn + H 2 O → ZnO + H 2 (5)
For this reason, it is considered important to inject as much electrolyte as possible. On the other hand, if the amount of electrolyte is excessive, the air space in the battery decreases, so the battery internal pressure rises or leaks during overdischarge. It becomes difficult to suppress the occurrence of this. In other words, there is a limit to measures by increasing the amount of electrolyte.
Therefore, in order to solve the above-described conventional problems, the present invention suppresses the depletion of the alkaline electrolyte in the gel negative electrode at the end of discharge, and increases the active material utilization rate of the gel negative electrode, thereby increasing the high-capacity alkali. An object is to provide a dry battery. Moreover, it aims at providing the alkaline dry battery excellent in the storage characteristic by raising the intensity | strength of positive mix and suppressing the self-discharge by nickel oxyhydroxide.

そこで、本発明は、電池缶内に、中空円筒状の正極合剤、亜鉛を活物質として含むゲル状負極、前記負極内に挿入される負極集電体、前記正極合剤とゲル状負極とを隔離するセパレータ、およびアルカリ水溶液からなる電解液を収容したアルカリ乾電池であって、前記正極合剤が、活物質として二酸化マンガンおよびオキシ水酸化ニッケル、導電剤として黒鉛、結着剤としてポリエチレン粉末、前記電解液、ならびにZnO、Ca(OH)、およびYからなる群より選ばれる少なくとも1種の添加剤を含み、前記電解液の注液前における前記正極合剤の密度が3.2〜3.5g/cmであり、かつ前記正極合剤の多孔度が10〜18%であることを特徴とする。 Accordingly, the present invention provides a battery can having a hollow cylindrical positive electrode mixture, a gelled negative electrode containing zinc as an active material, a negative electrode current collector inserted into the negative electrode, the positive electrode mixture and the gelled negative electrode, Separator, and an alkaline dry battery containing an electrolytic solution comprising an alkaline aqueous solution, wherein the positive electrode mixture is manganese dioxide and nickel oxyhydroxide as an active material, graphite as a conductive agent, polyethylene powder as a binder, The electrolyte solution and at least one additive selected from the group consisting of ZnO, Ca (OH) 2 , and Y 2 O 3 are included, and the density of the positive electrode mixture before injection of the electrolyte solution is 3. It is 2 to 3.5 g / cm 3 , and the porosity of the positive electrode mixture is 10 to 18%.

これにより、放電末期においてもゲル状負極がアルカリ電解液を十分に保持することができ、ゲル状負極の活物質利用率が向上するため、アルカリ乾電池を高容量化することができる。さらに、正極合剤中に上記の結着剤や添加剤を添加することにより、アルカリ電池乾電池の保存特性が向上する。なお、電解液の注液前における正極合剤とは、正極合剤の作製時に添加された少量の電解液を含む状態のものであり、正極合剤を収容した電池缶内に所定量の電解液を注液する前の状態のものをいう。   As a result, the gelled negative electrode can sufficiently hold the alkaline electrolyte even at the end of discharge, and the active material utilization of the gelled negative electrode is improved, so that the capacity of the alkaline dry battery can be increased. Furthermore, the storage characteristics of an alkaline battery dry battery are improved by adding the above-mentioned binder or additive to the positive electrode mixture. The positive electrode mixture before injecting the electrolytic solution is a state containing a small amount of the electrolyte added at the time of preparing the positive electrode mixture, and a predetermined amount of electrolysis is contained in the battery can containing the positive electrode mixture. This refers to the state before the liquid is injected.

さらに、上記のアルカリ乾電池が以下の(1)〜(3)を満たすのが好ましい。
(1)前記ゲル状負極の理論容量/前記正極合剤の理論容量の値が1.00〜1.15である。
(2)前記電池缶内の空隙率(前記電池缶内の体積に対する、前記電池缶内の体積から前記正極合剤、ゲル状負極、セパレータ、アルカリ電解液、および負極集電体が占める体積を除いた空隙部分の体積の割合)が5〜15%である。
(3)前記電解液量/前記ゲル状負極の理論容量の値が1.0〜1.4cm/Ahである。
ここで、(2)における電池缶内の体積とは、電池缶と、電池缶の開口部に配される樹脂製封口板とで囲まれる部分の体積である。また、(3)における電解液量は、電池内に存在する電解液の総量、すなわち正極合剤やゲル状負極の作製時に正極合剤およびゲル状負極中に添加された電解液量と電池組み立て時に電池缶内に注液する電解液量とを合計した量である。
Further, the alkaline dry battery preferably satisfies the following (1) to (3).
(1) The value of the theoretical capacity of the gelled negative electrode / the theoretical capacity of the positive electrode mixture is 1.00 to 1.15.
(2) Porosity in the battery can (the volume occupied by the positive electrode mixture, gelled negative electrode, separator, alkaline electrolyte, and negative electrode current collector from the volume in the battery can relative to the volume in the battery can) The ratio of the volume of the removed void portion) is 5 to 15%.
(3) The value of the theoretical amount of the electrolytic solution amount / the gelled negative electrode is 1.0 to 1.4 cm 3 / Ah.
Here, the volume in the battery can in (2) is the volume of the portion surrounded by the battery can and the resin sealing plate disposed in the opening of the battery can. The amount of electrolyte in (3) is the total amount of electrolyte present in the battery, that is, the amount of electrolyte added to the positive electrode mixture and the gelled negative electrode during the preparation of the positive electrode mixture and the gelled negative electrode and the battery assembly. This is the total amount of electrolyte solution that is sometimes poured into the battery can.

前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記オキシ水酸化ニッケルを10〜80重量部含み、前記二酸化マンガンを85〜15重量部含むのが好ましい。
前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記黒鉛を3〜10重量部含むのが好ましい。
前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記ポリエチレン粉末を0.1〜1重量部含むのが好ましい。
前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記添加剤を0.1〜3重量部含むのが好ましい。
前記二酸化マンガンの体積基準の平均粒子径が30〜50μmであり、かつ前記オキシ水酸化ニッケルの体積基準の平均粒子径が10〜30μmであるのが好ましい。
The positive electrode mixture includes 10 to 80 parts by weight of the nickel oxyhydroxide and 85 to 15 parts by weight of the manganese dioxide with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. preferable.
The positive electrode mixture preferably contains 3 to 10 parts by weight of the graphite with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite.
The positive electrode mixture preferably contains 0.1 to 1 part by weight of the polyethylene powder with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite.
The positive electrode mixture preferably contains 0.1 to 3 parts by weight of the additive with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite.
The volume-based average particle diameter of the manganese dioxide is preferably 30 to 50 μm, and the volume-based average particle diameter of the nickel oxyhydroxide is preferably 10 to 30 μm.

本発明によれば、放電末期においてもゲル状負極はアルカリ電解液を十分に保持することができ、ゲル状負極の活物質利用率が向上するため、アルカリ乾電池を高容量化することができる。また、正極合剤の強度が向上し、オキシ水酸化ニッケルによる自己放電が抑制されるため、保存特性に優れたアルカリ乾電池が得られる。   According to the present invention, the gelled negative electrode can sufficiently hold the alkaline electrolyte even at the end of discharge, and the active material utilization of the gelled negative electrode is improved, so that the capacity of the alkaline dry battery can be increased. Moreover, since the strength of the positive electrode mixture is improved and self-discharge due to nickel oxyhydroxide is suppressed, an alkaline dry battery having excellent storage characteristics can be obtained.

本発明は、電池缶内に、中空円筒状の正極合剤、負極活物質として亜鉛を含むゲル状負極、前記負極内に挿入される負極集電体、前記正極合剤とゲル状負極とを隔離するセパレータ、およびアルカリ水溶液からなる電解液を収容したアルカリ乾電池に関する。
そして、前記正極合剤が、正極活物質として二酸化マンガンおよびオキシ水酸化ニッケル、導電剤として黒鉛、結着剤としてポリエチレン粉末、前記電解液、ならびにZnO、Ca(OH)、およびYからなる群より選ばれる少なくとも1種の添加剤を含み、前記電解液の注液前における前記正極合剤の密度が3.2〜3.5g/cmであり、かつ前記正極合剤の多孔度が10〜18%である点に特徴を有する。
正極合剤は、例えば、正極活物質としてオキシ水酸化ニッケルおよび二酸化マンガンと、導電剤として黒鉛等と、少量の電解液とを混合したものを攪拌・混合して得られた造粒物を中空円筒状に加圧成型することにより得られる。その後、正極合剤は電池缶内に収容され、セパレータの挿入後に所定量の電解液が電池缶内に注液される。従って、上記における電解液の注液前における正極合剤とは、作製時に添加された少量の電解液を含む状態のものをいう。
The present invention provides a battery can comprising a hollow cylindrical positive electrode mixture, a gelled negative electrode containing zinc as a negative electrode active material, a negative electrode current collector inserted into the negative electrode, the positive electrode mixture and the gelled negative electrode. The present invention relates to a separator to be isolated and an alkaline dry battery containing an electrolytic solution made of an alkaline aqueous solution.
The positive electrode mixture is manganese dioxide and nickel oxyhydroxide as a positive electrode active material, graphite as a conductive agent, polyethylene powder as a binder, the electrolytic solution, ZnO, Ca (OH) 2 , and Y 2 O 3. The positive electrode mixture has a density of 3.2 to 3.5 g / cm 3 before pouring of the electrolyte solution, and the porosity of the positive electrode mixture is at least one selected from the group consisting of It is characterized in that the degree is 10 to 18%.
The positive electrode mixture is, for example, a hollow granulated product obtained by stirring and mixing a mixture of nickel oxyhydroxide and manganese dioxide as a positive electrode active material, graphite and the like as a conductive agent, and a small amount of electrolyte. It can be obtained by pressure molding into a cylindrical shape. Thereafter, the positive electrode mixture is accommodated in the battery can, and a predetermined amount of electrolyte is injected into the battery can after the separator is inserted. Therefore, the positive electrode mixture before the injection of the electrolytic solution in the above means a state containing a small amount of the electrolytic solution added at the time of production.

従来のオキシ水酸化ニッケル含有アルカリ乾電池では、生産性などの観点から、注液前における正極合剤の密度を3.0g/cm程度(多孔度は約20%)とするのが通例だが、本発明では、注液前における正極合剤の密度を3.2〜3.5g/cm(多孔度は10〜18%)にまで高密度化して電池を構成する。このようにすると、正極合剤中の空隙の体積が減少するためにゲル状負極から正極合剤側への電解液の拡散が効果的に抑制され、放電末期においてもゲル状負極中に電解液を十分に保つことができ、負極から十分な電気容量を取り出すことが可能となる。また、上記のような正極合剤の高密度化は、電池缶内に活物質を多く充填し、高容量化を図ることができるという点からも有利である。
実際の工程における生産性を考慮すると、正極合剤の密度は3.2〜3.35g/cmがより好ましい。
In a conventional nickel oxyhydroxide-containing alkaline dry battery, the density of the positive electrode mixture before injection is usually about 3.0 g / cm 3 (porosity is about 20%) from the viewpoint of productivity and the like. In the present invention, the density of the positive electrode mixture before injection is increased to 3.2 to 3.5 g / cm 3 (porosity is 10 to 18%) to constitute a battery. In this case, since the volume of the voids in the positive electrode mixture is reduced, the diffusion of the electrolyte solution from the gelled negative electrode to the positive electrode mixture side is effectively suppressed, and the electrolyte solution is contained in the gelled negative electrode even at the end of discharge. Can be kept sufficiently, and a sufficient electric capacity can be taken out from the negative electrode. Further, increasing the density of the positive electrode mixture as described above is also advantageous from the viewpoint that a large amount of active material can be filled in the battery can to increase the capacity.
Considering the productivity in the actual process, the density of the positive electrode mixture is more preferably 3.2 to 3.35 g / cm 3 .

正極合剤中にポリエチレン粉末が含まれることにより、正極合剤中の二酸化マンガンとオキシ水酸化ニッケルとの接触が良好になると同時に、正極合剤の強度が十分に向上する。
また、正極合剤中に、ZnO(酸化亜鉛)、Ca(OH)(水酸化カルシウム)、およびY(酸化イットリウム)からなる群より選ばれる少なくとも1種の添加剤が含まれることにより、オキシ水酸化ニッケルにおける酸素発生反応の過電圧が高められ、自己放電が緩和される。
従って、正極合剤が上記のような結着剤および添加剤を含むことにより、保存時の正極容量の低下が抑制される。
By including polyethylene powder in the positive electrode mixture, the contact between manganese dioxide and nickel oxyhydroxide in the positive electrode mixture is improved, and at the same time, the strength of the positive electrode mixture is sufficiently improved.
In addition, the positive electrode mixture contains at least one additive selected from the group consisting of ZnO (zinc oxide), Ca (OH) 2 (calcium hydroxide), and Y 2 O 3 (yttrium oxide). As a result, the overvoltage of the oxygen generation reaction in the nickel oxyhydroxide is increased, and the self-discharge is alleviated.
Therefore, when the positive electrode mixture contains the binder and additive as described above, a decrease in the positive electrode capacity during storage is suppressed.

さらに、上記のアルカリ乾電池が以下の(1)〜(3)を満たすのが好ましい。
(1)前記ゲル状負極の理論容量/前記正極合剤の理論容量(以下、負極理論容量/正極理論容量と表す。)の値が1.00〜1.15である。
(2)前記電池缶内の空隙率(前記電池缶内の体積に対する、前記電池缶内の体積から前記正極合剤、ゲル状負極、セパレータ、アルカリ電解液、および負極集電体が占める体積を除いた空隙部分の体積の割合)が5〜15%である。
(3)前記電解液量/前記ゲル状負極の理論容量(以下、電解液量/負極理論容量と表す。)の値が1.0〜1.4cm/Ahである。
ここで、(2)における電池缶内の体積とは、電池缶と、電池缶の開口部に配される樹脂製封口板とで囲まれる部分の体積である。また、(3)における電解液量は、電池内に存在する電解液の総量、すなわち正極合剤やゲル状負極の作製時に正極合剤およびゲル状負極中に添加された電解液量と電池組み立て時に電池缶内に注液する電解液量とを合計した量である。
Further, the alkaline dry battery preferably satisfies the following (1) to (3).
(1) The value of the theoretical capacity of the gelled negative electrode / the theoretical capacity of the positive electrode mixture (hereinafter referred to as negative electrode theoretical capacity / positive electrode theoretical capacity) is 1.00 to 1.15.
(2) Porosity in the battery can (the volume occupied by the positive electrode mixture, gelled negative electrode, separator, alkaline electrolyte, and negative electrode current collector from the volume in the battery can relative to the volume in the battery can) The ratio of the volume of the removed void portion) is 5 to 15%.
(3) The value of the electrolytic solution amount / the theoretical capacity of the gelled negative electrode (hereinafter referred to as the electrolytic solution amount / negative electrode theoretical capacity) is 1.0 to 1.4 cm 3 / Ah.
Here, the volume in the battery can in (2) is the volume of the portion surrounded by the battery can and the resin sealing plate disposed in the opening of the battery can. The amount of electrolyte in (3) is the total amount of electrolyte present in the battery, that is, the amount of electrolyte added to the positive electrode mixture and the gelled negative electrode during the preparation of the positive electrode mixture and the gelled negative electrode and the battery assembly. This is the total amount of electrolyte solution that is sometimes poured into the battery can.

負極理論容量/正極理論容量の値が1.00未満であると、負極活物質の亜鉛が不足して十分な容量が得られない。一方、負極理論容量/正極理論容量の値が1.15を超えると、放電容量が正極に規制されるため、過放電時に正極が転極して水素発生が起こることにより、電池内圧が急激に上昇し、漏液を起こす場合がある。
空隙率が5%未満であると、過放電等により電池内でガス発生が生じ、電池缶の内圧が急激に上昇する場合がある。一方、空隙率が15%より大きくなると、正極および負極の活物質量が制限されるため、実質上、電池の高容量化が困難となる。
電解液量/負極理論容量の値が1.0cm/Ah未満であると、放電末期にゲル状負極中の電解液が枯渇しやすくなる。一方、電解液量/負極理論容量の値が1.4cm/Ahを超えると、電解液量が過剰になり漏液が発生しやすくなる。
If the value of negative electrode theoretical capacity / positive electrode theoretical capacity is less than 1.00, zinc of the negative electrode active material is insufficient and sufficient capacity cannot be obtained. On the other hand, if the value of the negative electrode theoretical capacity / the positive electrode theoretical capacity exceeds 1.15, the discharge capacity is regulated by the positive electrode. It may rise and cause leakage.
If the porosity is less than 5%, gas may be generated in the battery due to overdischarge or the like, and the internal pressure of the battery can may increase rapidly. On the other hand, when the porosity is higher than 15%, the amount of the active material of the positive electrode and the negative electrode is limited, so that it is substantially difficult to increase the capacity of the battery.
When the value of the electrolytic solution amount / the negative electrode theoretical capacity is less than 1.0 cm 3 / Ah, the electrolytic solution in the gelled negative electrode tends to be exhausted at the end of discharge. On the other hand, when the value of the electrolytic solution amount / the negative electrode theoretical capacity exceeds 1.4 cm 3 / Ah, the electrolytic solution amount becomes excessive and liquid leakage tends to occur.

前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記オキシ水酸化ニッケルを10〜80重量部含み、前記二酸化マンガンを85〜15重量部含むのが好ましい。
二酸化マンガンとオキシ水酸化ニッケルとを比較した場合、単位重量あたりの容量(mAh/g)、電池缶内への充填性、および材料価格に関しては二酸化マンガンの方が優れているが、放電電圧や強負荷放電特性に関してはオキシ水酸化ニッケルの方が優れている。電池全体としての特性や価格のバランスを考えると、正極合剤はオキシ水酸化ニッケルおよび二酸化マンガンを上記範囲で含むのが好ましい。より好ましくは、二酸化マンガンとオキシ水酸化ニッケルとの混合重量比が30〜60:70〜40である。
The positive electrode mixture includes 10 to 80 parts by weight of the nickel oxyhydroxide and 85 to 15 parts by weight of the manganese dioxide with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. preferable.
When comparing manganese dioxide and nickel oxyhydroxide, manganese dioxide is superior in terms of capacity per unit weight (mAh / g), fillability in the battery can, and material price. Regarding heavy load discharge characteristics, nickel oxyhydroxide is superior. Considering the balance of characteristics and price as a whole battery, the positive electrode mixture preferably contains nickel oxyhydroxide and manganese dioxide in the above range. More preferably, the mixing weight ratio of manganese dioxide and nickel oxyhydroxide is 30-60: 70-40.

前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記黒鉛を3〜10重量部含むのが好ましい。
黒鉛の含有量が3重量部以上となると、正極合剤中の活物質の体積エネルギー密度が十分に増大し、強負荷放電特性が向上する。黒鉛の含有量が10重量部を超えると、相対的に正極活物質の量が少なくなるため、電池の高容量化が困難となる。一方、黒鉛の含有量が3重量部未満であると、上記のような黒鉛による効果が十分に得られない。より好ましくは、上記混合物100重量部に対して黒鉛を5〜8重量部含む。
The positive electrode mixture preferably contains 3 to 10 parts by weight of the graphite with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite.
When the content of graphite is 3 parts by weight or more, the volume energy density of the active material in the positive electrode mixture is sufficiently increased, and the heavy load discharge characteristics are improved. When the content of graphite exceeds 10 parts by weight, the amount of the positive electrode active material is relatively reduced, so that it is difficult to increase the capacity of the battery. On the other hand, if the graphite content is less than 3 parts by weight, the above-described effects of graphite cannot be obtained sufficiently. More preferably, it contains 5 to 8 parts by weight of graphite with respect to 100 parts by weight of the mixture.

前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、ポリエチレン粉末を0.1〜1重量部含むのが好ましい。ポリエチレン粉末の含有量が0.1重量部未満であると、電池保存後の放電性能が大きく低下する。一方、ポリエチレン粉末の含有量が1重量部を超えると、電池の内部抵抗が増大して初度の放電性能が低下する。より好ましくは、前記正極合剤は上記混合物100重量部に対してポリエチレン粉末を0.2〜0.5重量部含む。   The positive electrode mixture preferably contains 0.1 to 1 part by weight of polyethylene powder with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. When the content of the polyethylene powder is less than 0.1 parts by weight, the discharge performance after storage of the battery is greatly deteriorated. On the other hand, when the content of the polyethylene powder exceeds 1 part by weight, the internal resistance of the battery is increased and the initial discharge performance is lowered. More preferably, the positive electrode mixture includes 0.2 to 0.5 parts by weight of polyethylene powder with respect to 100 parts by weight of the mixture.

前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、黒鉛の混合物100重量部に対して、ZnO、Ca(OH)、およびYからなる群より選ばれる少なくとも1種の添加剤を0.1〜3重量部含むのが好ましい。
添加剤の含有量が0.1重量部未満であると、オキシ水酸化ニッケルの自己放電反応を抑止する効果が僅かで、電池保存後の放電性能が大きく低下する。一方、添加剤の含有量が3重量部を超えると、相対的に正極活物質の量が少なくなるため、電池の高容量化が困難となる。より好ましくは、前記正極合剤は、上記混合物100重量部に対して上記添加剤を0.2〜2重量部含む。
The positive electrode mixture contains at least one additive selected from the group consisting of ZnO, Ca (OH) 2 , and Y 2 O 3 with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. It is preferable to contain 0.1-3 weight part.
If the content of the additive is less than 0.1 parts by weight, the effect of suppressing the self-discharge reaction of nickel oxyhydroxide is slight, and the discharge performance after storage of the battery is greatly reduced. On the other hand, when the content of the additive exceeds 3 parts by weight, the amount of the positive electrode active material is relatively small, and it is difficult to increase the capacity of the battery. More preferably, the positive electrode mixture includes 0.2 to 2 parts by weight of the additive with respect to 100 parts by weight of the mixture.

前記二酸化マンガンの体積基準の平均粒子径が30〜50μmであり、かつ前記オキシ水酸化ニッケルの体積基準の平均粒子径が10〜30μmであるのが好ましい。
二酸化マンガンの粒子径は、例えば、電析工程で電極から剥離した二酸化マンガンの粉砕条件の調整等によって制御することが可能である。一般的に、粒子径が小さすぎると放電容量が低下し、粒子径が大きすぎると高負荷放電特性が低下する。また、粒子径が大きいものの方が正極合剤ペレットを作りやすい。これらの点を考慮すると、二酸化マンガンの体積基準の平均粒子径は30〜50μmであるのが好ましい。
The volume-based average particle diameter of the manganese dioxide is preferably 30 to 50 μm, and the volume-based average particle diameter of the nickel oxyhydroxide is preferably 10 to 30 μm.
The particle diameter of manganese dioxide can be controlled, for example, by adjusting the pulverization conditions of manganese dioxide peeled from the electrode in the electrodeposition process. Generally, when the particle size is too small, the discharge capacity is reduced, and when the particle size is too large, the high-load discharge characteristics are deteriorated. Moreover, the one with a larger particle diameter is easier to make a positive electrode mixture pellet. Considering these points, the volume-based average particle size of manganese dioxide is preferably 30 to 50 μm.

また、オキシ水酸化ニッケルの粒子径は、例えば、基材である水酸化ニッケルを反応晶析法で合成する際、合成槽内のpH、粒子の滞留時間、および反応温度等を調整することで制御することが可能である。意図的に粒径の大きなものを作製した場合でも、平均粒子径(体積基準)は30μm程度にとどまる場合が多い。本発明においては、正極合剤の高密度化(成型性の向上)の観点から、粒径の大きな水酸化ニッケルから得られるオキシ水酸化ニッケルを使用するのが好ましい。これらの点を考慮すると、オキシ水酸化ニッケルの体積基準の平均粒子径は10〜30μmであるのが好ましい。   The particle diameter of nickel oxyhydroxide can be adjusted, for example, by adjusting the pH in the synthesis tank, the residence time of the particles, the reaction temperature, etc., when nickel hydroxide as a base material is synthesized by a reaction crystallization method. It is possible to control. Even when a product having a large particle size is intentionally produced, the average particle size (volume basis) often remains at about 30 μm. In the present invention, it is preferable to use nickel oxyhydroxide obtained from nickel hydroxide having a large particle size from the viewpoint of increasing the density of the positive electrode mixture (improving moldability). Considering these points, the volume-based average particle diameter of nickel oxyhydroxide is preferably 10 to 30 μm.

以下、本発明の実施例について詳細に説明する。
《実施例1》
(1)正極合剤の作製
攪拌翼を備えた反応槽内に、純水と少量のヒドラジン(還元剤)を加え、窒素ガスによるバブリングを行いながら、所定濃度の硫酸ニッケル(II)水溶液、硫酸マンガン(II)水溶液、水酸化ナトリウム水溶液、およびアンモニア水をポンプで供給した。そして、槽内のpHを調整しながら十分に攪拌を続けることにより、水酸化ニッケルを析出・成長させた。このとき、水酸化ニッケル中のマンガンの含有量は、金属イオンの総量に対して5mol%となるように調整した。
続いて、得られた粒子を上記とは別の水酸化ナトリウム水溶液中で加熱して硫酸根を除去した後、水洗し、真空乾燥させて原料となる粉末状の水酸化ニッケル(組成:Ni0.95Mn0.05(OH))を得た。この水酸化ニッケルはβ型の結晶構造を有することを粉末X線回折測定装置(理学(株)製、RINT2500)を用いて確認した。
Examples of the present invention will be described in detail below.
Example 1
(1) Preparation of positive electrode mixture In a reaction vessel equipped with a stirring blade, pure water and a small amount of hydrazine (reducing agent) are added, and bubbling with nitrogen gas is performed, and a nickel (II) sulfate aqueous solution with a predetermined concentration and sulfuric acid are added. Manganese (II) aqueous solution, sodium hydroxide aqueous solution, and aqueous ammonia were supplied by a pump. And nickel hydroxide was deposited and grown by continuing sufficient stirring, adjusting pH in a tank. At this time, the content of manganese in nickel hydroxide was adjusted to 5 mol% with respect to the total amount of metal ions.
Subsequently, the obtained particles were heated in an aqueous sodium hydroxide solution different from the above to remove sulfate radicals, then washed with water and vacuum dried to obtain powdered nickel hydroxide (composition: Ni 0). .95 Mn 0.05 (OH) 2 ) was obtained. This nickel hydroxide was confirmed to have a β-type crystal structure by using a powder X-ray diffraction measurement apparatus (RINT 2500, manufactured by Rigaku Corporation).

次に、上記水酸化ニッケル200gを0.1mol/Lの水酸化ナトリウム水溶液1L中に投入し、さらに酸化剤として次亜塩素酸ナトリウム水溶液(有効塩素濃度:10重量%)を十分量加えて攪拌し、水酸化ニッケルを酸化させて粉末状のオキシ水酸化ニッケルを得た。得られたオキシ水酸化ニッケル粉末を十分に水洗した後、60℃で24時間真空乾燥した。なお、このオキシ水酸化ニッケルはβ型の結晶構造を有し、体積基準の平均粒子径が20μm、タップ密度が2.35g/cm、BET比表面積が12m/gであった。なお、タップ密度は、試料粉末を入れた容器を300回タッピングした時の試料粉末の嵩密度を示す。また、X線回折測定には、粉末X線回折装置(理学(株)製、RINT2500)を用い、平均粒径の測定には、粒度分布測定装置((株)日機装製、マイクロトラックFRA)を用い、タップ密度の測定には、(株)セイシン企業製のタップデンサーKYT−3000を用い、BET比表面積の測定には、(株)島津製作所製のASAP2010を用いた。
そして、上記で得られたオキシ水酸化ニッケル、二酸化マンガン(体積基準の平均粒子径:40μm)、および黒鉛を重量比50:45:5の割合で混合し、この混合物100重量部にポリエチレン粉末0.3重量部、ZnO粉末1重量部、および電解液として40重量%の水酸化カリウム水溶液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。そして、得られた造粒物の所定量を中空円筒型に加圧成型して正極合剤を得た。
Next, 200 g of the above nickel hydroxide was put into 1 L of a 0.1 mol / L sodium hydroxide aqueous solution, and a sufficient amount of an aqueous sodium hypochlorite solution (effective chlorine concentration: 10% by weight) was further added as an oxidant and stirred. Then, nickel hydroxide was oxidized to obtain powdered nickel oxyhydroxide. The obtained nickel oxyhydroxide powder was sufficiently washed with water and then vacuum-dried at 60 ° C. for 24 hours. The nickel oxyhydroxide had a β-type crystal structure, and had a volume-based average particle size of 20 μm, a tap density of 2.35 g / cm 3 , and a BET specific surface area of 12 m 2 / g. The tap density indicates the bulk density of the sample powder when the container containing the sample powder is tapped 300 times. For X-ray diffraction measurement, a powder X-ray diffraction device (RINT 2500, manufactured by Rigaku Corporation) was used, and for measuring the average particle size, a particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac FRA) was used. Used, tap density KYT-3000 manufactured by Seishin Co., Ltd. was used for measuring the tap density, and ASAP2010 manufactured by Shimadzu Corporation was used for measuring the BET specific surface area.
Then, the nickel oxyhydroxide, manganese dioxide (volume basis average particle size: 40 μm) and graphite obtained above were mixed at a weight ratio of 50: 45: 5, and 100 parts by weight of this mixture was mixed with polyethylene powder 0 After mixing 3 parts by weight, 1 part by weight of ZnO powder, and 1 part by weight of a 40% by weight aqueous potassium hydroxide solution as an electrolyte, the mixture was uniformly stirred and mixed with a mixer to adjust the particle size to a constant particle size. And the predetermined amount of the obtained granulated material was press-molded into a hollow cylindrical shape to obtain a positive electrode mixture.

(2)アルカリ乾電池の組み立て
上記で得られた正極合剤を用いてアルカリ電池缶を以下の手順で作製した。ここで、図1は本発明のアルカリ乾電池の一部を断面にした正面図である。ニッケルメッキされた鋼板からなり、内面に黒鉛塗装膜72が形成された、正極端子を兼ねる電池缶71の内部に、上記で得られた正極合剤73を複数個挿入し、これらを電池缶71内で再加圧して電池缶71の内面に密着させた。
(2) Assembly of alkaline battery An alkaline battery can was prepared by the following procedure using the positive electrode mixture obtained above. Here, FIG. 1 is a front view of a part of the alkaline dry battery of the present invention. A plurality of positive electrode mixtures 73 obtained as described above are inserted into a battery can 71 also serving as a positive electrode terminal, which is made of a nickel-plated steel plate and has a graphite coating film 72 formed on the inner surface thereof. The inside of the battery can 71 was brought into close contact with the inside by repressurization.

そして、正極合剤73の中空内面および電池缶71の底部内面にセパレ−タ74および絶縁キャップ75を挿入した後、セパレ−タ74と正極合剤73を湿潤させる目的で電解液を注液した。電解液には、40重量%の水酸化カリウム水溶液を用いた。注液後、セパレータ74の内側にゲル状負極76を充填した。ゲル状負極76には、ゲル化剤としてのポリアクリル酸ナトリウム、電解液としての40重量%の水酸化カリウム水溶液、および負極活物質としての亜鉛粉末からなるものを用いた。   And after inserting the separator 74 and the insulating cap 75 in the hollow inner surface of the positive electrode mixture 73 and the bottom inner surface of the battery can 71, the electrolyte solution was injected for the purpose of wetting the separator 74 and the positive electrode mixture 73. . A 40 wt% aqueous potassium hydroxide solution was used as the electrolytic solution. After the injection, the gelled negative electrode 76 was filled inside the separator 74. As the gelled negative electrode 76, a material comprising sodium polyacrylate as a gelling agent, 40% by weight potassium hydroxide aqueous solution as an electrolytic solution, and zinc powder as a negative electrode active material was used.

続いて、負極集電体70をゲル状負極76の中央に差し込んだ。なお、負極集電体70は、樹脂製の封口板77、負極端子を兼ねる底板78、および絶縁ワッシャ79と一体化して組み立てられている。そして、電池缶1の開口端部を、封口板77の周縁端部を介して底板78の周縁部にかしめることにより、電池缶71の開口部を密封した。次いで、電池缶71の外表面を外装ラベル711で被覆した。こうして単3形アルカリ乾電池を完成させた。   Subsequently, the negative electrode current collector 70 was inserted into the center of the gelled negative electrode 76. The negative electrode current collector 70 is integrally assembled with a resin sealing plate 77, a bottom plate 78 also serving as a negative electrode terminal, and an insulating washer 79. And the opening part of the battery can 71 was sealed by caulking the opening edge part of the battery can 1 to the peripheral part of the bottom plate 78 via the peripheral edge part of the sealing board 77. FIG. Next, the outer surface of the battery can 71 was covered with an exterior label 711. Thus, an AA alkaline battery was completed.

そして、上記において正極合剤の加圧成型時の圧力を種々に変化させて、表1に示すような密度(多孔度)の正極合剤A1〜A7を作製した。
なお、表1に示す正極合剤の密度は、上記で造粒時に添加した電解液1重量部を含むときの値である。正極合剤の密度は、予め電池缶内に収納する前の正極合剤ペレットの重量を測定し、この重量(g)を電池缶内で再加圧した後の正極合剤の体積(cm)で除することにより求めた。
また、密度測定装置(マイクロメリティック社製のアキュピック1330)を用いて正極合剤の各材料の真密度を求め、正極合剤重量に相当する真の材料体積を算出した。そして、この真の材料体積を用いて、(正極合剤の体積−真の材料体積)/正極合剤の体積×100の式より算出した値を正極合剤の多孔度とした。
そして、これらの正極合剤を用いてアルカリ乾電池A1〜A7を上記の方法でそれぞれ作製した。
And the positive pressure mixture A1-A7 of the density (porosity) as shown in Table 1 was produced by changing the pressure at the time of the pressure molding of a positive electrode mixture variously in the above.
In addition, the density of the positive electrode mixture shown in Table 1 is a value when 1 part by weight of the electrolytic solution added at the time of granulation is included. The density of the positive electrode mixture was measured in advance by measuring the weight of the positive electrode mixture pellets before being stored in the battery can, and the weight (g) of the positive electrode mixture after re-pressurization in the battery can (cm 3 ).
Moreover, the true density of each material of the positive electrode mixture was obtained using a density measuring device (Accumpic 1330 manufactured by Micromeritic), and the true material volume corresponding to the weight of the positive electrode mixture was calculated. Then, using this true material volume, the value calculated from the formula (volume of positive electrode mixture−true material volume) / volume of positive electrode mixture × 100 was defined as the porosity of the positive electrode mixture.
And alkaline dry batteries A1-A7 were each produced by said method using these positive electrode mixtures.

Figure 2006179429
Figure 2006179429

[電池の評価]
上記で得られた電池A1〜A7を、それぞれ20℃環境下で250mAの定電流で連続放電させ、電池電圧が0.9Vに至るまでの放電容量を測定した。得られた結果を表2に示す。なお、表2中の放電容量は、電池A1の放電容量を100とした指数として表した。
[Battery evaluation]
The batteries A1 to A7 obtained above were each continuously discharged at a constant current of 250 mA in a 20 ° C. environment, and the discharge capacity until the battery voltage reached 0.9 V was measured. The obtained results are shown in Table 2. The discharge capacity in Table 2 was expressed as an index with the discharge capacity of the battery A1 as 100.

Figure 2006179429
Figure 2006179429

表2より、電池缶内に電解液を注液する前における正極合剤の密度が3.2〜3.5g/cm(多孔度として10〜18%)である電池A3〜A6で放電容量が向上することがわかった。電池A1およびA2では、放電末期にゲル状負極中の電解液(水)が正極合剤側へ拡散して負極中の電解液が枯渇するのに対し、電池A3〜A6では、正極合剤の多孔度が小さいためにゲル状負極から正極合剤への電解液の拡散が抑制され、放電末期においてもゲル状負極中に十分な量のアルカリ電解液が保持され、負極容量を十分に引き出せたためと推察される。なお、電池A7では、正極合剤の多孔度が小さすぎるため、正極合剤中の電解液が不足し、電池容量が低下した。 From Table 2, the discharge capacity of the batteries A3 to A6 in which the density of the positive electrode mixture before pouring the electrolyte into the battery can is 3.2 to 3.5 g / cm 3 (10 to 18% as the porosity). Was found to improve. In the batteries A1 and A2, the electrolyte solution (water) in the gelled negative electrode diffuses toward the positive electrode mixture side at the end of discharge, and the electrolyte solution in the negative electrode is depleted, whereas in the batteries A3 to A6, the positive electrode mixture Because the porosity is small, the diffusion of the electrolyte from the gelled negative electrode to the positive electrode mixture is suppressed, and a sufficient amount of alkaline electrolyte is retained in the gelled negative electrode even at the end of discharge, so that the negative electrode capacity can be sufficiently drawn out. It is guessed. In Battery A7, since the porosity of the positive electrode mixture was too small, the electrolytic solution in the positive electrode mixture was insufficient, and the battery capacity was reduced.

《実施例2》
本実施例では、正極と負極との容量バランス(負極理論容量/正極理論容量の値)について検討した。正極合剤には実施例1の正極合剤A4を用い、ゲル状負極は実施例1と同様のものを用いた。そして、この正極合剤Aの充填量を一定にして、負極理論容量/正極理論容量の値および空隙率が表3に示す値になるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池B1〜B6を組み立てた。なお、空隙率は、各構成部品や空間の体積を3次元CADを用いて算出することにより求めた。
これらの電池について、実施例1と同様の方法により放電容量を測定した。
また、電池B1を20セル準備し、これらを10Ωの抵抗を介して直列に接続して20℃雰囲気下で1週間放置し、電池を放電させた。そして、過放電時の電池おける漏液の発生率(漏液率)を求めた。電池B2〜B6の電池についても、それぞれB1の場合と同様の方法で漏液率を求めた。
Example 2
In this example, the capacity balance between the positive electrode and the negative electrode (negative electrode theoretical capacity / value of positive electrode theoretical capacity) was examined. The positive electrode mixture used was the positive electrode mixture A4 of Example 1, and the gelled negative electrode was the same as in Example 1. Then, the filling amount of the positive electrode mixture A is constant, and the negative electrode theoretical capacity / positive electrode theoretical capacity value and the porosity are set to the values shown in Table 3, and the gel negative electrode filling amount and the battery can are poured. Alkaline dry batteries B1 to B6 were assembled in the same manner as in Example 1 except that the amount of electrolyte to be liquefied was adjusted. In addition, the porosity was calculated | required by calculating the volume of each component and space using three-dimensional CAD.
For these batteries, the discharge capacity was measured in the same manner as in Example 1.
Further, 20 cells of the battery B1 were prepared, connected in series via a 10Ω resistor, and left in a 20 ° C. atmosphere for 1 week to discharge the battery. And the occurrence rate (leakage rate) of the leak in the battery at the time of overdischarge was calculated | required. For the batteries B2 to B6, the leakage rate was determined in the same manner as for B1.

なお、空隙率は、電池缶内の体積に対する、電池缶内の体積から正極合剤、ゲル状負極、セパレータ、アルカリ電解液、および負極集電体が占める体積を除いた空隙部分の体積の割合である。本実施例では、図1に示すように、負極集電体70の一部は封口板77の中央に設けられた穴部に挿入されているため、電池缶内の体積は、電池缶71と、負極集電体70が挿入された穴部を含む封口板77とで囲まれる部分の体積とした。また、負極集電体が占める体積とは、負極集電体70全体から封口板77の穴部に挿入された部分を除いた部位が占める体積とした。
これらの測定結果を表3に示す。なお、表3中の放電容量は、電池B4の放電容量を100とした指数として表した。
The porosity is the ratio of the volume of the void portion excluding the volume occupied by the positive electrode mixture, the gelled negative electrode, the separator, the alkaline electrolyte, and the negative electrode current collector from the volume in the battery can relative to the volume in the battery can. It is. In this embodiment, as shown in FIG. 1, since a part of the negative electrode current collector 70 is inserted into a hole provided in the center of the sealing plate 77, the volume in the battery can is the same as that of the battery can 71. The volume of the portion surrounded by the sealing plate 77 including the hole into which the negative electrode current collector 70 was inserted was used. The volume occupied by the negative electrode current collector was the volume occupied by the portion excluding the portion inserted into the hole of the sealing plate 77 from the entire negative electrode current collector 70.
These measurement results are shown in Table 3. The discharge capacity in Table 3 was expressed as an index with the discharge capacity of the battery B4 as 100.

Figure 2006179429
Figure 2006179429

表3より、負極理論容量/正極理論容量の値が1.00未満になると、負極活物質の量が少なすぎるため十分な放電性能が得られず、負極理論容量/正極理論容量の値が1.20まで大きくなると、過放電時において漏液が発生することがわかった。ここで、電池B6で生じた漏液は、負極活物質量が多いために電池容量が正極規制となり、過放電時に正極が転極して水素発生が起こり、電池内圧が急激に上昇したためであると推察される。
以上の結果から、本発明においては正極と負極との容量バランス(負極理論容量/正極理論容量)が1.00〜1.15であるのが好ましいことがわかった。
From Table 3, when the value of the negative electrode theoretical capacity / the positive electrode theoretical capacity is less than 1.00, the amount of the negative electrode active material is too small to obtain sufficient discharge performance, and the value of the negative electrode theoretical capacity / the positive electrode theoretical capacity is 1. It was found that liquid leakage occurred during overdischarge when it increased to 20. Here, the leakage generated in the battery B6 is due to the large amount of the negative electrode active material, so that the battery capacity is restricted to the positive electrode, the positive electrode is reversed during overdischarge, hydrogen is generated, and the internal pressure of the battery is rapidly increased. It is guessed.
From the above results, it was found that the capacity balance (negative electrode theoretical capacity / positive electrode theoretical capacity) of the positive electrode and the negative electrode is preferably 1.00 to 1.15 in the present invention.

《実施例3》
本実施例では、電池缶内の空隙率について検討した。正極合剤には、実施例1の正極合剤A4を用い、ゲル状負極には実施例1と同様のものを用いた。この正極合剤Cの充填量を一定量として、空隙率、電解液量/負極理論容量、および負極理論容量/正極理論容量の値が表4中に示す値となるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池C1〜C7を組み立てた。
これらの電池について、実施例2と同様の方法により放電容量および漏液率を測定した。
これらの測定結果を表4に示す。なお、表4中の放電容量は、電池C4の放電容量を100とした指数として表した。
Example 3
In this example, the porosity in the battery can was examined. The positive electrode mixture was the positive electrode mixture A4 of Example 1, and the gelled negative electrode was the same as that of Example 1. With the positive electrode mixture C filling amount being constant, the ratio of the porosity, the amount of electrolytic solution / the negative electrode theoretical capacity, and the negative electrode theoretical capacity / the positive electrode theoretical capacity are the values shown in Table 4, Alkaline dry batteries C1 to C7 were assembled by the same method as in Example 1 except that the filling amount and the amount of the electrolyte solution poured into the battery can were adjusted.
For these batteries, the discharge capacity and the liquid leakage rate were measured in the same manner as in Example 2.
These measurement results are shown in Table 4. The discharge capacity in Table 4 was expressed as an index with the discharge capacity of the battery C4 as 100.

Figure 2006179429
Figure 2006179429

空隙率が5.0%未満になる(電解液量/負極理論容量の値が1.4cm/Ahを超える)と、過放電時の電池内圧の上昇が顕著となって漏液が発生し、空隙率が15%を超える(電解液量/負極理論容量の値が1.0cm/Ah未満になる)と、電解液量が少なすぎて十分な放電性能が得られなかった。
以上の結果から、空隙率が5〜15%であり、電解液量/負極理論容量の値が1.0〜1.4cm/Ahであるのが好ましいことがわかった。
When the porosity is less than 5.0% (the amount of electrolytic solution / theoretical capacity of negative electrode exceeds 1.4 cm 3 / Ah), the battery internal pressure at the time of overdischarge increases significantly and leakage occurs. When the porosity exceeds 15% (the value of the amount of electrolytic solution / theoretical capacity of negative electrode is less than 1.0 cm 3 / Ah), the amount of the electrolytic solution is too small to obtain sufficient discharge performance.
From the above results, it was found that the porosity is preferably 5 to 15%, and the value of the electrolytic solution amount / the negative electrode theoretical capacity is preferably 1.0 to 1.4 cm 3 / Ah.

《実施例4》
本実施例では、正極合剤中の二酸化マンガンとオキシ水酸化ニッケルの配合比率について検討した。二酸化マンガン、オキシ水酸化ニッケルおよび黒鉛を表5に示す割合で混合した以外は、実施例1と同様の方法により正極合剤D1〜D10を得た。なお、このときの正極合剤の密度は約3.3g/cmであり、多孔度は15〜16%であった。
これらの正極合剤D1〜D10に対して、負極理論容量/正極理論容量の値が1.10、空隙率が10%、および電解液量/負極理論容量の値が約1.2cm/Ahとなるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池D1〜D10を組み立てた。
Example 4
In this example, the mixing ratio of manganese dioxide and nickel oxyhydroxide in the positive electrode mixture was examined. Positive electrode mixtures D1 to D10 were obtained in the same manner as in Example 1 except that manganese dioxide, nickel oxyhydroxide, and graphite were mixed in the ratio shown in Table 5. At this time, the density of the positive electrode mixture was about 3.3 g / cm 3 and the porosity was 15 to 16%.
With respect to these positive electrode mixtures D1 to D10, the negative electrode theoretical capacity / positive electrode theoretical capacity value was 1.10, the porosity was 10%, and the electrolyte amount / negative electrode theoretical capacity value was about 1.2 cm 3 / Ah. The alkaline dry batteries D1 to D10 were assembled in the same manner as in Example 1 except that the amount of the gelled negative electrode and the amount of the electrolyte injected into the battery can were adjusted.

上記で得られた各電池を、20℃で50mA(低負荷)または1000mA(高負荷)の定電流で連続放電させ、電池電圧が0.9Vに至るまでの放電容量を測定した。これらの測定結果を表5に示す。なお、表5中の放電容量は、50mA放電および1000mA放電のいずれの場合も、電池D5の放電容量を100とした指数として表した。   Each battery obtained above was continuously discharged at a constant current of 50 mA (low load) or 1000 mA (high load) at 20 ° C., and the discharge capacity until the battery voltage reached 0.9 V was measured. These measurement results are shown in Table 5. The discharge capacity in Table 5 was expressed as an index with the discharge capacity of the battery D5 as 100 in both cases of 50 mA discharge and 1000 mA discharge.

Figure 2006179429
Figure 2006179429

電池D8〜D10では、50mA(低負荷)放電時の放電容量が低下し、電池D1およびD2では、1000mA(高負荷)放電時の放電容量が低下した。
以上の結果から、オキシ水酸化ニッケルの含有量が10〜80重量部であり、二酸化マンガンの含有量が85〜15重量部であるのが好ましいことが分かった。
In batteries D8 to D10, the discharge capacity during 50 mA (low load) discharge was reduced, and in batteries D1 and D2, the discharge capacity during 1000 mA (high load) discharge was reduced.
From the above results, it was found that the content of nickel oxyhydroxide is preferably 10 to 80 parts by weight and the content of manganese dioxide is preferably 85 to 15 parts by weight.

《実施例5》
本実施例では、正極合剤に結着剤として添加するポリエチレン粉末の量について検討した。二酸化マンガン、オキシ水酸化ニッケル、黒鉛の混合物100重量部に対して、ポリエチレン粉末の添加量を表6に示すように変えた以外は実施例1と同様の方法により、正極合剤E1〜E6を得た。さらに、上記でポリエチレン粉末を添加しない以外は実施例1と同様の方法により、正極合剤E7を得た。
これらの正極合剤E1〜E7に対して、負極理論容量/正極理論容量の値が1.10、空隙率が10%、および電解液量/負極理論容量の値が約1.2cm/Ahとなるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池E1〜E7を組み立てた。
Example 5
In this example, the amount of polyethylene powder added as a binder to the positive electrode mixture was examined. According to the same method as in Example 1, except that the addition amount of polyethylene powder was changed as shown in Table 6 with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite, positive electrode mixtures E1 to E6 were prepared. Obtained. Furthermore, a positive electrode mixture E7 was obtained in the same manner as in Example 1 except that polyethylene powder was not added.
With respect to these positive electrode mixtures E1 to E7, the negative electrode theoretical capacity / positive electrode theoretical capacity value was 1.10, the porosity was 10%, and the electrolyte amount / negative electrode theoretical capacity value was about 1.2 cm 3 / Ah. The alkaline dry batteries E1 to E7 were assembled in the same manner as in Example 1 except that the amount of the gelled negative electrode and the amount of the electrolyte injected into the battery can were adjusted.

上記で得られた製造直後(初度)の各電池について、実施例4と同様の方法により50mA放電容量および1000mA放電容量を測定した。また、60℃環境下で1週間保存した後の電池を1000mAの定電流で連続放電させて、終止電圧0.9Vに至るまでの放電容量を測定し、初度の1000mA放電容量に対する60℃保存後の1000mA放電容量の比を容量維持率として求めた。これらの測定結果を表6に示す。なお、表6中の放電容量は、50mA放電および1000mA放電のいずれの場合も、電池E3の放電容量を100とした指数として表した。   About each battery immediately after manufacture (first time) obtained above, 50 mA discharge capacity and 1000 mA discharge capacity were measured in the same manner as in Example 4. In addition, the battery after being stored in a 60 ° C. environment for one week was continuously discharged at a constant current of 1000 mA, the discharge capacity up to a final voltage of 0.9 V was measured, and after storage at 60 ° C. for the initial 1000 mA discharge capacity. The ratio of the 1000 mA discharge capacity was determined as the capacity retention rate. These measurement results are shown in Table 6. The discharge capacity in Table 6 was expressed as an index with the discharge capacity of the battery E3 as 100 in both cases of 50 mA discharge and 1000 mA discharge.

Figure 2006179429
電池E1およびE7では容量維持率が低下し、電池E6では初度の放電性能が低下した。以上の結果から、ポリエチレン粉末の添加量は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して0.1〜1重量部であるのが好ましいことがわかった。
Figure 2006179429
In the batteries E1 and E7, the capacity retention rate was lowered, and in the battery E6, the initial discharge performance was lowered. From the above results, it was found that the addition amount of the polyethylene powder is preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the mixture of manganese dioxide, nickel oxyhydroxide, and graphite.

《実施例6》
本実施例では、正極合剤に添加する添加剤の種類および添加量について検討した。
二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して添加剤としてZnO粉末を1重量部添加する代わりに、表7に示すように添加量や添加剤の種類を種々に変えた以外は、実施例1と同様の方法により正極合剤F1〜F18を得た。また、添加剤を無添加とした以外は、実施例1と同様の方法により正極合剤F19を得た。
Example 6
In this example, the types and amounts of additives added to the positive electrode mixture were examined.
Instead of adding 1 part by weight of ZnO powder as an additive to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite, the addition amount and the kind of additive were variously changed as shown in Table 7. Except for the above, positive electrode mixtures F1 to F18 were obtained in the same manner as in Example 1. A positive electrode mixture F19 was obtained in the same manner as in Example 1 except that no additive was added.

これらの正極合剤F1〜F19に対して、負極理論容量/正極理論容量の値が1.10、空隙率が10%、および電解液量/負極理論容量の値が約1.2cm/Ahとなるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池F1〜F19を組み立てた。
上記で得られた各電池を実施例5と同様の方法により評価した。これらの測定結果を表7に示す。なお、表7中の放電容量は、50mA放電および1000mA放電のいずれの場合も、電池F3の放電容量を100とした指数として表した。
With respect to these positive electrode mixtures F1 to F19, the negative electrode theoretical capacity / positive electrode theoretical capacity value was 1.10, the porosity was 10%, and the electrolyte amount / negative electrode theoretical capacity value was about 1.2 cm 3 / Ah. The alkaline dry batteries F1 to F19 were assembled in the same manner as in Example 1 except that the amount of the gelled negative electrode and the amount of the electrolyte injected into the battery can were adjusted.
Each battery obtained above was evaluated in the same manner as in Example 5. These measurement results are shown in Table 7. The discharge capacity in Table 7 was expressed as an index with the discharge capacity of the battery F3 set to 100 in both cases of 50 mA discharge and 1000 mA discharge.

Figure 2006179429
Figure 2006179429

ZnO、Ca(OH)、Yのいずれについても、その添加量が0.1〜3重量部である電池F2〜F5、F8〜F11、およびF14〜F17では、初度の放電容量および60℃保存後の容量維持率に関して高い値が得られた。添加剤の添加量が0.1重量部未満である電池F1、F7、F13、およびF19では、オキシ水酸化ニッケルの自己放電を十分に抑止することができず、60℃保存後の容量維持率が低下した。添加剤の添加量が3重量部超である電池F6、F12、およびF18では、相対的に正極合剤中の活物質量が少なくなり、初度の放電性能が低下した。 For any of ZnO, Ca (OH) 2 and Y 2 O 3 , the batteries F2 to F5, F8 to F11, and F14 to F17, whose addition amounts are 0.1 to 3 parts by weight, A high value was obtained for the capacity retention after storage at 60 ° C. In the batteries F1, F7, F13, and F19 in which the additive amount is less than 0.1 parts by weight, the self-discharge of nickel oxyhydroxide cannot be sufficiently suppressed, and the capacity retention rate after storage at 60 ° C. Decreased. In the batteries F6, F12, and F18 in which the additive amount was more than 3 parts by weight, the amount of the active material in the positive electrode mixture was relatively decreased, and the initial discharge performance was lowered.

《実施例7》
本実施例では、正極合剤中の黒鉛の添加量について検討した。実施例1と同様の二酸化マンガンとオキシ水酸化ニッケルを重量比1:1の割合で混合し、これに、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、表8中に示した値となるように黒鉛を添加した。これにポリエチレン粉末結着剤0.3重量部、ZnO粉末1重量部、および電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。そして、得られた造粒物の所定量を中空円筒型に加圧成型して、それぞれ正極合剤G1〜G6を得た。なお、得られた正極合剤の密度は約3.3g/cmであり、多孔度は15〜16%であった。
Example 7
In this example, the amount of graphite added in the positive electrode mixture was examined. The same manganese dioxide and nickel oxyhydroxide as in Example 1 were mixed at a weight ratio of 1: 1. To this, 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite was mixed in Table 8. Graphite was added so as to have the value shown in. This was mixed with 0.3 parts by weight of a polyethylene powder binder, 1 part by weight of ZnO powder and 1 part by weight of an electrolytic solution, and then uniformly stirred and mixed with a mixer to adjust the particle size to a constant particle size. And predetermined amount of the obtained granulated material was press-molded into a hollow cylindrical shape, and positive electrode mixtures G1 to G6 were obtained, respectively. In addition, the density of the obtained positive electrode mixture was about 3.3 g / cm 3 , and the porosity was 15 to 16%.

これらの正極合剤G1〜G6に対して、負極理論容量/正極理論容量の値が1.10、空隙率が10%、および電解液量/負極理論容量の値が約1.2cm/Ahとなるように、ゲル状負極の充填量および電池缶内に注液する電解液量を調整した以外は、実施例1と同様の方法によりアルカリ乾電池G1〜G6を組み立てた。
上記で得られた各電池について、実施例4と同様の方法により50mA放電容量および1000mA放電容量を測定した。測定結果を表8に示す。なお、表8中の放電容量は、50mA放電および1000mA放電のいずれの場合も、電池G3の放電容量を100とした指数として表した。
With respect to these positive electrode mixtures G1 to G6, the negative electrode theoretical capacity / positive electrode theoretical capacity value was 1.10, the porosity was 10%, and the electrolyte amount / negative electrode theoretical capacity value was about 1.2 cm 3 / Ah. Thus, alkaline dry batteries G1 to G6 were assembled in the same manner as in Example 1 except that the amount of gelled negative electrode and the amount of electrolyte injected into the battery can were adjusted.
About each battery obtained above, 50 mA discharge capacity and 1000 mA discharge capacity were measured by the same method as Example 4. Table 8 shows the measurement results. The discharge capacity in Table 8 was expressed as an index with the discharge capacity of the battery G3 as 100 in both cases of 50 mA discharge and 1000 mA discharge.

Figure 2006179429
Figure 2006179429

黒鉛の添加量が3重量部未満である電池G1では、正極合剤内の正極活物質粒子間の導電網が不完全となるため、特に1000mA(高負荷)放電時に放電容量が低下した。黒鉛の添加量が10重量部超である電池G6では、相対的に活物質量が減少するために、特に50mA(低負荷)放電時に放電容量が低下した。
以上の結果から、正極合剤中の黒鉛の添加量は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して3〜10重量部であるのが好ましいことがわかった。
In the battery G1 in which the amount of graphite added is less than 3 parts by weight, the conductive network between the positive electrode active material particles in the positive electrode mixture is incomplete, and thus the discharge capacity is reduced particularly during 1000 mA (high load) discharge. In the battery G6 in which the amount of graphite added exceeds 10 parts by weight, the amount of the active material is relatively reduced, so that the discharge capacity is reduced particularly during 50 mA (low load) discharge.
From the above results, it was found that the addition amount of graphite in the positive electrode mixture is preferably 3 to 10 parts by weight with respect to 100 parts by weight of the mixture of manganese dioxide, nickel oxyhydroxide, and graphite.

なお、上記の実施例では、オキシ水酸化ニッケルとしてMnを少量固溶した体積基準の平均粒子径が20μmのものを用い、二酸化マンガンとして平均粒子径が40μmのものを用いたが、本発明はこれに限定されない。
また、上記の実施例では添加剤としてZnO、Ca(OH)、およびYのそれぞれを単独で正極合剤に添加したが、これらのうち2種類以上を組み合わせて正極合剤に添加しても、ほぼ同様の効果が得られる。
In the above examples, nickel oxyhydroxide having a volume-based average particle diameter of 20 μm in which Mn is dissolved in a small amount and manganese dioxide having an average particle diameter of 40 μm are used. It is not limited to this.
In the above examples, ZnO, Ca (OH) 2 , and Y 2 O 3 were added to the positive electrode mixture alone as additives, but two or more of these were added to the positive electrode mixture in combination. However, almost the same effect can be obtained.

本発明のアルカリ乾電池は高容量を有し、デジタル機器や携帯機器等の電源として好適に用いられる。   The alkaline dry battery of the present invention has a high capacity and is suitably used as a power source for digital devices and portable devices.

本発明の実施例に係るアルカリ乾電池の一部を断面にした正面図である。It is the front view which made a part of alkaline dry battery concerning the example of the present invention a section.

符号の説明Explanation of symbols

71 電池缶
72 黒鉛塗装膜
73 正極合剤
74 セパレータ
75 絶縁キャップ
76 ゲル状負極
77 樹脂製封口板
78 底板
79 絶縁ワッシャ
70 負極集電体
711 外装ラベル
71 Battery Can 72 Graphite Paint Film 73 Positive Electrode Mixture 74 Separator 75 Insulation Cap 76 Gel Negative Electrode 77 Resin Sealing Plate 78 Bottom Plate 79 Insulating Washer 70 Negative Electrode Current Collector 711 Exterior Label

Claims (7)

電池缶内に、中空円筒状の正極合剤、亜鉛を活物質として含むゲル状負極、前記負極内に挿入される負極集電体、前記正極合剤とゲル状負極とを隔離するセパレータ、およびアルカリ水溶液からなる電解液を収容したアルカリ乾電池であって、
前記正極合剤が、活物質として二酸化マンガンおよびオキシ水酸化ニッケル、導電剤として黒鉛、結着剤としてポリエチレン粉末、前記電解液、ならびにZnO、Ca(OH)およびYからなる群より選ばれる少なくとも1種の添加剤を含み、
前記電解液の注液前における前記正極合剤の密度が3.2〜3.5g/cmであり、かつ前記正極合剤の多孔度が10〜18%であることを特徴とするアルカリ乾電池。
In the battery can, a hollow cylindrical positive electrode mixture, a gelled negative electrode containing zinc as an active material, a negative electrode current collector inserted into the negative electrode, a separator separating the positive electrode mixture and the gelled negative electrode, and An alkaline battery containing an electrolytic solution made of an alkaline aqueous solution,
The positive electrode mixture is made of manganese dioxide and nickel oxyhydroxide as an active material, graphite as a conductive agent, polyethylene powder as a binder, the electrolytic solution, and ZnO, Ca (OH) 2 and Y 2 O 3 Including at least one selected additive,
The alkaline dry battery, wherein the density of the positive electrode mixture before injection of the electrolytic solution is 3.2 to 3.5 g / cm 3 and the porosity of the positive electrode mixture is 10 to 18%. .
さらに、以下の(1)〜(3)を満たす請求項1記載のアルカリ乾電池。
(1)前記ゲル状負極の理論容量/前記正極合剤の理論容量の値が1.00〜1.15である。
(2)前記電池缶内の空隙率(前記電池缶内の体積に対する、前記電池缶内の体積から前記正極合剤、ゲル状負極、セパレータ、アルカリ電解液、および負極集電体が占める体積を除いた空隙部分の体積の割合)が5〜15%である。
(3)前記電解液量/前記ゲル状負極の理論容量の値が1.0〜1.4cm/Ahである。
Furthermore, the alkaline dry battery of Claim 1 which satisfy | fills the following (1)-(3).
(1) The value of the theoretical capacity of the gelled negative electrode / the theoretical capacity of the positive electrode mixture is 1.00 to 1.15.
(2) Porosity in the battery can (the volume occupied by the positive electrode mixture, gelled negative electrode, separator, alkaline electrolyte, and negative electrode current collector from the volume in the battery can relative to the volume in the battery can) The ratio of the volume of the removed void portion) is 5 to 15%.
(3) The value of the theoretical amount of the electrolytic solution amount / the gelled negative electrode is 1.0 to 1.4 cm 3 / Ah.
前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記オキシ水酸化ニッケルを10〜80重量部含み、前記二酸化マンガンを85〜15重量部含む請求項1または2記載のアルカリ乾電池。   The positive electrode mixture includes 10 to 80 parts by weight of the nickel oxyhydroxide and 85 to 15 parts by weight of the manganese dioxide with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. The alkaline dry battery according to 1 or 2. 前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記黒鉛を3〜10重量部含む請求項1または2記載のアルカリ乾電池。   3. The alkaline dry battery according to claim 1, wherein the positive electrode mixture contains 3 to 10 parts by weight of the graphite with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. 前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記ポリエチレン粉末を0.1〜1重量部含む請求項1または2記載のアルカリ乾電池。   The alkaline dry battery according to claim 1 or 2, wherein the positive electrode mixture contains 0.1 to 1 part by weight of the polyethylene powder with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. 前記正極合剤は、二酸化マンガン、オキシ水酸化ニッケル、および黒鉛の混合物100重量部に対して、前記添加剤を0.1〜3重量部含む請求項1または2記載のアルカリ乾電池。   The alkaline dry battery according to claim 1 or 2, wherein the positive electrode mixture contains 0.1 to 3 parts by weight of the additive with respect to 100 parts by weight of a mixture of manganese dioxide, nickel oxyhydroxide, and graphite. 前記二酸化マンガンの体積基準の平均粒子径が30〜50μmであり、かつ前記オキシ水酸化ニッケルの体積基準の平均粒子径が10〜30μmである請求項1または2記載のアルカリ乾電池。   3. The alkaline dry battery according to claim 1, wherein the manganese dioxide has a volume-based average particle diameter of 30 to 50 μm and the nickel oxyhydroxide has a volume-based average particle diameter of 10 to 30 μm.
JP2004374196A 2004-12-24 2004-12-24 Alkaline dry battery Withdrawn JP2006179429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374196A JP2006179429A (en) 2004-12-24 2004-12-24 Alkaline dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374196A JP2006179429A (en) 2004-12-24 2004-12-24 Alkaline dry battery

Publications (1)

Publication Number Publication Date
JP2006179429A true JP2006179429A (en) 2006-07-06

Family

ID=36733308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374196A Withdrawn JP2006179429A (en) 2004-12-24 2004-12-24 Alkaline dry battery

Country Status (1)

Country Link
JP (1) JP2006179429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013115A1 (en) * 2006-07-28 2008-01-31 Panasonic Corporation Alkaline primary battery
JP2011216218A (en) * 2010-03-31 2011-10-27 Panasonic Corp Alkaline dry battery
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013115A1 (en) * 2006-07-28 2008-01-31 Panasonic Corporation Alkaline primary battery
JP2011216218A (en) * 2010-03-31 2011-10-27 Panasonic Corp Alkaline dry battery
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell

Similar Documents

Publication Publication Date Title
JP3866884B2 (en) Alkaline battery
US7169508B2 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
JP2015181121A (en) Nickel hydroxide electrode for rechargeable batteries
US20170194635A1 (en) Alkaline storage battery cathode, method for manufacturing alkaline storage battery cathode, alkaline storage battery, method for manufacturing alkaline storage battery, alkaline storage battery cathode active material, and method for manufacturing alkaline storage battery cathode active material
WO1997017737A1 (en) Rechargeable alkaline cells containing zinc anodes without added mercury
AU2005224903B2 (en) Alkaline battery
EP1445812A1 (en) Alkaline battery
JP5172181B2 (en) Zinc alkaline battery
EP0809309B1 (en) Electrode with positive plate active material for alkaline storage battery
US20070166614A1 (en) Alkaline battery
JP4040829B2 (en) Alkaline battery and method for producing positive electrode active material thereof
JPH11167933A (en) Sealed alkaline zinc storage battery
CN110289413A (en) Negative electrode zinc paste and alkaline battery with same
JP2001325954A (en) Beta type nickel oxyhydroxide and its manufacturing method, positive electrode active material and nickel- zinc cell
JP2006179429A (en) Alkaline dry battery
US20080193842A1 (en) Alkaline Battery
JP2002008650A (en) Positive active material and nickel zinc cell
JP2002289187A (en) beta TYPE NICKEL OXYHYDROXIDE, MANUFACTURING METHOD THEREOF, POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE FOR BATTERY, AND NICKEL ZINC BATTERY
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP2005310752A (en) Alkaline battery
JP2006221831A (en) Alkaline dry cell
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP2005071991A (en) Alkaline battery
JP3902351B2 (en) Sealed alkaline storage battery
JP2007273406A (en) Alkaline battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101108