JP5172181B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery Download PDF

Info

Publication number
JP5172181B2
JP5172181B2 JP2007072054A JP2007072054A JP5172181B2 JP 5172181 B2 JP5172181 B2 JP 5172181B2 JP 2007072054 A JP2007072054 A JP 2007072054A JP 2007072054 A JP2007072054 A JP 2007072054A JP 5172181 B2 JP5172181 B2 JP 5172181B2
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
weight
positive electrode
zinc alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007072054A
Other languages
Japanese (ja)
Other versions
JP2007294424A (en
Inventor
文生 加藤
祐司 元谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007072054A priority Critical patent/JP5172181B2/en
Publication of JP2007294424A publication Critical patent/JP2007294424A/en
Application granted granted Critical
Publication of JP5172181B2 publication Critical patent/JP5172181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負極活物質として亜鉛合金、電解液としてアルカリ水溶液、及び正極活物質として二酸化マンガンまたはオキシ水酸化ニッケルを用いた、亜鉛アルカリ電池に関する。   The present invention relates to a zinc alkaline battery using a zinc alloy as a negative electrode active material, an alkaline aqueous solution as an electrolytic solution, and manganese dioxide or nickel oxyhydroxide as a positive electrode active material.

アルカリマンガン乾電池に代表される亜鉛アルカリ電池は、汎用性が高く安価であるため、各種機器の電源として広く用いられている。このような亜鉛アルカリ電池では、負極活物質として、ガスアトマイズ法等で作製した不定形状の亜鉛粉末が用いられる。
しかし、亜鉛粉末がアルカリ電解液中で腐食することにより水素ガスが発生し、電池内圧が上昇することや漏液することがある。このため、亜鉛粉末の腐食を抑制して、亜鉛アルカリ電池の信頼性を向上することが重要である。
Zinc alkaline batteries represented by alkaline manganese batteries are widely used as power sources for various devices because they are versatile and inexpensive. In such a zinc alkaline battery, an irregularly shaped zinc powder produced by a gas atomizing method or the like is used as a negative electrode active material.
However, when zinc powder corrodes in an alkaline electrolyte, hydrogen gas is generated, and the internal pressure of the battery may increase or liquid leakage may occur. For this reason, it is important to suppress the corrosion of the zinc powder and improve the reliability of the zinc alkaline battery.

これに対しては、例えば、負極中に水銀を添加して亜鉛粉表面をアマルガム化し、水素過電圧を高めて耐食性を向上させる手法が用いられる。しかし、環境への意識の高まりにより、1980〜1990年頃にかけてアルカリマンガン乾電池を中心に無水銀化が要求されたため、これに代わる手法として、例えば、以下の(A)〜(C)に示す手法が提案され、現在は、これらを種々に組み合わせた亜鉛アルカリ電池が検討されている。   For this, for example, a method is used in which mercury is added to the negative electrode to amalgamate the surface of the zinc powder, thereby increasing the hydrogen overvoltage and improving the corrosion resistance. However, due to the increasing awareness of the environment, there has been a demand for dehydration mainly in alkaline manganese dry batteries from around 1980 to 1990. For example, the following methods (A) to (C) include the following methods. At present, zinc-alkaline batteries using various combinations of these have been studied.

(A)負極活物質に、アルミニウム、ビスマス、またはインジウム等を含む、優れた耐食性を有する亜鉛合金粉末を用いる(例えば特許文献1)。
(B)負極に、水酸化インジウム、水酸化ビスマス、硫化インジウム、アルカリ金属の硫化物等の無機系防食剤を添加する(例えば特許文献2〜4)。
(C)負極に、界面活性剤等の有機系防食剤を添加する(例えば特許文献5)。
(A) A zinc alloy powder having excellent corrosion resistance, including aluminum, bismuth, indium or the like, is used as the negative electrode active material (for example, Patent Document 1).
(B) An inorganic anticorrosive agent such as indium hydroxide, bismuth hydroxide, indium sulfide, or an alkali metal sulfide is added to the negative electrode (for example, Patent Documents 2 to 4).
(C) An organic anticorrosive agent such as a surfactant is added to the negative electrode (for example, Patent Document 5).

ところで、近年では、機器のデジタル化及び高性能化が進むに伴い、その電源として用いられるアルカリマンガン乾電池等の亜鉛アルカリ電池に求められる負荷電力が増大している。これに対しては、例えば、特許文献6及び7では、200メッシュの篩を通過する粒径75μm以下の微粉末を多く含む亜鉛粉末を負極活物質に用いることにより反応性を高めて、高負荷放電特性を向上することが提案されている。
特開平5−166507号公報 特開昭48−77332号公報 特許第2808822号公報 特許第2754864号公報 特開平5−266882号公報 特表2001−512284号公報 特開2002−270164号公報
By the way, in recent years, with the progress of digitalization and high performance of devices, load power required for zinc alkaline batteries such as alkaline manganese dry batteries used as a power source thereof has increased. On the other hand, for example, in Patent Documents 6 and 7, the reactivity is increased by using zinc powder containing a large amount of fine powder having a particle size of 75 μm or less that passes through a 200-mesh sieve as a negative electrode active material, and high load is applied. It has been proposed to improve the discharge characteristics.
JP-A-5-166507 JP-A 48-77332 Japanese Patent No. 2808822 Japanese Patent No. 2754864 Japanese Patent Laid-Open No. 5-266882 Special table 2001-512284 gazette JP 2002-270164 A

しかし、負極活物質に亜鉛微粉末を用いた電池の複数個を直列に接続して定抵抗放電した場合、複数個の電池のなかで、容量の小さい電池が過放電しやすく、さらに過放電が進行すると、電池が逆充電され、正極及び負極の少なくとも1つの電極で転極し、漏液が顕著に生じる場合がある。具体的には、玩具やライト等の電源として、アルカリマンガン乾電池の複数個を直列に接続して使用し、使用後も電池を接続した状態で放置する場合、漏液する可能性がある。そして、この漏液により機器が破損する場合がある。   However, when a plurality of batteries using zinc fine powder as the negative electrode active material are connected in series and constant resistance discharge is performed, among the plurality of batteries, a battery having a small capacity is likely to be overdischarged, and further overdischarge is caused. As the battery progresses, the battery is reversely charged, and the polarity is reversed by at least one of the positive electrode and the negative electrode, which may cause significant leakage. Specifically, when a plurality of alkaline manganese dry batteries are connected in series and used as a power source for toys, lights, etc., and left in a connected state after use, there is a possibility of leakage. And this leakage may damage the equipment.

正極及び負極が転極した際のガス発生反応(水の分解反応)はそれぞれ下式で表される。正極及び負極の通電電気量が同じ場合、正極の転極により発生する水素ガスの量が、負極の転極により発生する酸素ガスの量の2倍となる。このため、過放電時において、負極が転極するよりも正極が転極する方が、ガス発生量が多く、電池内圧が上昇し、漏液しやすいと考えられる。   The gas generation reaction (water decomposition reaction) when the positive electrode and the negative electrode are reversed is represented by the following equations, respectively. When the amount of electricity supplied to the positive electrode and the negative electrode is the same, the amount of hydrogen gas generated by the reversal of the positive electrode is twice the amount of oxygen gas generated by the reversal of the negative electrode. For this reason, during overdischarge, it is considered that the polarity of the positive electrode is greater than that of the negative electrode, and the amount of gas generated is larger, the battery internal pressure is increased, and liquid leakage is likely to occur.

(正極が転極した際の反応) 2H2O + 2e- → H2 + 2OH-
(負極が転極した際の反応) 4OH- → O2 + 2H2O + 4e-
そこで、本発明は、上記従来の問題を解決するため、微粉末の負極活物質を用いた場合でも、過放電時のガス発生に伴う電池内圧の大幅な上昇による漏液の発生を抑制することが可能な、優れた高負荷放電特性及び高信頼性を有する亜鉛アルカリ電池を提供することを目的とする。
(Reaction when the positive electrode is reversed) 2H 2 O + 2e → H 2 + 2OH
(Reaction when the negative electrode is reversed) 4OH → O 2 + 2H 2 O + 4e
Therefore, in order to solve the above-described conventional problems, the present invention suppresses the occurrence of liquid leakage due to a significant increase in battery internal pressure accompanying gas generation during overdischarge even when a fine powder negative electrode active material is used. An object of the present invention is to provide a zinc-alkaline battery having excellent high-load discharge characteristics and high reliability.

本発明の亜鉛アルカリ電池は、粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を含む負極と、正極と、前記負極と前記正極との間に配されるセパレータと、電解液とを具備し、定抵抗放電において、前記負極の電位が立ち上がる時間が前記正極の電位が立ち下がる時間よりも短いことを特徴とする。   A zinc alkaline battery according to the present invention includes a negative electrode including a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less, a positive electrode, a separator disposed between the negative electrode and the positive electrode, and an electrolytic solution. In the constant resistance discharge, the rising time of the negative electrode potential is shorter than the falling time of the positive electrode potential.

上記のように、定抵抗放電において、前記負極の電位が立ち上がる時間が前記正極の電位が立ち下がる時間よりも短い電池、すなわち定抵抗放電の末期において、前記正極の電位が立ち下がる前に前記負極の電位が立ち上がる負極容量規制の電池は、前記負極に、アルカリ金属の硫化物及び硫化インジウムからなる群より選ばれる少なくとも1種の添加剤を前記亜鉛合金粉末100重量部あたり0.02〜0.1重量部含ませることにより実現することができる。
前記亜鉛合金粉末は、ビスマス及びインジウムからなる群より選ばれる少なくとも1種を0.005〜0.1重量%含有し、アルミニウム及びカルシウムからなる群より選ばれる少なくとも1種を0.001〜0.05重量%含有するのが好ましい。
As described above, in the constant resistance discharge, the time during which the negative electrode potential rises is shorter than the time during which the positive electrode potential falls, that is, the negative electrode before the positive electrode potential falls at the end of the constant resistance discharge. In the negative electrode capacity-regulated battery in which the potential rises, at least one additive selected from the group consisting of alkali metal sulfides and indium sulfide is added to the negative electrode in an amount of 0.02 to 0.000 per 100 parts by weight of the zinc alloy powder. This can be realized by including 1 part by weight.
The zinc alloy powder contains 0.005 to 0.1% by weight of at least one selected from the group consisting of bismuth and indium, and at least one selected from the group consisting of aluminum and calcium from 0.001 to 0.00. It is preferable to contain 05% by weight.

本発明によれば、微粉末の負極活物質を用いることにより、高負荷放電特性に優れた亜鉛アルカリ電池が得られる。また、微粉末の負極活物質を用いた場合でも、過放電時のガス発生に伴う電池内圧の大幅な上昇による漏液の発生を抑制することができ、亜鉛アルカリ電池の信頼性が向上する。   According to the present invention, a zinc-alkaline battery excellent in high-load discharge characteristics can be obtained by using a finely divided negative electrode active material. Further, even when a finely divided negative electrode active material is used, it is possible to suppress the occurrence of liquid leakage due to a significant increase in the internal pressure of the battery due to gas generation during overdischarge, and the reliability of the zinc alkaline battery is improved.

本発明は、粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を含む負極と、正極と、前記負極と前記正極との間に配されるセパレータと、電解液とを具備し、前記負極は、アルカリ金属の硫化物及び硫化インジウムからなる群より選ばれる少なくとも1種の添加剤を、前記亜鉛合金粉末100重量部あたり0.02〜0.1重量部含む亜鉛アルカリ電池に関する。
上記のように負極に添加剤を添加することにより、定抵抗放電時において、負極電位が立ち上がる時間が、正極電位が立ち下がる時間よりも短くすることができる。すなわち、定抵抗放電の末期において、正極電位が立ち下がる前に負極電位が立ち上がる負極容量規制の亜鉛アルカリ電池が得られる。
The present invention includes a negative electrode including a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less, a positive electrode, a separator disposed between the negative electrode and the positive electrode, and an electrolytic solution. The negative electrode relates to a zinc-alkaline battery containing at least one additive selected from the group consisting of alkali metal sulfides and indium sulfides in an amount of 0.02 to 0.1 parts by weight per 100 parts by weight of the zinc alloy powder.
By adding an additive to the negative electrode as described above, the time during which the negative electrode potential rises during constant resistance discharge can be made shorter than the time during which the positive electrode potential falls. That is, at the end of the constant resistance discharge, a negative electrode capacity-regulated zinc alkaline battery in which the negative electrode potential rises before the positive electrode potential falls can be obtained.

このようにして、放電末期に意図的に負極の分極を増大させ、負極電位が立ち上がる時間を早めることにより、複数個の電池を直列に接続する場合などに生じる、容量の少ない電池の過放電による転極を、負極だけの転極(酸素発生)に留めることができる。このため、正極の転極による多量の水素ガスの発生が抑制され、電池内圧の上昇が抑制されて、漏液を抑制することができる。
上記の「負極電位が立ち上がる時間」とは、放電を開始してから、放電末期において、負極電位が急激に増加し、所定の電位に到達するまでの時間を指す。また、上記の「正極電位が立ち下がる時間」とは、放電を開始してから、放電末期において、正極電位が急激に減少し、所定の電位に到達するまでの時間を指す。
In this way, by deliberately increasing the polarization of the negative electrode at the end of discharge and increasing the time for the negative electrode potential to rise, due to overdischarge of a battery with a small capacity, which occurs when a plurality of batteries are connected in series, etc. The inversion can be limited to the inversion of only the negative electrode (oxygen generation). For this reason, generation | occurrence | production of a large amount of hydrogen gas by the inversion of a positive electrode is suppressed, the raise of a battery internal pressure is suppressed, and a liquid leak can be suppressed.
The above “time for the negative electrode potential to rise” refers to the time from the start of discharge until the negative electrode potential suddenly increases and reaches a predetermined potential at the end of discharge. In addition, the “time for the positive electrode potential to fall” refers to the time from the start of discharge until the positive electrode potential rapidly decreases and reaches a predetermined potential at the end of discharge.

例えば、正極活物質として電解二酸化マンガンを含む正極と、負極活物質として亜鉛合金を含む負極とを用いた単3形のアルカリマンガン乾電池(負極理論容量/正極理論容量=1.16)において、20℃雰囲気下で10Ωの定抵抗放電を行う。このとき、正極ケースの一部に孔を設け、電池内の正極または負極と、電池外の水銀/酸化水銀参照極との間に塩橋を配し、水銀/酸化水銀参照極に対する正極電位及び負極電位を求める。なお、負極理論容量とは、負極中に含まれる負極活物質全てが電池反応に用いられた場合の容量を指す。正極理論容量とは、正極中に含まれる正極活物質全てが電池反応に用いられた場合の容量を指す。そして、放電を開始してから、負極電位が−1.2V vs. Hg/HgOに到達するまでの時間を、負極電位が立ち上がる時間として測定し、放電を開始してから、正極電位が−0.6V vs. Hg/HgOに到達するまでの時間を、正極電位が立ち下がる時間として測定する。なお、負極電位が−1.2V vs. Hg/HgOを超えると酸素ガスが発生する。正極電位が−0.6V vs. Hg/HgO未満であると水素ガスが発生する。   For example, in an AA alkaline manganese dry battery (negative electrode theoretical capacity / positive electrode theoretical capacity = 1.16) using a positive electrode containing electrolytic manganese dioxide as a positive electrode active material and a negative electrode containing a zinc alloy as a negative electrode active material, 20 A 10 Ω constant resistance discharge is performed in an atmosphere of ° C. At this time, a hole is formed in a part of the positive electrode case, a salt bridge is arranged between the positive electrode or negative electrode in the battery and the mercury / mercury oxide reference electrode outside the battery, and the positive electrode potential with respect to the mercury / mercury oxide reference electrode and Obtain the negative electrode potential. Note that the negative electrode theoretical capacity refers to the capacity when all of the negative electrode active material contained in the negative electrode is used for the battery reaction. The positive electrode theoretical capacity refers to the capacity when all of the positive electrode active material contained in the positive electrode is used for the battery reaction. Then, the time from when the discharge is started until the negative electrode potential reaches −1.2 V vs. Hg / HgO is measured as the time when the negative electrode potential rises. After the discharge is started, the positive electrode potential is −0. Measure the time to reach 6V vs. Hg / HgO as the time for the positive electrode potential to fall. When the negative electrode potential exceeds −1.2 V vs. Hg / HgO, oxygen gas is generated. Hydrogen gas is generated when the positive electrode potential is less than −0.6 V vs. Hg / HgO.

上記のように、負極に、アルカリ金属の硫化物を添加すると、微粉末を多く含む亜鉛合金粉末を用いた場合に得られる、優れた高負荷放電特性を損なうことなく、定抵抗放電末期において負極電位の立ち上がりが早められ、過放電時の漏液を抑制することができることを見出した。
アルカリ金属の硫化物としては、例えば、硫化カリウムや硫化ナトリウムが挙げられる。アルカリ金属の硫化物はアルカリ電解液に溶解し、アルカリ電解液中では、アルカリ金属イオンと硫化物イオンとして存在する。そして、生成した硫化物イオンは亜鉛との共存下では亜鉛と反応し、亜鉛表面に比較的不活性な硫化亜鉛の被膜を形成する。この硫化亜鉛の被膜の厚みが適正であると、通常の負極における放電時の電位領域では、亜鉛の放電反応は阻害されない。そして、詳細なメカニズムは明らかではないが、亜鉛粉末のなかでも、特に微粉末の表面に形成された硫化亜鉛皮膜の効果により、放電末期に負極電位が急激に立ち上がり、速やかに放電を停止させることができる。
As described above, when an alkali metal sulfide is added to the negative electrode, the negative electrode is obtained at the end of the constant resistance discharge without impairing the excellent high-load discharge characteristics obtained when a zinc alloy powder containing a large amount of fine powder is used. It has been found that the potential rise is accelerated and leakage during overdischarge can be suppressed.
Examples of the alkali metal sulfide include potassium sulfide and sodium sulfide. Alkali metal sulfides dissolve in an alkaline electrolyte and exist as alkali metal ions and sulfide ions in the alkaline electrolyte. The generated sulfide ions react with zinc in the presence of zinc to form a relatively inert zinc sulfide coating on the zinc surface. When the thickness of the zinc sulfide coating is appropriate, the discharge reaction of zinc is not inhibited in the potential region during discharge in a normal negative electrode. The detailed mechanism is not clear, but among the zinc powders, the negative electrode potential suddenly rises at the end of the discharge due to the effect of the zinc sulfide film formed on the surface of the fine powder, and the discharge is quickly stopped. Can do.

負極中の前記アルカリ金属の硫化物の含有量が亜鉛合金粉末100重量部あたり0.02重量部未満であると、放電末期の負極電位の立ち上がりを早める効果が十分に得られない。また、負極中の前記アルカリ金属の硫化物の含有量が亜鉛合金粉末100重量部あたり0.1重量部を超えると、亜鉛粒子表面に形成される硫化亜鉛の被膜厚みが厚くなりすぎて、高負荷放電特性が低下する。
また、負極添加剤がアルカリ金属の硫化物である場合、初度の電池または部分放電させた電池を高温等で保存した場合における負極の腐食を抑制する効果も得られる。
より好ましくは、負極中のアルカリ金属の硫化物の含有量は、亜鉛合金100重量部あたり0.02〜0.06重量部である。
If the content of the alkali metal sulfide in the negative electrode is less than 0.02 parts by weight per 100 parts by weight of the zinc alloy powder, the effect of accelerating the rise of the negative electrode potential at the end of discharge cannot be obtained sufficiently. Further, if the content of the alkali metal sulfide in the negative electrode exceeds 0.1 parts by weight per 100 parts by weight of the zinc alloy powder, the zinc sulfide coating thickness formed on the surface of the zinc particles becomes too thick, Load discharge characteristics are degraded.
Further, when the negative electrode additive is an alkali metal sulfide, an effect of suppressing corrosion of the negative electrode when the initial battery or the partially discharged battery is stored at a high temperature or the like can be obtained.
More preferably, the content of the alkali metal sulfide in the negative electrode is 0.02 to 0.06 parts by weight per 100 parts by weight of the zinc alloy.

負極の添加剤が硫化インジウムである場合でも、アルカリ金属の硫化物の場合と同様の効果が得られる。硫化インジウムはアルカリ電解液中で亜鉛と共存すると、金属インジウムとして亜鉛表面に点在する形で電析し、同時に、残りの亜鉛表面には硫化亜鉛の被膜を形成する。この際、形成される硫化亜鉛の被膜の厚みが適正であると、通常の負極における放電時の電位領域では、亜鉛の放電反応は阻害されない。そして、放電末期に負極電位が急激に立ち上がり、速やかに放電を停止させることができる。   Even when the additive of the negative electrode is indium sulfide, the same effect as that of the alkali metal sulfide can be obtained. When indium sulfide coexists with zinc in an alkaline electrolyte, it is electrodeposited in the form of metallic indium scattered on the zinc surface, and at the same time, a zinc sulfide film is formed on the remaining zinc surface. At this time, if the thickness of the zinc sulfide film to be formed is appropriate, the discharge reaction of zinc is not inhibited in the potential region during discharge in a normal negative electrode. Then, the negative electrode potential rises rapidly at the end of discharge, and the discharge can be stopped quickly.

負極中の硫化インジウム含有量が、前記亜鉛合金粉末100重量部あたり0.02重量部未満であると、放電末期の負極電位の立ち上がりを早める効果が十分に得られない。また、負極中の硫化インジウム含有量が、前記亜鉛合金粉末100重量部あたり0.1重量部を超えると、亜鉛粒子表面に形成される硫化亜鉛の被膜厚みが厚くなりすぎて、高負荷放電特性が低下する。
また、負極中に硫化インジウムを添加する場合、初度の電池または部分放電させた電池を高温等で保存した場合における負極の腐食を抑制する効果も得られる。さらに、負極中に硫化インジウムを添加する場合、金属インジウムの電析によって亜鉛粒子同士が接合される効果も得られるため、高負荷放電特性がさらに向上する。
より好ましくは、負極中の硫化インジウムの含有量は、亜鉛合金100重量部あたり0.02〜0.06重量部である。
When the content of indium sulfide in the negative electrode is less than 0.02 parts by weight per 100 parts by weight of the zinc alloy powder, the effect of speeding up the negative electrode potential at the end of discharge cannot be sufficiently obtained. Also, if the content of indium sulfide in the negative electrode exceeds 0.1 parts by weight per 100 parts by weight of the zinc alloy powder, the coating thickness of zinc sulfide formed on the surface of the zinc particles becomes too thick, resulting in high load discharge characteristics. Decreases.
In addition, when indium sulfide is added to the negative electrode, an effect of suppressing corrosion of the negative electrode when the initial battery or the partially discharged battery is stored at a high temperature or the like can be obtained. Furthermore, when indium sulfide is added to the negative electrode, the effect of joining zinc particles together by electrodeposition of metallic indium can be obtained, so that the high-load discharge characteristics are further improved.
More preferably, the content of indium sulfide in the negative electrode is 0.02 to 0.06 parts by weight per 100 parts by weight of the zinc alloy.

亜鉛合金の耐食性が向上するため、前記亜鉛合金は、ビスマス及びインジウムからなる群より選ばれる少なくとも1種を0.005〜0.1重量%含有し、かつアルミニウム及びカルシウムからなる群より選ばれる少なくとも1種を0.001〜0.05重量%含有するのが好ましい。200メッシュ以下の微粉末を20〜50重量%含む亜鉛合金粉末は、従来の微粉末の少ない亜鉛合金粉末と比較して、アルカリ電解液に腐食されやすいため、合金の耐食性を向上することが重要である。   In order to improve the corrosion resistance of the zinc alloy, the zinc alloy contains 0.005 to 0.1% by weight of at least one selected from the group consisting of bismuth and indium, and at least selected from the group consisting of aluminum and calcium. One type is preferably contained in an amount of 0.001 to 0.05% by weight. Zinc alloy powder containing 20-50% by weight of fine powder of 200 mesh or less is more easily corroded by alkaline electrolyte than conventional zinc alloy powder with less fine powder, so it is important to improve the corrosion resistance of the alloy It is.

亜鉛合金に含ませるビスマス及びインジウムは、腐食の進行しやすい亜鉛結晶の粒界部に偏在して水素過電圧を高め、亜鉛の腐食を抑制する効果を発揮する。亜鉛合金中のビスマス及びインジウムの含有量の合計が0.005重量%未満であると、十分な防食効果が得られない。亜鉛合金中のビスマス及びインジウムの含有量の合計が0.1重量%を超えると、放電特性が低下する。このため、亜鉛合金中のビスマス及びインジウムの含有量の合計は0.005〜0.1重量%が好ましい。   The bismuth and indium contained in the zinc alloy are unevenly distributed in the grain boundary portion of the zinc crystal where corrosion is likely to proceed, thereby increasing the hydrogen overvoltage and exhibiting the effect of suppressing the corrosion of zinc. If the total content of bismuth and indium in the zinc alloy is less than 0.005% by weight, a sufficient anticorrosion effect cannot be obtained. When the total content of bismuth and indium in the zinc alloy exceeds 0.1% by weight, the discharge characteristics deteriorate. For this reason, the total content of bismuth and indium in the zinc alloy is preferably 0.005 to 0.1% by weight.

亜鉛合金に含ませるアルミニウム及びカルシウムは、亜鉛粒子の表面付近に偏在して表面を平滑化し、亜鉛の腐食を抑制する効果を発揮する。亜鉛合金中のアルミニウム及びカルシウムの含有量の合計が0.001重量%未満であると、十分な防食効果が得られない。亜鉛合金中のアルミニウム及びカルシウムの含有量の合計が0.05重量%を超えると、放電特性が低下する。このため、亜鉛合金中のアルミニウム及びカルシウムの含有量の合計は0.001〜0.05重量%が好ましい。   Aluminum and calcium contained in the zinc alloy are unevenly distributed in the vicinity of the surface of the zinc particles, smooth the surface, and exhibit the effect of suppressing corrosion of zinc. If the total content of aluminum and calcium in the zinc alloy is less than 0.001% by weight, a sufficient anticorrosion effect cannot be obtained. When the total content of aluminum and calcium in the zinc alloy exceeds 0.05% by weight, the discharge characteristics deteriorate. For this reason, the total content of aluminum and calcium in the zinc alloy is preferably 0.001 to 0.05% by weight.

前記負極には、例えば負極活物質粉末、ゲル化剤、電解液、及び上記添加剤からなるゲル状負極が用いられる。負極活物質には、例えば平均粒径100〜200μmの上記亜鉛合金粉末が用いられる。ゲル化剤には、例えばポリアクリル酸ナトリウムが用いられる。
負極中に上記添加剤を添加する方法としては、例えば、負極作製時に、負極活物質粉末、ゲル化剤、及び電解液を混合する前に予め電解液に添加剤を含ませておき、負極活物質粉末、ゲル化剤、及び添加剤を含む電解液とを混合することにより得られる。この方法により、負極中に添加剤を容易に均一に分散させることができる。
As the negative electrode, for example, a negative electrode active material powder, a gelling agent, an electrolytic solution, and a gelled negative electrode composed of the above additives are used. As the negative electrode active material, for example, the zinc alloy powder having an average particle diameter of 100 to 200 μm is used. For example, sodium polyacrylate is used as the gelling agent.
As a method for adding the additive to the negative electrode, for example, at the time of preparing the negative electrode, the negative electrode active material powder, the gelling agent, and the electrolytic solution are mixed with the additive in advance before the negative electrode active material powder, the gelling agent, and the electrolytic solution are mixed. It is obtained by mixing a substance powder, a gelling agent, and an electrolytic solution containing an additive. By this method, the additive can be easily and uniformly dispersed in the negative electrode.

前記正極には、例えば、正極活物質、導電材、及び電解液の混合物からなる正極合剤が用いられる。正極活物質には、平均粒径が30〜50μmの二酸化マンガン粉末やオキシ水酸化ニッケル粉末が用いられる。これらを単独で用いてもよく、混合して用いてもよい。また、導電材には、例えば平均粒径10〜20μmの黒鉛粉末が用いられる。
前記セパレータには、例えば厚み80〜150μmのビニロンとレーヨンの複合不織布からなる多孔質シートが用いられる。そして、電池組み立て時に、セパレータに電解液を含ませる。
前記電解液には、例えば濃度30〜40重量%程度の水酸化カリウム水溶液が用いられる。また、水酸化カリウム水溶液に、さらに酸化亜鉛(例えば、2重量%程度)を含ませてもよい。
For the positive electrode, for example, a positive electrode mixture made of a mixture of a positive electrode active material, a conductive material, and an electrolytic solution is used. As the positive electrode active material, manganese dioxide powder or nickel oxyhydroxide powder having an average particle size of 30 to 50 μm is used. These may be used alone or in combination. For the conductive material, for example, graphite powder having an average particle size of 10 to 20 μm is used.
For the separator, for example, a porous sheet made of a composite nonwoven fabric of vinylon and rayon having a thickness of 80 to 150 μm is used. And an electrolyte solution is included in a separator at the time of battery assembly.
For example, an aqueous potassium hydroxide solution having a concentration of about 30 to 40% by weight is used as the electrolytic solution. Further, zinc oxide (for example, about 2% by weight) may be further contained in the potassium hydroxide aqueous solution.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1》
以下の手順で、本発明の亜鉛アルカリ電池として、図1に示す円筒形アルカリマンガン乾電池(単3形)を作製した。図1は本発明のアルカリマンガン乾電池の一部を断面にした正面図である。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
Example 1
A cylindrical alkaline manganese dry battery (AA) shown in FIG. 1 was produced as the zinc alkaline battery of the present invention by the following procedure. FIG. 1 is a front view of a cross section of a part of an alkaline manganese battery of the present invention.

(1)ゲル状負極の作製
Al0.005重量%、Bi0.02重量%、及びIn0.03重量%を含む亜鉛合金粉末をガスアトマイズ法で作製した。そして、篩による分級及び粒度調整を行い、粒度範囲が35〜150メッシュであり、かつ200メッシュの篩を通過する粒径75μm以下の微粉末の含有量が0重量%の亜鉛合金粉末Aと、粒度範囲が35〜300メッシュであり、かつ200メッシュの篩を通過する粒径75μm以下の微粉末の含有量が30重量%の亜鉛合金粉末Bと、を得た。
(1) Production of gelled negative electrode A zinc alloy powder containing 0.005% by weight of Al, 0.02% by weight of Bi, and 0.03% by weight of In was produced by a gas atomization method. Then, classification and particle size adjustment by a sieve, a zinc alloy powder A having a particle size range of 35 to 150 mesh and a fine powder content of 75 μm or less and passing through a 200 mesh sieve is 0 wt%, A zinc alloy powder B having a particle size range of 35 to 300 mesh and a fine powder content of 75 μm or less passing through a 200 mesh sieve and having a particle size of 30% by weight was obtained.

次に、36重量%の水酸化カリウムと2重量%のZnOを含む水溶液100重量部に、添加剤を加えた後、2重量部のポリアクリル酸ナトリウムを加えて混合し、ゲル状電解液を得た。そして、ゲル状電解液と亜鉛合金粉末とを1.0:1.8の重量比で混合して、ゲル状負極6を得た。このとき、亜鉛合金粉末AまたはBに対して、添加剤の種類及び添加量を表1に示すように種々に変えて、12種類のゲル状負極(1)〜(12)を得た。なお、表1中、ゲル状負極(4)、(5)、(10)、及び(11)で用いた界面活性剤には、下記の化学式(1)で表されるポリオキシエチレンアルキルエーテル化合物を使用した。なお、表1中の添加量は、亜鉛合金粉末100重量部あたりの量(重量部)を示す。   Next, an additive is added to 100 parts by weight of an aqueous solution containing 36% by weight potassium hydroxide and 2% by weight ZnO, and then 2 parts by weight of sodium polyacrylate is added and mixed to obtain a gel electrolyte. Obtained. Then, the gelled electrolyte solution and the zinc alloy powder were mixed at a weight ratio of 1.0: 1.8 to obtain a gelled negative electrode 6. At this time, with respect to the zinc alloy powder A or B, 12 types of gelled negative electrodes (1) to (12) were obtained by changing the types and amounts of additives as shown in Table 1. In Table 1, the surfactants used in the gelled negative electrodes (4), (5), (10), and (11) include polyoxyethylene alkyl ether compounds represented by the following chemical formula (1) It was used. In addition, the addition amount of Table 1 shows the quantity (weight part) per 100 weight part of zinc alloy powder.

Figure 0005172181
Figure 0005172181

Figure 0005172181
Figure 0005172181

(2)正極合剤ペレットの作製
電解二酸化マンガン粉末(平均粒径:40μm)及び黒鉛粉末(平均粒径:12μm)を重量比94:6の割合で混合し、この混合物100重量部に電解液1重量部を加えた後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒形に加圧成形して正極合剤ペレット3を得た。
(2) Preparation of positive electrode mixture pellets Electrolytic manganese dioxide powder (average particle size: 40 μm) and graphite powder (average particle size: 12 μm) were mixed at a weight ratio of 94: 6, and an electrolyte solution was added to 100 parts by weight of this mixture. After adding 1 part by weight, the mixture was uniformly stirred and mixed with a mixer to adjust the particle size to a constant particle size. The obtained granular material was pressure-formed into a hollow cylindrical shape to obtain a positive electrode material mixture pellet 3.

(3)アルカリマンガン乾電池の作製
ニッケルメッキされた鋼板からなる正極ケース1に、正極合剤ペレット3を複数個挿入し、正極ケース1内で再加圧することによって正極ケース1の内面に密着させた。なお、正極ケース1の内部には、予め黒鉛塗装膜2が形成されている。そして、この正極合剤ペレット3の内側にセパレ−タ4及び絶縁のための底紙5を挿入した後、セパレ−タ4及び正極合剤ペレット3を湿潤させる目的で電解液を注液した。なお、セパレータ4には、厚み120μmのビニロンとレーヨンの複合不織布からなる多孔質シートを用いた。また、電解液には、2重量%のZnO及び36重量%の水酸化カリウムを含むアルカリ水溶液を用いた。
(3) Preparation of alkaline manganese dry battery A plurality of positive electrode mixture pellets 3 were inserted into a positive electrode case 1 made of a nickel-plated steel plate and re-pressurized in the positive electrode case 1 to adhere to the inner surface of the positive electrode case 1. . A graphite coating film 2 is formed in advance in the positive electrode case 1. And after inserting the separator 4 and the base paper 5 for insulation inside this positive electrode mixture pellet 3, the electrolyte solution was inject | poured in order to wet the separator 4 and the positive electrode mixture pellet 3. FIG. The separator 4 was a porous sheet made of a composite nonwoven fabric of vinylon and rayon having a thickness of 120 μm. Further, an alkaline aqueous solution containing 2 wt% ZnO and 36 wt% potassium hydroxide was used as the electrolytic solution.

注液後、セパレータ4の内側にゲル状負極6を充填した。次に、樹脂製封口体7、負極端子を兼ねる底板8、及び絶縁ワッシャ9と一体化された負極集電体10を、ゲル状負極6に差し込んだ。そして、正極ケース1の開口端部を、封口体7の端部を介して底板8の周縁部にかしめつけることにより、正極ケース1の開口部を封口した。次いで、正極ケース1の外表面に外装ラベル11を被覆した。このようにして、アルカリマンガン乾電池を作製した。   After the injection, the gelled negative electrode 6 was filled inside the separator 4. Next, a negative electrode current collector 10 integrated with a resin sealing body 7, a bottom plate 8 serving also as a negative electrode terminal, and an insulating washer 9 was inserted into the gelled negative electrode 6. And the opening part of the positive electrode case 1 was sealed by crimping the opening edge part of the positive electrode case 1 on the peripheral part of the bottom plate 8 via the edge part of the sealing body 7. FIG. Next, an outer label 11 was coated on the outer surface of the positive electrode case 1. In this manner, an alkaline manganese battery was produced.

そして、上記電池作製時において、ゲル状負極(1)〜(12)を用いて、それぞれアルカリマンガン乾電池(1)〜(12)を作製した。
また、正極容量に対する負極容量比(負極理論容量/正極理論容量)が1.16となるように、正極活物質量及び負極活物質量を調整した。
And at the time of the said battery production, alkaline manganese dry batteries (1)-(12) were produced using the gelled negative electrodes (1)-(12), respectively.
The positive electrode active material amount and the negative electrode active material amount were adjusted so that the negative electrode capacity ratio (negative electrode theoretical capacity / positive electrode theoretical capacity) to positive electrode capacity was 1.16.

[評価]
上記で作製したアルカリマンガン乾電池(1)〜(12)について、以下の(I)〜(III)の評価を行った。なお、電池(8)及び(9)は実施例であり、電池(1)〜(7)及び(10)〜(12)は比較例である。
[Evaluation]
The alkaline manganese dry batteries (1) to (12) produced above were evaluated for the following (I) to (III). The batteries (8) and (9) are examples, and the batteries (1) to (7) and (10) to (12) are comparative examples.

(I)高負荷放電試験
初度の電池を20℃雰囲気下、1000mWの定電力で連続放電させて、電池電圧が0.9Vに到達するまでの時間を測定した。
(II)部分放電後の保存試験
初度の電池(各20セル)を20℃雰囲気下、1000mAの定電流で32分間(正極理論容量の20%相当)放電させた後、これを60℃の環境下に2週間保存した。このとき、漏液した電池の割合(漏液の発生率(%))を求めた。
(III)過放電試験
初度の電池4個を直列に接続し、これを40Ωの抵抗器に接続し、20℃雰囲気下で8週間放置して、過放電させた。このとき、漏液の有無を調べた。なお、この際の漏液は、ほとんどの場合、直列に接続された4個の電池のなかで、最も容量の少ない電池で発生した。ここでは、抵抗器を介して電池4個を直列に接続したものを1セットとし、各10セット(40セル)ずつ試験して、漏液の発生率(%)を求めた。
これらの評価結果を表2に示す。
(I) High-load discharge test The initial battery was continuously discharged at a constant power of 1000 mW in a 20 ° C atmosphere, and the time until the battery voltage reached 0.9 V was measured.
(II) Storage test after partial discharge The first battery (20 cells each) was discharged in a 20 ° C. atmosphere at a constant current of 1000 mA for 32 minutes (corresponding to 20% of the positive electrode theoretical capacity), and then the environment at 60 ° C. Stored below for 2 weeks. At this time, the ratio of leaked batteries (leakage rate (%)) was determined.
(III) Overdischarge test Four initial batteries were connected in series, connected to a 40Ω resistor, and left in a 20 ° C. atmosphere for 8 weeks to cause overdischarge. At this time, the presence or absence of liquid leakage was examined. In this case, the leakage occurred mostly in the battery with the smallest capacity among the four batteries connected in series. Here, one set of four batteries connected in series via a resistor was taken as one set, and 10 sets (40 cells) of each were tested to determine the rate of occurrence of liquid leakage (%).
These evaluation results are shown in Table 2.

Figure 0005172181
Figure 0005172181

亜鉛合金粉末Bを用いた電池(7)〜(12)では、亜鉛合金粉末Aを用いた電池(1)〜(6)と比べて、優れた高負荷放電特性が得られた。これは、電池(7)〜(12)で用いられる亜鉛合金粉末Bが微粉末を多く含むため、電解液との接触面積が大きくなり、放電反応の効率が向上したためであると考えられる。亜鉛合金粉末Aを用いた電池(1)〜(6)を比較すると、負極添加剤にIn(OH)3及びIn23を用いた電池(1)及び(3)では、電池(2)及び(4)〜(6)よりも優れた放電特性が得られた。また、添加剤に界面活性剤を用いた電池(4)及び(5)では、放電特性が若干低下した。 In the batteries (7) to (12) using the zinc alloy powder B, excellent high load discharge characteristics were obtained as compared with the batteries (1) to (6) using the zinc alloy powder A. This is considered to be because the zinc alloy powder B used in the batteries (7) to (12) contains a large amount of fine powder, so that the contact area with the electrolyte is increased and the efficiency of the discharge reaction is improved. Comparing the batteries (1) to (6) using the zinc alloy powder A, the batteries (1) and (3) using In (OH) 3 and In 2 S 3 as the negative electrode additive are the batteries (2). And the discharge characteristic superior to (4)-(6) was obtained. Further, in the batteries (4) and (5) using a surfactant as an additive, the discharge characteristics were slightly lowered.

亜鉛合金粉末Bを用いた電池(7)〜(12)を比較すると、負極添加剤にIn(OH)3及びIn23を用いた電池(7)及び(9)では、電池(8)及び(10)〜(12)よりも優れた放電特性が得られた。また、添加剤に界面活性剤を用いた電池(10)及び(11)では、放電特性が若干低下した。
添加剤にインジウム硫化物であるIn(OH)3及びIn23を用いた場合に放電特性が向上する理由としては、負極中で金属インジウムの電析が起こり、この金属インジウムにより亜鉛粒子同士が接合されて集電性が向上することが考えられる。また、添加剤に界面活性剤を用いた場合、放電特性が若干低下する理由としては、界面活性剤の亜鉛合金への吸着性が高いために放電反応が阻害されることが考えられる。
Comparing the batteries (7) to (12) using the zinc alloy powder B, the batteries (7) and (9) using In (OH) 3 and In 2 S 3 as the negative electrode additive are the batteries (8). And the discharge characteristic superior to (10)-(12) was obtained. Further, in the batteries (10) and (11) using the surfactant as the additive, the discharge characteristics were slightly deteriorated.
The reason why the discharge characteristics are improved when In (OH) 3 and In 2 S 3 that are indium sulfides are used as the additive is that electrodeposition of metallic indium occurs in the negative electrode, and this metallic indium causes zinc particles to interact with each other. It is conceivable that the current collecting property is improved by bonding. In addition, when a surfactant is used as an additive, the reason why the discharge characteristics are slightly lowered may be that the discharge reaction is hindered due to the high adsorptivity of the surfactant to the zinc alloy.

また、亜鉛合金粉末Bを用いた電池(12)では、亜鉛合金粉末Aを用いた電池(6)より、部分放電後の保存時に漏液し易いことが示された。これは、亜鉛合金粉末Bが微粉末を多く含むため、耐食性が低下したことによると考えられる。これに対して、亜鉛合金粉末Bを用いた場合でも、負極添加剤を用いた電池(7)〜(11)では、部分放電後の保存時において優れた耐漏液性が得られた。さらに、負極添加剤としてK2SまたはIn23を用いた本発明の実施例の電池(8)及び(9)では、亜鉛合金粉末Bを用いた場合でも、優れた高負荷放電特性とともに過放電時において優れた耐漏液性が得られた。 Moreover, in the battery (12) using the zinc alloy powder B, it was shown that the battery (6) using the zinc alloy powder A is more likely to leak during storage after partial discharge. This is considered to be due to the fact that the zinc alloy powder B contains a large amount of fine powder, so that the corrosion resistance was lowered. On the other hand, even when the zinc alloy powder B was used, in the batteries (7) to (11) using the negative electrode additive, excellent leakage resistance was obtained during storage after partial discharge. Furthermore, in the batteries (8) and (9) of the examples of the present invention using K 2 S or In 2 S 3 as the negative electrode additive, even when the zinc alloy powder B is used, with excellent high load discharge characteristics Excellent leakage resistance was obtained during overdischarge.

過放電試験では、亜鉛合金粉末Bを使用した場合に漏液が発生した電池がみられた。従来問題としていた部分放電後の保存試験の結果と相関性がないことから、過放電時の漏液は、微粉末を多く含んだ亜鉛合金粉末を用いた場合に特有の問題と捉えることができる。
このような過放電時の漏液の現象をより明らかとするため、初度の電池(1)、(7)、(8)及び(9)について、20℃雰囲気下で10Ωの定抵抗放電を行った。このとき、正極ケースの一部に孔を設けて、電池内の正極または負極と、電池外の水銀/酸化水銀参照極との間に塩橋を配し、水銀/酸化水銀参照極に対する正極電位及び負極電位を測定した。
In the overdischarge test, there was a battery in which leakage occurred when the zinc alloy powder B was used. Since there is no correlation with the result of the storage test after partial discharge, which has been a problem in the past, leakage during overdischarge can be regarded as a particular problem when using a zinc alloy powder containing a large amount of fine powder. .
In order to clarify the leakage phenomenon during such overdischarge, the first battery (1), (7), (8) and (9) was subjected to 10Ω constant resistance discharge in an atmosphere of 20 ° C. It was. At this time, a hole is provided in a part of the positive electrode case, a salt bridge is provided between the positive electrode or negative electrode in the battery and the mercury / mercury oxide reference electrode outside the battery, and the positive electrode potential with respect to the mercury / mercury oxide reference electrode. The negative electrode potential was measured.

この測定結果を図2に示す。図2は、電池(1)及び(7)を、電池電圧が0.2Vになるまで放電させた場合の正極及び負極の放電曲線を示す。図2中において、実線が電池(1)の放電曲線を示し、破線が電池(7)の放電曲線を示す。これらの電池では、負極の理論容量と正極の理論容量とを比べると、負極の方が過剰だが、実際には負極の利用率が正極よりもかなり低いため、放電容量(放電時間)は主に負極に支配される。   The measurement results are shown in FIG. FIG. 2 shows discharge curves of the positive electrode and the negative electrode when the batteries (1) and (7) are discharged until the battery voltage reaches 0.2V. In FIG. 2, the solid line shows the discharge curve of the battery (1), and the broken line shows the discharge curve of the battery (7). In these batteries, when comparing the theoretical capacity of the negative electrode with the theoretical capacity of the positive electrode, the negative electrode is excessive, but in fact the negative electrode utilization rate is considerably lower than the positive electrode, so the discharge capacity (discharge time) is mainly Dominated by the negative electrode.

図2より、粒径75μm以下の微粉末を含まない亜鉛合金粉末Aを用いた電池(1)では、放電末期に負極電位が急激に上昇して放電が停止することがわかった。これに対して、粒径75μm以下の微粉末を多く含む亜鉛合金粉末Bを用いた電池(7)では、亜鉛合金の反応性が高いため、放電末期の負極電位が急激に上昇する時間が延長され、正極電位が急激に降下する時間とほぼ等しくなることがわかった。   From FIG. 2, it was found that in the battery (1) using the zinc alloy powder A containing no fine powder having a particle size of 75 μm or less, the negative electrode potential suddenly increased at the end of discharge and the discharge was stopped. On the other hand, in the battery (7) using the zinc alloy powder B containing a large amount of fine powder having a particle size of 75 μm or less, since the zinc alloy has high reactivity, the time during which the negative electrode potential rapidly increases at the end of discharge is extended. As a result, it was found that the positive electrode potential was almost equal to the time when the positive electrode potential dropped rapidly.

4個の電池を直列に接続した場合、製造上避けられない容量バラツキが存在するため、4個の電池のうち、相対的に容量の少ない1個の電池だけが放電末期から過放電時において、残りの3個の電池電圧により逆充電され転極する場合がある。図2の放電曲線から、電池(1)の場合、容量の少ない1個の電池では、負極だけが転極するものと考えられる。これに対して、電池(7)の場合、容量の少ない1個の電池では、正極及び負極の両方が転極するものと考えられる。正極及び負極が転極した際の反応(水の分解反応)で発生するガス量を比較すると、正極及び負極に同じ電気量を通電する場合、正極の転極により発生する水素ガス量の方が負極の転極により発生する酸素ガス量の2倍である。このため、過放電時に正極が転極する電池(7)では、電池(1)に比べて大幅に電池内圧が上昇し、漏液しやすくなったと考えられる。   When four batteries are connected in series, there is an inevitable capacity variation in manufacturing, so only one battery with a relatively small capacity among the four batteries is in the overdischarge state from the end of discharge. The remaining three battery voltages may reverse charge and reverse polarity. From the discharge curve of FIG. 2, in the case of the battery (1), it is considered that only one negative electrode is reversed in one battery having a small capacity. On the other hand, in the case of the battery (7), it is considered that both the positive electrode and the negative electrode are reversed in one battery having a small capacity. Comparing the amount of gas generated by the reaction (water decomposition reaction) when the positive electrode and the negative electrode are reversed, when the same amount of electricity is applied to the positive electrode and the negative electrode, the amount of hydrogen gas generated by the reversal of the positive electrode is This is twice the amount of oxygen gas generated by the reversal of the negative electrode. For this reason, in the battery (7) in which the positive electrode is reversed at the time of overdischarge, it is considered that the internal pressure of the battery is significantly increased as compared with the battery (1), and liquid leakage is likely to occur.

次に、図3は、電池(7)及び(8)を、電池電圧が0.2Vになるまで放電させた場合の正極及び負極の放電曲線を示す。図3中、実線が電池(8)の放電曲線を示し、破線が電池(7)の放電曲線を示す。微粉末を多く含む亜鉛合金粉末Bを用いた場合でも、添加剤にK2Sを用いた電池(8)では、放電末期の負極電位を適正に制御することができることが示された。 Next, FIG. 3 shows discharge curves of the positive electrode and the negative electrode when the batteries (7) and (8) are discharged until the battery voltage becomes 0.2V. In FIG. 3, a solid line shows the discharge curve of the battery (8), and a broken line shows the discharge curve of the battery (7). Even when the zinc alloy powder B containing a large amount of fine powder was used, it was shown that the negative electrode potential at the end of discharge can be properly controlled in the battery (8) using K 2 S as the additive.

アルカリ金属の硫化物(K2S)は電解液に溶解し、電解液中ではアルカリ金属イオンと硫化物イオンとして存在する。生成した硫化物イオンは、亜鉛と共存させると亜鉛と反応し、亜鉛表面に比較的不活性な硫化亜鉛の被膜を形成する。詳細なメカニズムは明らかではないが、亜鉛合金粉末のなかでも、特に微粉末の亜鉛の表面に形成された硫化亜鉛皮膜の効果により、放電末期において正極電位が急激に降下する前に負極電位を急激に上昇させて、速やかに放電を停止させることができる。 Alkali metal sulfide (K 2 S) is dissolved in the electrolytic solution and exists as alkali metal ions and sulfide ions in the electrolytic solution. When the generated sulfide ions coexist with zinc, it reacts with zinc to form a relatively inert zinc sulfide coating on the zinc surface. Although the detailed mechanism is not clear, among the zinc alloy powders, the negative electrode potential is rapidly increased before the positive electrode potential rapidly decreases at the end of the discharge due to the effect of the zinc sulfide film formed on the surface of the fine zinc powder. The discharge can be stopped quickly.

なお、電池(9)では、電池(8)と同様の正極及び負極の電位挙動が得られた。In23はアルカリ電解液中で亜鉛と共存すると、金属インジウムとして亜鉛表面に点在する形で電析し、同時に残りの亜鉛表面には硫化亜鉛の被膜を形成する。従って、形成された硫化亜鉛の被膜の効果により、アルカリ金属の硫化物(K2S)を添加した場合と同様に、放電末期において正極電位が急激に降下する前に負極電位を急激に上昇させることができる。 In addition, in the battery (9), the positive electrode and negative electrode potential behavior similar to the battery (8) was obtained. When In 2 S 3 coexists with zinc in the alkaline electrolyte, it is electrodeposited in the form of metallic indium scattered on the zinc surface, and at the same time, a zinc sulfide film is formed on the remaining zinc surface. Therefore, due to the effect of the formed zinc sulfide film, the negative electrode potential is rapidly increased before the positive electrode potential rapidly decreases at the end of discharge, as in the case of adding alkali metal sulfide (K 2 S). be able to.

上記の正極及び負極の電位挙動測定において、負極電位の立ち上がる時間及び正極電位の立ち下がる時間を数値化した結果を、表3に示す。なお、負極電位が立ち上がる時間を、放電を開始してから放電末期に負極電位が急激に上昇して−1.2V vs. Hg/HgOに到達するまでの時間と定義した。また、正極電位が立ち下がる時間を、放電を開始してから放電末期に正極電位が急激に降下して−0.6V vs. Hg/HgOに到達するまでの時間と定義した。   Table 3 shows the results of quantifying the rising time of the negative electrode potential and the falling time of the positive electrode potential in the measurement of the potential behavior of the positive electrode and the negative electrode. The time for the negative electrode potential to rise is defined as the time from the start of discharge until the negative electrode potential suddenly rises to reach -1.2 V vs. Hg / HgO at the end of discharge. Further, the time for the positive electrode potential to fall is defined as the time from the start of discharge until the positive electrode potential suddenly drops at the end of the discharge to reach −0.6 V vs. Hg / HgO.

Figure 0005172181
Figure 0005172181

微粉末を多く含む亜鉛合金粉末bを用いる場合、負極中にK2SまたはIn23を加えた電池(8)及び(9)では、負極電位が立ち上がる時間が正極電位が立ち下がる時間よりも短くなり、4個の電池を直列に接続した場合における過放電時の漏液を抑止することができる。これは、4個の電池を直列に接続した場合における過放電した場合における容量の少ない電池の転極が、負極のみで起こるため、電池内圧の上昇が抑制されるためと考えられる。
以上のことから、本発明によれば、微粉末を多く含む亜鉛合金粉末を用いた場合でも、優れた高負荷放電特性を維持しつつ、過放電時の漏液を抑制することができる。
When the zinc alloy powder b containing a large amount of fine powder is used, in the batteries (8) and (9) in which K 2 S or In 2 S 3 is added to the negative electrode, the time when the negative electrode potential rises is longer than the time when the positive electrode potential falls. This also shortens the leakage, and can suppress leakage during overdischarge when four batteries are connected in series. This is thought to be due to the fact that the battery reversal with a small capacity in the case of overdischarge in the case where four batteries are connected in series occurs only at the negative electrode, so that the increase in battery internal pressure is suppressed.
From the above, according to the present invention, even when a zinc alloy powder containing a large amount of fine powder is used, leakage during overdischarge can be suppressed while maintaining excellent high-load discharge characteristics.

《実施例2》
(1)亜鉛合金粉末の作製
本実施例では、亜鉛合金粉末の粒度(亜鉛合金粉末中における粒径75μm以下の微粉末の比率)に関して検討した。
Al0.005重量%、Bi0.02重量%、及びIn0.03重量%を含む亜鉛合金粉末をガスアトマイズ法で作製した。そして、得られた合金粉末を、粒度範囲35〜200メッシュの粗粉末と、200メッシュの篩を通過する粒径75μm以下の微粉末とに篩い分けた。そして、合金粉末中の微粉末の比率が表4中に示す値となるように、粗粉末と微粉末とを混合し、亜鉛合金組成は同じであるが、微粉末の比率が異なる亜鉛合金粉末C〜Gを作製した。
Example 2
(1) Production of Zinc Alloy Powder In this example, the particle size of zinc alloy powder (the ratio of fine powder having a particle size of 75 μm or less in the zinc alloy powder) was examined.
A zinc alloy powder containing 0.005% by weight of Al, 0.02% by weight of Bi, and 0.03% by weight of In was prepared by a gas atomization method. Then, the obtained alloy powder was sieved into a coarse powder having a particle size range of 35 to 200 mesh and a fine powder having a particle size of 75 μm or less passing through a 200 mesh sieve. Then, the coarse powder and the fine powder are mixed so that the ratio of the fine powder in the alloy powder becomes the value shown in Table 4, and the zinc alloy composition is the same, but the ratio of the fine powder is different. C to G were prepared.

(2)ゲル状負極の作製
36重量%の水酸化カリウム及び2重量%のZnOを含むアルカリ水溶液100重量部に、硫化インジウム(亜鉛合金粉末に対して0.05重量%)を加えた後、2重量部のポリアクリル酸ナトリウムを加えて混合しゲル電解液を得た。そして、このゲル状電解液と、亜鉛合金粉末とを、重量比1:1.8の割合で混合し、ゲル状負極を得た。
上記のゲル状負極を用いた以外は、実施例1と同様の方法により、アルカリマンガン乾電池を作製した。
そして、上記ゲル状負極作製時において、上記亜鉛合金粉末C〜Gを用いて、それぞれアルカリマンガン乾電池C〜Gを作製し、上記と同様に評価した。その評価結果を表4に示す。なお、電池D〜Fが実施例であり、電池C及びGは比較例である。
(2) Preparation of gelled negative electrode After adding indium sulfide (0.05% by weight to the zinc alloy powder) to 100 parts by weight of an alkaline aqueous solution containing 36% by weight potassium hydroxide and 2% by weight ZnO, 2 parts by weight of sodium polyacrylate was added and mixed to obtain a gel electrolyte. And this gel electrolyte solution and zinc alloy powder were mixed in the ratio of weight ratio 1: 1.8, and the gel-like negative electrode was obtained.
An alkaline manganese dry battery was produced in the same manner as in Example 1 except that the gelled negative electrode was used.
And at the time of preparation of the gelled negative electrode, alkaline manganese dry batteries C to G were prepared using the zinc alloy powders C to G, respectively, and evaluated in the same manner as described above. The evaluation results are shown in Table 4. The batteries D to F are examples, and the batteries C and G are comparative examples.

Figure 0005172181
Figure 0005172181

表4より、亜鉛合金粉末中における微粉末の含有量が20〜50重量%である本発明の実施例の電池D〜Fでは、良好な高負荷放電特性を有するとともに、部分放電後の保存時の耐漏液性及び過放電時の耐漏液性のいずれにも優れていることがわかった。   From Table 4, the batteries D to F of the examples of the present invention in which the content of fine powder in the zinc alloy powder is 20 to 50% by weight have good high-load discharge characteristics and at the time of storage after partial discharge. It was found that both the leakage resistance and the leakage resistance during overdischarge were excellent.

亜鉛合金粉末中における微粉末の含有量が15重量%と少ない電池Cでは、高負荷放電特性が低下した。亜鉛合金粉末中における微粉末の含有量が55重量%と多い電池Gでは、電解液との反応性が高くなりすぎて、部分放電後の耐漏液特性が大幅に低下した。また、電池Gを直列に接続して過放電させた場合でも、漏液した電池がみられた。
なお、本実施例では、負極添加剤として硫化インジウムを用いたが、その代わりにアルカリ金属の硫化物(硫化カリウム等)を用いても同様の結果が得られる。
In the battery C in which the content of the fine powder in the zinc alloy powder is as low as 15% by weight, the high load discharge characteristics were lowered. In the battery G in which the content of the fine powder in the zinc alloy powder is as high as 55% by weight, the reactivity with the electrolytic solution was too high, and the leakage resistance after partial discharge was greatly reduced. Further, even when the battery G was connected in series and overdischarged, a leaked battery was observed.
In this example, indium sulfide was used as the negative electrode additive. However, similar results can be obtained by using an alkali metal sulfide (such as potassium sulfide) instead.

《実施例3》
本実施例では、負極に添加する硫化カリウムまたは硫化インジウムの添加量に関する検討を行った。
36重量%の水酸化カリウム及び2重量%のZnOを含む水溶液100重量部に、表5に示す量の硫化カリウムまたは硫化インジウムを加えた後、2重量部のポリアクリル酸ナトリウムを加えて混合し、ゲル状電解液を作製した。なお、負極中の添加剤の添加量(重量部)は、負極に用いられる亜鉛合金粉末100重量部あたりの量を示す。そして、このゲル状電解液と、実施例1で用いた亜鉛合金粉末Bとを、重量比1:1.8の割合で混合し、ゲル状負極(13)〜(22)を得た。
そして、このゲル状負極(13)〜(22)を用いて、実施例1と同様の方法により、アルカリマンガン乾電池(13)〜(22)を作製し、上記と同様に評価した。その評価結果を表5に示す。なお、電池(14)〜(16)及び(19)〜(21)は実施例であり、電池(13)、(17)、(18)及び(22)は比較例である。
Example 3
In this example, the amount of potassium sulfide or indium sulfide added to the negative electrode was examined.
To 100 parts by weight of an aqueous solution containing 36% by weight potassium hydroxide and 2% by weight ZnO, the amount of potassium sulfide or indium sulfide shown in Table 5 is added, and then 2 parts by weight of sodium polyacrylate is added and mixed. A gel electrolyte was prepared. In addition, the addition amount (part by weight) of the additive in the negative electrode indicates an amount per 100 parts by weight of the zinc alloy powder used for the negative electrode. And this gel electrolyte solution and the zinc alloy powder B used in Example 1 were mixed in the ratio of weight ratio 1: 1.8, and the gelled negative electrodes (13)-(22) were obtained.
Then, using these gelled negative electrodes (13) to (22), alkaline manganese dry batteries (13) to (22) were produced in the same manner as in Example 1, and evaluated in the same manner as described above. The evaluation results are shown in Table 5. The batteries (14) to (16) and (19) to (21) are examples, and the batteries (13), (17), (18), and (22) are comparative examples.

Figure 0005172181
Figure 0005172181

負極中への硫化カリウムまたは硫化インジウムの添加量が亜鉛合金粉末100重量部あたり0.02〜0.1重量部である本発明の実施例の電池(14)〜(16)及び電池(19)〜(21)では、良好な高負荷放電特性とともに、部分放電後の保存時及び過放電時のいずれにおいても、優れた耐漏液性が得られた。負極中の硫化カリウムまたは硫化インジウムの添加量が、亜鉛合金粉末100重量部あたり0.01重量部と少ない電池(13)及び(18)では、電池複数個を直列に接続して過放電した時に漏液がみられた。   Batteries (14) to (16) and batteries (19) of Examples of the present invention in which the amount of potassium sulfide or indium sulfide added to the negative electrode is 0.02 to 0.1 parts by weight per 100 parts by weight of zinc alloy powder In (21), in addition to good high-load discharge characteristics, excellent leakage resistance was obtained both during storage after partial discharge and during overdischarge. In the batteries (13) and (18) in which the amount of potassium sulfide or indium sulfide added in the negative electrode is as small as 0.01 parts by weight per 100 parts by weight of the zinc alloy powder, when multiple batteries are connected in series and overdischarged Leakage was observed.

これは、負極中の添加剤の量が少なすぎるため、亜鉛合金粒子表面に硫化亜鉛皮膜が十分に形成されずに、放電末期に負極電位を急激に立ち上がらせて、過放電時の正極の転極を抑止する効果が得られなかったためと考えられる。
この点を確認するために、電池(13)、(14)、(18)、及び(19)について、実施例1と同様の方法により、10Ωの定抵抗放電時の正極及び負極の電位を測定し、負極電位が立ち上がる時間と、正極電位が立ち下がる時間とを測定した。その結果を表6に示す。電池(13)及び(18)では、正極電位が立ち下がる時間よりも負極電位が立ち上がる時間の方が長くなり、正極の転極が確認された。
This is because the amount of the additive in the negative electrode is too small, so that the zinc sulfide film is not sufficiently formed on the surface of the zinc alloy particles, and the negative electrode potential suddenly rises at the end of discharge, causing the positive electrode to switch during overdischarge. This is probably because the effect of deterring the pole was not obtained.
In order to confirm this point, for the batteries (13), (14), (18), and (19), the potentials of the positive electrode and the negative electrode during 10 Ω constant resistance discharge were measured in the same manner as in Example 1. Then, the time for the negative electrode potential to rise and the time for the positive electrode potential to fall were measured. The results are shown in Table 6. In the batteries (13) and (18), the time for the negative electrode potential to rise was longer than the time for the positive electrode potential to fall, and the reversal of the positive electrode was confirmed.

Figure 0005172181
Figure 0005172181

硫化カリウムまたは硫化インジウムの添加量が0.12重量%と多い電池(17)及び(22)では、微粉末を多く含む亜鉛合金粉末を用いた場合でも、高負荷放電特性が低下する。これは、添加剤の量が過剰で、亜鉛合金粒子表面に形成される硫化亜鉛皮膜の厚みが大きくなりすぎて、放電反応を阻害するためと考えられる。
以上のことから、負極中の硫化カリウムまたは硫化インジウムの含有量は、亜鉛合金粉末100重量部あたり0.02〜0.1重量部であるのが好ましいことがわかった。
In the batteries (17) and (22) in which the addition amount of potassium sulfide or indium sulfide is as large as 0.12% by weight, the high-load discharge characteristics are deteriorated even when the zinc alloy powder containing a large amount of fine powder is used. This is presumably because the amount of the additive is excessive, and the thickness of the zinc sulfide film formed on the surface of the zinc alloy particles becomes too large to inhibit the discharge reaction.
From the above, it was found that the content of potassium sulfide or indium sulfide in the negative electrode is preferably 0.02 to 0.1 parts by weight per 100 parts by weight of the zinc alloy powder.

《実施例4》
本実施例では、負極活物質に用いられる亜鉛合金の組成に関して検討した。
ガスアトマイズ法により、Bi、In、AlならびにCaを表7に示す割合で含む亜鉛合金粉末(23)〜(49)を作製した。これらの亜鉛合金粉末を、粒度範囲が35〜300メッシュであり、200メッシュの篩を通過する75μm以下の微粉末の比率が30重量%となるように、篩により分級した。
Example 4
In this example, the composition of the zinc alloy used for the negative electrode active material was examined.
Zinc alloy powders (23) to (49) containing Bi, In, Al, and Ca in the ratios shown in Table 7 were produced by the gas atomization method. These zinc alloy powders were classified by a sieve so that the particle size range was 35 to 300 mesh and the ratio of fine powder of 75 μm or less passing through a 200 mesh sieve would be 30% by weight.

36重量%の水酸化カリウム及び2重量%のZnOを含むアルカリ水溶液100重量部に、硫化インジウムを、後で加える亜鉛合金粉末の重量に対して0.05重量%加えた後、ポリアクリル酸ナトリウム2重量部を加えて混合しゲル状電解液を得た。得られたゲル状電解液と、亜鉛合金粉末とを重量比1:1.8の割合で混合し、ゲル状負極(23)〜(49)を得た。
そして、このゲル状負極(23)〜(49)を用いて、それぞれ実施例1と同様の方法によりアルカリマンガン乾電池(23)〜(49)を作製し、評価した。その評価結果を表7に示す。
After adding 0.05% by weight of indium sulfide to 100 parts by weight of an alkaline aqueous solution containing 36% by weight potassium hydroxide and 2% by weight ZnO based on the weight of the zinc alloy powder to be added later, sodium polyacrylate 2 parts by weight was added and mixed to obtain a gel electrolyte. The obtained gel electrolyte solution and zinc alloy powder were mixed at a weight ratio of 1: 1.8 to obtain gelled negative electrodes (23) to (49).
And using these gelled negative electrodes (23) to (49), alkaline manganese dry batteries (23) to (49) were produced and evaluated in the same manner as in Example 1, respectively. The evaluation results are shown in Table 7.

Figure 0005172181
Figure 0005172181

電池(23)〜(49)では、負極に添加した硫化インジウムの効果により、4個の電池を直列に接続した場合の過放電の漏液を抑制することができた。しかし、亜鉛合金粉末中のビスマス及びインジウムの含有量が合計で0.005重量%未満である電池(23)、(28)及び(33)、並びにアルミニウム及びカルシウムの含有量が合計で0.001重量%未満である電池(38)、(42)及び(46)では、亜鉛合金中の添加元素による防食効果が不十分であるため、部分放電後の保存時の耐漏液性が低下した。   In the batteries (23) to (49), leakage of overdischarge when four batteries were connected in series could be suppressed by the effect of indium sulfide added to the negative electrode. However, the batteries (23), (28) and (33) in which the total content of bismuth and indium in the zinc alloy powder is less than 0.005% by weight, and the total content of aluminum and calcium are 0.001. In the batteries (38), (42) and (46) which are less than% by weight, the anti-corrosion effect by the additive element in the zinc alloy is insufficient, so that the leakage resistance during storage after partial discharge is lowered.

また、亜鉛合金中のビスマス及びインジウムの含有量が合計で0.1重量%を超える電池(27)、(32)及び(37)、並びにアルミニウム及びカルシウムの含有量が合計で0.05重量%を超える電池(41)、(45)及び(49)では、これら添加元素が多くなりすぎて、亜鉛の放電反応が阻害されるため、高負荷放電特性が低下した。   Further, the batteries (27), (32) and (37) in which the total content of bismuth and indium in the zinc alloy exceeds 0.1% by weight, and the total content of aluminum and calcium is 0.05% by weight. In the batteries (41), (45), and (49) exceeding 1, the high load discharge characteristics were deteriorated because the amount of these additional elements was excessive and the zinc discharge reaction was inhibited.

以上のことから、亜鉛合金が、ビスマス及びインジウムを合計で0.005〜0.1重量%含み、アルミニウム及びカルシウムを合計で0.001〜0.05重量%含むのが好ましいことがわかった。なお、本実施例では、負極に硫化インジウムを添加したが、その代わりにアルカリ金属の硫化物(硫化カリウム等)を添加しても同様の結果が得られる。   From the above, it was found that the zinc alloy preferably contains 0.005 to 0.1% by weight of bismuth and indium in total and 0.001 to 0.05% by weight of aluminum and calcium in total. In this example, indium sulfide was added to the negative electrode. However, similar results can be obtained by adding an alkali metal sulfide (such as potassium sulfide) instead.

なお、上記実施例1〜4では、本発明の亜鉛アルカリ電池として、単3形の円筒形アルカリマンガン乾電池を作製したが、本発明の亜鉛アルカリ電池はこれに限定されない。単3形以外の電池サイズのアルカリマンガン乾電池や、ボタン型、角型等の形状の電池にも好適に用いられる。また、上記実施例1〜4では、正極活物質に二酸化マンガンを用いたが、二酸化マンガン以外の正極活物質、例えばオキシ水酸化ニッケルを用いた場合でも同様の効果が得られる。   In Examples 1 to 4, an AA cylindrical alkaline manganese dry battery was manufactured as the zinc alkaline battery of the present invention, but the zinc alkaline battery of the present invention is not limited to this. It can also be suitably used for alkaline manganese dry batteries having a battery size other than AA, or batteries having a button shape or a square shape. Moreover, in the said Examples 1-4, although manganese dioxide was used for the positive electrode active material, the same effect is acquired also when using positive electrode active materials other than manganese dioxide, for example, nickel oxyhydroxide.

本発明の亜鉛アルカリ電池は、高負荷放電特性に優れるとともに耐漏液性に優れているため、玩具やライト等の汎用機器や、情報機器等の各種電子機器の電源として好適に用いられる。   Since the zinc alkaline battery of the present invention is excellent in high load discharge characteristics and liquid leakage resistance, it is suitably used as a power source for general-purpose equipment such as toys and lights and various electronic equipment such as information equipment.

本発明の実施例のアルカリ乾電池の一部を断面にした正面図である。It is the front view which made a part of alkaline dry battery of the example of the present invention a section. 電池(1)及び(7)の10Ω連続放電時における正極及び負極の放電曲線を示す図である。It is a figure which shows the discharge curve of the positive electrode and negative electrode at the time of 10 ohm continuous discharge of battery (1) and (7). 電池(7)及び(8)の10Ω連続放電時における正極及び負極の放電曲線を示す図である。It is a figure which shows the discharge curve of the positive electrode and negative electrode at the time of 10 ohm continuous discharge of a battery (7) and (8).

符号の説明Explanation of symbols

1 正極ケース
2 黒鉛塗装膜
3 正極合剤ペレット
4 セパレータ
5 底紙
6 ゲル状負極
7 樹脂製封口体
8 底板
9 絶縁ワッシャ
10 負極集電体
11 外装ラベル
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Graphite coating film 3 Positive electrode mixture pellet 4 Separator 5 Bottom paper 6 Gel-like negative electrode 7 Sealing body made of resin 8 Bottom plate 9 Insulating washer 10 Negative electrode current collector 11 Exterior label

Claims (6)

粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を含む負極と、正極と、前記負極と前記正極との間に配されるセパレータと、電解液とを具備し、
定抵抗放電において、前記負極の電位が立ち上がる時間が、前記正極の電位が立ち下がる時間よりも短いことを特徴とする亜鉛アルカリ電池。
A negative electrode including a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less, a positive electrode, a separator disposed between the negative electrode and the positive electrode, and an electrolytic solution;
A zinc-alkaline battery characterized in that, in constant resistance discharge, a time for the potential of the negative electrode to rise is shorter than a time for the potential of the positive electrode to fall.
前記負極が、アルカリ金属の硫化物及び硫化インジウムからなる群より選ばれる少なくとも1種の添加剤を、前記亜鉛合金粉末100重量部あたり0.02〜0.1重量部含む請求項1記載の亜鉛アルカリ電池。   The zinc according to claim 1, wherein the negative electrode contains 0.02 to 0.1 parts by weight of at least one additive selected from the group consisting of alkali metal sulfides and indium sulfides per 100 parts by weight of the zinc alloy powder. Alkaline battery. 前記亜鉛合金粉末は、ビスマス及びインジウムからなる群より選ばれる少なくとも1種を0.005〜0.1重量%含有し、アルミニウム及びカルシウムからなる群より選ばれる少なくとも1種を0.001〜0.05重量%含有する請求項1記載の亜鉛アルカリ電池。   The zinc alloy powder contains 0.005 to 0.1% by weight of at least one selected from the group consisting of bismuth and indium, and at least one selected from the group consisting of aluminum and calcium from 0.001 to 0.00. The zinc-alkaline battery according to claim 1, containing 05% by weight. 粒径75μm以下の微粉末を20〜50重量%含む亜鉛合金粉末を含む負極と、正極と、前記負極と前記正極との間に配されるセパレータと、電解液とを具備し、
定抵抗放電の末期において、前記正極の電位が立ち下がる前に前記負極の電位が立ち上がる負極容量規制であることを特徴とする亜鉛アルカリ電池。
A negative electrode including a zinc alloy powder containing 20 to 50% by weight of a fine powder having a particle size of 75 μm or less, a positive electrode, a separator disposed between the negative electrode and the positive electrode, and an electrolytic solution;
A zinc-alkaline battery characterized by negative electrode capacity regulation in which the potential of the negative electrode rises before the potential of the positive electrode falls at the end of the constant resistance discharge.
前記負極が、アルカリ金属の硫化物及び硫化インジウムからなる群より選ばれる少なくとも1種の添加剤を、前記亜鉛合金粉末100重量部あたり0.02〜0.1重量%含む請求項4記載の亜鉛アルカリ電池。   5. The zinc according to claim 4, wherein the negative electrode contains 0.02 to 0.1 wt% of at least one additive selected from the group consisting of an alkali metal sulfide and indium sulfide per 100 parts by weight of the zinc alloy powder. Alkaline battery. 前記亜鉛合金粉末は、ビスマス及びインジウムからなる群から選ばれる少なくとも1種を0.005〜0.1重量%含有し、アルミニウム及びカルシウムからなる群から選ばれる少なくとも1種を0.001〜0.05重量%含有する請求項4記載の亜鉛アルカリ電池。
The zinc alloy powder contains 0.005 to 0.1% by weight of at least one selected from the group consisting of bismuth and indium, and at least one selected from the group consisting of aluminum and calcium from 0.001 to 0.00. The zinc-alkaline battery according to claim 4, containing 05% by weight.
JP2007072054A 2006-03-28 2007-03-20 Zinc alkaline battery Expired - Fee Related JP5172181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072054A JP5172181B2 (en) 2006-03-28 2007-03-20 Zinc alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006087046 2006-03-28
JP2006087046 2006-03-28
JP2007072054A JP5172181B2 (en) 2006-03-28 2007-03-20 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JP2007294424A JP2007294424A (en) 2007-11-08
JP5172181B2 true JP5172181B2 (en) 2013-03-27

Family

ID=38764807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072054A Expired - Fee Related JP5172181B2 (en) 2006-03-28 2007-03-20 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JP5172181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387496B2 (en) 2015-01-23 2022-07-12 Fdk Corporation Method of making alkaline battery with gap between pellets

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064756A (en) * 2007-09-10 2009-03-26 Panasonic Corp Alkaline dry battery
JP5455182B2 (en) * 2008-06-30 2014-03-26 日立マクセル株式会社 Alkaline battery
JP5454847B2 (en) * 2008-11-14 2014-03-26 日立マクセル株式会社 Alkaline battery
JP5419256B2 (en) * 2008-12-26 2014-02-19 日立マクセル株式会社 Alkaline battery
JP2011138642A (en) * 2009-12-28 2011-07-14 Hitachi Maxell Ltd Flat alkaline battery
JP6335531B2 (en) * 2014-01-30 2018-05-30 Fdk株式会社 Alkaline battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754865B2 (en) * 1990-05-17 1998-05-20 松下電器産業株式会社 Manufacturing method of zinc alkaline battery
JP2003017077A (en) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd Sealed alkaline zinc primary battery
JP4121774B2 (en) * 2001-07-19 2008-07-23 松下電器産業株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387496B2 (en) 2015-01-23 2022-07-12 Fdk Corporation Method of making alkaline battery with gap between pellets

Also Published As

Publication number Publication date
JP2007294424A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
US7169508B2 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
JP3866884B2 (en) Alkaline battery
JP5172181B2 (en) Zinc alkaline battery
US9455440B2 (en) Alkaline cell with improved high rate capacity
EP1988590A1 (en) Alkaline battery
US20230107037A1 (en) Alkaline electrochemical cells comprising increased zinc oxide levels
US20080193851A1 (en) Alkaline electrochemical cell having improved gelled anode
JP3215448B2 (en) Zinc alkaline battery
US9040196B2 (en) Alkaline primary battery
JP4736345B2 (en) Alkaline battery
JP4516092B2 (en) Alkaline battery
US8283069B2 (en) Zinc-alkaline battery
JP2006040887A (en) Alkaline battery
US20090053604A1 (en) Alkaline primary battery
WO2021186805A1 (en) Alkaline dry battery
EP1293002B1 (en) Electrochemical cells with an anode containing sulfur
JP2008305742A (en) Alkaline primary battery and size aa alkaline dry cell
JP2002117859A (en) Alkaline battery
JP2012028240A (en) Alkaline manganese dry cell
US20230163321A1 (en) Electrochemical cell with increased runtime and reduced internal shorting
JP2006221831A (en) Alkaline dry cell
JP2000067908A (en) Battery
JPH07114914A (en) Manufacture of alkaline zinc battery
JP2002050349A (en) Negative electrode for alkaline cell and alkaline cell using above

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

LAPS Cancellation because of no payment of annual fees