JP2006221831A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2006221831A
JP2006221831A JP2005031384A JP2005031384A JP2006221831A JP 2006221831 A JP2006221831 A JP 2006221831A JP 2005031384 A JP2005031384 A JP 2005031384A JP 2005031384 A JP2005031384 A JP 2005031384A JP 2006221831 A JP2006221831 A JP 2006221831A
Authority
JP
Japan
Prior art keywords
battery
alkaline
positive electrode
lioh
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005031384A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文生 加藤
Harunari Shimamura
治成 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005031384A priority Critical patent/JP2006221831A/en
Publication of JP2006221831A publication Critical patent/JP2006221831A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to alleviate a phenomenon that voltage reduction at the cycle end stage becomes large in the case of repeating a pulse discharge of high load, and enable an equipment to be operated stably in an alkaline dry cell in which nickel oxyhydroxide is added to a positive electrode mixture. <P>SOLUTION: This is the alkaline dry cell which is provided with a positive electrode to contain nickel oxyhydroxide and manganese dioxide, a gelatinous negative electrode in which zinc is made an active material, and an alkaline electrolytic solution, and in which the alkaline electrolytic solution is KOH aqueous solution added with LiOH. Especially, the zinc is a zinc alloy to contain at least aluminum, and an aluminum compound is preferably contained in the alkaline electrolytic solution together with LiOH. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活物質としてオキシ水酸化ニッケルを正極合剤中に含み、インサイドアウト構造を採用したアルカリ乾電池(所謂、ニッケルマンガン電池)に関連する。   The present invention relates to an alkaline dry battery (so-called nickel manganese battery) that includes nickel oxyhydroxide as an active material in a positive electrode mixture and adopts an inside-out structure.

アルカリ乾電池は、正極端子を兼ねる正極ケースの中に、正極ケースに密着して円筒状の二酸化マンガン正極合剤ペレットを配置し、その中央にセパレータを介してゲル状の亜鉛負極を配置したインサイドアウト型の構造を有する。近年のデジタル機器の普及に伴い、これらの電池が使用される機器の負荷電力は次第に大きくなり、高負荷放電性能に優れる電池が要望されてきた。これに対応するべく、特許文献1等は、正極合剤にオキシ水酸化ニッケルを混合して高負荷放電特性に優れた電池とすることを提案しており、近年ではこのようなオキシ水酸化ニッケルを正極合剤中に含んだアルカリ乾電池が実用化されて広く普及するに到っている。   An alkaline battery is an inside-out in which a cylindrical manganese dioxide positive electrode mixture pellet is placed in close contact with the positive electrode case in a positive electrode case that also serves as a positive electrode terminal, and a gelatinous zinc negative electrode is placed in the center via a separator. Has a mold structure. With the spread of digital devices in recent years, the load power of devices using these batteries has gradually increased, and batteries having excellent high load discharge performance have been desired. In order to cope with this, Patent Document 1 and the like have proposed that nickel oxyhydroxide is mixed with the positive electrode mixture to form a battery having excellent high-load discharge characteristics. In recent years, such nickel oxyhydroxide is proposed. Alkaline dry batteries that contain lithium in the positive electrode mixture have been put into practical use and have come into widespread use.

ここで、上記のアルカリ乾電池で用いるオキシ水酸化ニッケルは、特許文献2のようなアルカリ蓄電池用途として使用されてきた球状ないしは鶏卵状の水酸化ニッケルを、次亜塩素酸ナトリウム水溶液等の酸化剤で酸化したものを使用するのが一般的である。この際、原料の球状水酸化ニッケルは嵩密度(タップ密度)の大きいβ型のものを用い、これを酸化剤処理でβ型の球状オキシ水酸化ニッケルに変換し、電池内への高充填を志向する。   Here, the nickel oxyhydroxide used in the alkaline dry battery described above is a spherical or egg-shaped nickel hydroxide that has been used for alkaline storage battery applications as in Patent Document 2 with an oxidizing agent such as an aqueous sodium hypochlorite solution. It is common to use an oxidized one. At this time, the spherical nickel hydroxide used is a β-type having a large bulk density (tap density), and this is converted into a β-type spherical nickel oxyhydroxide by oxidant treatment, so that high filling into the battery is achieved. Oriented.

一方、負極は多くの場合、アルカリマンガン乾電池の場合と同様、特許文献3等で知られているアルミニウム、ビスマス、インジウム等を少量含有させた亜鉛合金粉末を、ゲル化剤のポリアクリル酸ナトリウム、アルカリ電解液とともに混合して作製したゲル状負極を用いる場合が多い。ここで、亜鉛負極の耐食性向上という観点で、各種亜鉛合金組成の検討や、粒度の適正化(例えば特許文献4)、各種添加剤の検討(例えば特許文献5)が多くなされている。また、電解液に関する検討は少ないが、特許文献6では、(空気電池用途ではあるが)ゲル状負極中に水酸化リチウムを0.1重量%〜1重量%の割合で含有させて耐食性を高めることが提案されている。
特開昭57−72266号公報 特公平4−80513号公報 特開平5−166507公報 特開2002−270164号公報 特許第3006269号公報 特開2000−82503号公報
On the other hand, in many cases, the negative electrode is made of zinc alloy powder containing a small amount of aluminum, bismuth, indium or the like known in Patent Document 3 as in the case of the alkaline manganese dry battery, sodium polyacrylate as a gelling agent, In many cases, a gelled negative electrode prepared by mixing with an alkaline electrolyte is used. Here, from the viewpoint of improving the corrosion resistance of the zinc negative electrode, many studies have been made on various zinc alloy compositions, particle size optimization (for example, Patent Document 4), and various additives (for example, Patent Document 5). Further, although there are few studies on the electrolytic solution, in Patent Document 6, lithium hydroxide is contained in the gelled negative electrode in a proportion of 0.1% by weight to 1% by weight (although it is used for an air battery) to improve the corrosion resistance. It has been proposed.
JP-A-57-72266 Japanese Patent Publication No. 4-80513 JP 5-166507 A JP 2002-270164 A Japanese Patent No. 3006269 JP 2000-82503 A

上述のようなオキシ水酸化ニッケル含有アルカリ乾電池は、通常のアルカリ乾電池に比較すれば高負荷特性に優れるが、それでも、その特性は完全とは言い難い。特に、デジタルスチルカメラのような高負荷域のパルス放電を繰り返す用途では、パルス回数が増えるにつれて放電時の電圧低下度合いが増大する。このため、機器に取り付けられた電池残量表示がうまく機能しなかったり、使用中の機器が突然停止するといった問題が発生しやすい。   The nickel oxyhydroxide-containing alkaline dry battery as described above is excellent in high load characteristics as compared with a normal alkaline dry battery, but the characteristics are still not perfect. In particular, in an application that repeats pulse discharge in a high load region such as a digital still camera, the degree of voltage drop during discharge increases as the number of pulses increases. For this reason, it is easy to generate the problem that the battery remaining amount display attached to the device does not function well or the device in use suddenly stops.

一例として、既存のオキシ水酸化ニッケル含有アルカリ乾電池で、デジタルスチルカメラを想定したパルス放電試験を行った結果(放電曲線)を図3に示す。この試験では、20℃雰囲気で電池(1セル)を650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間放電させるというサイクルを連続して繰り返しており、650mWの放電がカメラの電源を入れて液晶モニター等を駆動させている状態、1500mWの放電がカメラのフラッシュ撮影を行った状態を模擬している。   As an example, FIG. 3 shows the result (discharge curve) of a pulse discharge test assuming a digital still camera with an existing nickel oxyhydroxide-containing alkaline battery. In this test, a cycle of discharging a battery (1 cell) at a constant power of 650 mW for 28 seconds in a 20 ° C. atmosphere and then discharging for 2 seconds at a constant power of 1500 mW was continuously repeated. The state where the power is turned on and the liquid crystal monitor or the like is driven, and the discharge of 1500 mW simulates the state where the flash photography of the camera was performed.

図3より、サイクルの初期では1500mWパルス放電時の電圧低下が80mV程度であるのに対し、サイクルを繰り返すと電圧低下が300mV程度に増大する。このような挙動であると、サイクル末期において、機器に取り付けられた電池残量の表示(主に、650mW放電の際の電池電圧や開路状態の電池電圧を検知する)は高い状態であるのに対し、1500mW放電(カメラ撮影)を行うと機器のカット電圧以下の電池電圧となるため、突然機器が停止するといった現象が引き起こされる。つまり、ここではパルス放電サイクルの初期から末期に至るまで、1500mW放電時の電圧低下が大きくならないようにすることが重要とされる。   From FIG. 3, the voltage drop at the time of 1500 mW pulse discharge is about 80 mV at the beginning of the cycle, whereas when the cycle is repeated, the voltage drop increases to about 300 mV. With this behavior, the display of the remaining battery level attached to the device at the end of the cycle (mainly detecting the battery voltage during 650 mW discharge and the battery voltage in the open state) is high. On the other hand, when 1500 mW discharge (camera shooting) is performed, the battery voltage becomes equal to or lower than the cut voltage of the device, causing a phenomenon that the device suddenly stops. That is, it is important here that the voltage drop during 1500 mW discharge does not increase from the beginning to the end of the pulse discharge cycle.

以上のような課題を鑑み、本発明は、オキシ水酸化ニッケルと二酸化マンガンを含有した正極、亜鉛を活物質としたゲル状負極、アルカリ電解液を備え、前記アルカリ電解液がLiOHを添加したKOH水溶液であることを特徴とするアルカリ乾電池である。   In view of the problems as described above, the present invention includes a positive electrode containing nickel oxyhydroxide and manganese dioxide, a gelled negative electrode using zinc as an active material, and an alkaline electrolyte, and the alkaline electrolyte includes KOH to which LiOH is added. An alkaline battery characterized by being an aqueous solution.

本発明のアルカリ乾電池では、アルカリ電解液中に添加したLiOHの効果によってパルス放電時の正極、負極両方の分極度合いが、特に放電サイクル末期に大幅に低減される。このため、高負荷のパルス放電を繰り返した場合に、パルス放電時の電圧低下が大きくなる現象を緩和することができる。   In the alkaline dry battery of the present invention, the degree of polarization of both the positive electrode and the negative electrode during pulse discharge is greatly reduced, particularly at the end of the discharge cycle, due to the effect of LiOH added to the alkaline electrolyte. For this reason, it is possible to mitigate the phenomenon that the voltage drop during pulse discharge becomes large when high-load pulse discharge is repeated.

なおここで、正極の分極度合いが低減するのは、オキシ水酸化ニッケル結晶中にLi+が取り込まれて格子欠陥濃度が増大し、イオン伝導度が増すためと推察される。また、負極の分極度合いが低減するのは、放電に伴って亜鉛合金表面に形成される酸化物の皮膜内にLi+が取り込まれ、皮膜のイオン伝導度が高まるためと考えられる。 Here, it is presumed that the degree of polarization of the positive electrode is reduced because Li + is taken into the nickel oxyhydroxide crystal, the lattice defect concentration is increased, and the ionic conductivity is increased. The reason why the degree of polarization of the negative electrode is reduced is thought to be that Li + is taken into the oxide film formed on the surface of the zinc alloy with discharge, and the ionic conductivity of the film is increased.

本発明によると、オキシ水酸化ニッケル含有アルカリ乾電池で高負荷のパルス放電を繰り返した場合に、パルス放電サイクル末期の電圧低下が大きくなる現象を緩和することができる。従って、前述のような、機器(デジタルスチルカメラ等)に取り付けられた電池残量表示がうまく機能しなかったり、使用中の機器が突然停止するといった問題を回避することが可能となる。   According to the present invention, when a high load pulse discharge is repeated in a nickel oxyhydroxide-containing alkaline battery, the phenomenon that the voltage drop at the end of the pulse discharge cycle is increased can be alleviated. Therefore, it is possible to avoid the problems such as the battery remaining amount display attached to the device (such as a digital still camera) not functioning well or the device being used suddenly stops as described above.

本発明は、オキシ水酸化ニッケルと二酸化マンガンを含有した正極、亜鉛を活物質としたゲル状負極、アルカリ電解液を備え、前記アルカリ電解液がLiOHを添加したKOH水溶液であることを特徴とするアルカリ乾電池である。   The present invention includes a positive electrode containing nickel oxyhydroxide and manganese dioxide, a gelled negative electrode using zinc as an active material, and an alkaline electrolyte, and the alkaline electrolyte is a KOH aqueous solution to which LiOH is added. It is an alkaline battery.

ここで、正極合剤中のオキシ水酸化ニッケルの比率については、正極合剤全体に対して10〜80重量%の範囲が好適である。二酸化マンガンとオキシ水酸化ニッケルとを比較した場合、二酸化マンガンの方が単位重量あたりの容量(mAh/g)やケース内への充填性、材料価格といった点では優れるが、一方で放電電圧、強負荷放電特性についてはオキシ水酸化ニッケルの方が優れる。電池全体としての特性や価格のバランスを考えると、正極合剤中のオキシ水酸化ニッケルの混合比率を上記範囲にするのが最も好ましい。   Here, about the ratio of the nickel oxyhydroxide in a positive mix, the range of 10 to 80 weight% is suitable with respect to the whole positive mix. When comparing manganese dioxide and nickel oxyhydroxide, manganese dioxide is superior in terms of capacity per unit weight (mAh / g), filling property in the case, and material price. For load discharge characteristics, nickel oxyhydroxide is superior. Considering the balance of characteristics and price as a whole battery, it is most preferable to set the mixing ratio of nickel oxyhydroxide in the positive electrode mixture within the above range.

さらに、アルカリ電解液の全量(ゲル状負極や正極合剤中の電解液を含む)に含まれるLiOHの量は0.1〜2重量%の範囲が好適である。アルカリ電解液中のLiOHの量について、LiOHの量がアルカリ電解液全量の0.1重量%未満であると、正・負極の分極を低減する効果が低下する。また、LiOH量がアルカリ電解液全量の2重量%よりも多くなると、電解液の電気伝導度の低下等が起こる。したがって、アルカリ電解液の全量に含まれるLiOHの量を0.1〜2重量%の範囲とすることが、正極、負極両方の分極度合いをより効果的に低減することが可能であり好ましい。   Furthermore, the amount of LiOH contained in the total amount of the alkaline electrolyte (including the electrolyte in the gelled negative electrode and the positive electrode mixture) is preferably in the range of 0.1 to 2% by weight. Regarding the amount of LiOH in the alkaline electrolyte, if the amount of LiOH is less than 0.1% by weight of the total amount of the alkaline electrolyte, the effect of reducing the polarization of the positive and negative electrodes is lowered. On the other hand, when the LiOH amount exceeds 2% by weight of the total amount of the alkaline electrolyte, the electrical conductivity of the electrolyte is lowered. Therefore, it is preferable that the amount of LiOH contained in the total amount of the alkaline electrolyte is in the range of 0.1 to 2% by weight because the degree of polarization of both the positive electrode and the negative electrode can be more effectively reduced.

また本発明は、オキシ水酸化ニッケルと二酸化マンガンを含有した正極、少なくともアルミニウムを含有した亜鉛合金を活物質としたゲル状負極、アルカリ電解液を備え、前記アルカリ電解液がLiOHとアルミニウム化合物を添加したKOH水溶液であることを特徴とするアルカリ乾電池である。   The present invention also includes a positive electrode containing nickel oxyhydroxide and manganese dioxide, a gelled negative electrode using at least a zinc alloy containing aluminum as an active material, and an alkaline electrolyte, wherein the alkaline electrolyte is added with LiOH and an aluminum compound. It is an alkaline dry battery characterized by being a KOH aqueous solution.

亜鉛合金中のアルミニウムは、合金表面を平滑化させて耐食性を向上させる効果を有する。従って、実用的なアルカリ乾電池の保存特性(貯蔵性)を考慮すると、少なくともアルミニウムを含有した亜鉛合金を使用するのが好ましい。そして、(詳細なメカニズムは判明していないが、)このようなアルミニウムを含有した亜鉛合金を負極とし、アルカリ電解液中にLiOHとアルミニウム化合物(水酸化アルミニウム、酸化アルミニウム等)とを添加したKOH水溶液を使用すると、前述のような高負荷パルス放電の改善効果を十分に得つつ、電池の保存特性についても大幅に高めることが可能となる。   Aluminum in the zinc alloy has the effect of smoothing the alloy surface and improving the corrosion resistance. Therefore, in consideration of the storage characteristics (storability) of a practical alkaline battery, it is preferable to use a zinc alloy containing at least aluminum. Then, although the detailed mechanism is not known, such a zinc alloy containing aluminum is used as a negative electrode, and KOH in which LiOH and an aluminum compound (aluminum hydroxide, aluminum oxide, etc.) are added to an alkaline electrolyte. When the aqueous solution is used, the storage characteristics of the battery can be greatly enhanced while sufficiently obtaining the improvement effect of the high-load pulse discharge as described above.

この際、正極合剤中のオキシ水酸化ニッケルの比率については、正極合剤全体に対して10〜80重量%の範囲が好適である。二酸化マンガンとオキシ水酸化ニッケルとを比較した場合、二酸化マンガンの方が単位重量あたりの容量(mAh/g)やケース内への充填性、材料価格といった点では優れるが、一方で放電電圧、強負荷放電特性についてはオキシ水酸化ニッケルの方が優れる。電池全体としての特性や価格のバランスを考えると、正極合剤中のオキシ水酸化ニッケルの比率が正極合剤全体に対して10〜80重量%となるようにするのがより好ましい。   At this time, the ratio of nickel oxyhydroxide in the positive electrode mixture is preferably in the range of 10 to 80% by weight with respect to the whole positive electrode mixture. When comparing manganese dioxide and nickel oxyhydroxide, manganese dioxide is superior in terms of capacity per unit weight (mAh / g), filling property in the case, and material price. For load discharge characteristics, nickel oxyhydroxide is superior. Considering the balance of characteristics and price as the whole battery, it is more preferable that the ratio of nickel oxyhydroxide in the positive electrode mixture is 10 to 80% by weight with respect to the whole positive electrode mixture.

さらに、前記アルカリ電解液の全量(ゲル状負極や正極合剤中の電解液を含む)に含まれるLiOHおよびアルミニウム化合物の量を、それぞれ0.1〜2重量%および0.01〜2重量%の範囲とするのが好適である。これは、アルミニウム化合物(水酸化アルミニウム、酸化アルミニウム等)の量について、アルミニウム化合物の量がアルカリ電解液全体の0.01重量%未満であると保存劣化を抑制する効果が低下し、また、アルミニウム化合物の量が2重量%を超えると、電池保存後に電解液の伝導度が下がる等の弊害が発生しやすいためであり、従って、アルカリ電解液に含まれるアルミニウム化合物の量をアルカリ電解液全体の0.01〜2重量%の範囲に設定することが、初度および保存後電池の特性を高める観点からより好ましい。   Furthermore, the amount of LiOH and aluminum compound contained in the total amount of the alkaline electrolyte (including the electrolyte in the gelled negative electrode and the positive electrode mixture) is 0.1 to 2% by weight and 0.01 to 2% by weight, respectively. It is suitable to be in the range. This is because the amount of aluminum compound (aluminum hydroxide, aluminum oxide, etc.) is less than 0.01% by weight of the total amount of the alkaline electrolyte, and the effect of suppressing storage deterioration is reduced. This is because if the amount of the compound exceeds 2% by weight, adverse effects such as a decrease in the conductivity of the electrolytic solution after storage of the battery are likely to occur. Therefore, the amount of the aluminum compound contained in the alkaline electrolytic solution is less than the total amount of the alkaline electrolytic solution. It is more preferable to set the content in the range of 0.01 to 2% by weight from the viewpoint of improving the characteristics of the battery for the first time and after storage.

以下、本発明の実施例について詳細に説明する。   Examples of the present invention will be described in detail below.

(実施例1)
(オキシ水酸化ニッケルの作製)
攪拌翼を備えた反応槽に、所定の仕込み比率の硫酸ニッケル(II)、硫酸亜鉛(II)、硫酸コバルト(II)の混合水溶液、及び水酸化ナトリウム水溶液、アンモニア水を槽内pHが一定となるようにポンプで定量供給し、十分に攪拌を続けることで亜鉛・コバルトを少量固溶した水酸化ニッケルを析出・成長させた。続いて、得られた粒子を上記とは別の水酸化ナトリウム水溶液中で加熱して硫酸根を除去した後、水洗・真空乾燥を行って原料水酸化ニッケル(組成:Ni0.95Zn0.03Co0.02(OH)2)とした。こうして作製した原料水酸化ニッケルはβ型の結晶構造を有することを、粉末X線回折測定で確認した。
Example 1
(Production of nickel oxyhydroxide)
In a reaction vessel equipped with a stirring blade, a mixed aqueous solution of nickel sulfate (II), zinc (II) sulfate, cobalt (II) sulfate, an aqueous sodium hydroxide solution, and aqueous ammonia at a predetermined charging ratio are set to a constant pH in the vessel. As a result, a fixed amount was supplied with a pump and nickel hydroxide in which a small amount of zinc / cobalt was dissolved was precipitated and grown by continuing sufficient stirring. Subsequently, the obtained particles were heated in a sodium hydroxide aqueous solution different from the above to remove sulfate radicals, then washed with water and vacuum dried to produce raw material nickel hydroxide (composition: Ni 0.95 Zn 0.03 Co 0.02 ( OH) 2 ). It was confirmed by powder X-ray diffraction measurement that the raw material nickel hydroxide thus prepared had a β-type crystal structure.

次に、上記水酸化ニッケルの200gを0.1mol/Lの水酸化ナトリウム水溶液1L中に投入し、酸化剤の次亜塩素酸ナトリウム水溶液(有効塩素濃度:10wt%)を十分量加えて攪拌してオキシ水酸化ニッケルに変換した。得られた粒子は十分に水洗後、60℃の真空乾燥(24時間)を行った。このオキシ水酸化ニッケルはβ型の結晶構造を有し、体積基準の平均粒子径が10μm、タップ密度(300回)が2.35g/cm3、BET比表面積が14m2/gであった。 Next, 200 g of the above nickel hydroxide was put into 1 L of a 0.1 mol / L sodium hydroxide aqueous solution, and a sufficient amount of an oxidizing agent sodium hypochlorite aqueous solution (effective chlorine concentration: 10 wt%) was added and stirred. To nickel oxyhydroxide. The obtained particles were sufficiently washed with water and then vacuum dried at 60 ° C. (24 hours). This nickel oxyhydroxide had a β-type crystal structure, had a volume-based average particle size of 10 μm, a tap density (300 times) of 2.35 g / cm 3 , and a BET specific surface area of 14 m 2 / g.

(アルカリ乾電池の作製)
上記のオキシ水酸化ニッケル粉末を用いてアルカリ乾電池の作製を行った。図1は本発明で用いたアルカリ乾電池の一部を断面にした正面図である。正極ケース1は、ニッケルメッキされた鋼板からなる。この正極ケース1の内部には、黒鉛塗装膜2が形成されている。この正極ケース1の内部に、二酸化マンガンとオキシ水酸化ニッケルを主成分として含む短筒状の正極合剤ペレット3を複数個挿入し、ケース内で再加圧することによってケース1の内面に密着させる。そして、この正極合剤ペレット3の内側にセパレ−タ4および絶縁キャップ5を挿入した後、セパレ−タ4と正極合剤ペレット3を湿潤させる目的で電解液を注液する。電解液には、例えば40重量%の水酸化カリウム水溶液を用いる。注液後、セパレータ4の内側にゲル状負極6を充填する。ゲル状負極6は、例えばゲル化剤のポリアクリル酸ナトリウム、アルカリ電解液、および負極活物質の亜鉛粉末からなる。次に、樹脂製封口板7、負極端子を兼ねる底板8、および絶縁ワッシャ9と一体化された負極集電体10を、ゲル状負極6に差し込む。そして正極ケース1の開口端部を封口板7の端部を介して底板8の周縁部にかしめつけて正極ケース1の開口部を密着する。次いで、正極ケース1の外表面に外装ラベル11を被覆する。こうしてアルカリ乾電池が完成する。
(Preparation of alkaline battery)
An alkaline battery was prepared using the above nickel oxyhydroxide powder. FIG. 1 is a front view, partly in section, of an alkaline battery used in the present invention. The positive electrode case 1 is made of a nickel-plated steel plate. A graphite coating film 2 is formed inside the positive electrode case 1. A plurality of short cylindrical positive electrode mixture pellets 3 containing manganese dioxide and nickel oxyhydroxide as main components are inserted into the positive electrode case 1 and are re-pressurized in the case to be brought into close contact with the inner surface of the case 1. . Then, after the separator 4 and the insulating cap 5 are inserted inside the positive electrode mixture pellet 3, an electrolytic solution is injected for the purpose of wetting the separator 4 and the positive electrode mixture pellet 3. For example, a 40 wt% potassium hydroxide aqueous solution is used as the electrolytic solution. After the injection, the gelled negative electrode 6 is filled inside the separator 4. The gelled negative electrode 6 is made of, for example, sodium polyacrylate as a gelling agent, an alkaline electrolyte, and zinc powder as a negative electrode active material. Next, the negative electrode current collector 10 integrated with the resin sealing plate 7, the bottom plate 8 also serving as the negative electrode terminal, and the insulating washer 9 is inserted into the gelled negative electrode 6. Then, the opening end of the positive electrode case 1 is caulked to the peripheral portion of the bottom plate 8 via the end portion of the sealing plate 7, and the opening of the positive electrode case 1 is brought into close contact. Next, the outer label 11 is coated on the outer surface of the positive electrode case 1. An alkaline battery is thus completed.

本実施例においては、まず電解二酸化マンガン、上記で作製したオキシ水酸化ニッケルおよび黒鉛を重量比50:45:5の割合で配合し、混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液の注液と、ゲル状負極(純粋な亜鉛粉末を活物質に使用)の充填を行って、図1に示す単3サイズのアルカリ乾電池(電池1)を組み立てた。この電池1では、正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液のいずれについても、36重量%のKOHと1重量%のLiOHからなるアルカリ水溶液を用いた。   In this example, first, electrolytic manganese dioxide, nickel oxyhydroxide prepared as described above, and graphite are blended at a weight ratio of 50: 45: 5, and 1 part by weight of the electrolyte is mixed with 100 parts by weight of the mixed powder. After that, the mixture was uniformly stirred and mixed with a mixer to adjust the particle size. The obtained granular material is pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, and after inserting a separator, an electrolyte solution is injected and a gelled negative electrode (using pure zinc powder as an active material) is filled. Then, an AA size alkaline dry battery (battery 1) shown in FIG. 1 was assembled. In this battery 1, an alkaline solution composed of 36% by weight KOH and 1% by weight LiOH is used for any of the electrolytic solution contained in the positive electrode mixture, the electrolytic solution injected into the separator, and the electrolytic solution contained in the gelled zinc negative electrode. An aqueous solution was used.

また、正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液をすべて37重量%のKOH単独水溶液とし、他はすべて前記と同様として、比較用の電池2を作製した。   In addition, the electrolytic solution to be included in the positive electrode mixture, the electrolytic solution to be poured into the separator, and the electrolytic solution to be included in the gelled zinc negative electrode are all 37% by weight KOH single aqueous solution. Battery 2 was produced.

(電池の評価)
上記で作製した電池1、電池2(初度の状態)について、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。この放電パターンは、デジタルスチルカメラの用途を想定したもので、650mW放電がカメラの電源を入れて液晶モニター等を駆動させた状態、1500mW放電がカメラのフラッシュ撮影を行った状態を模擬している。ここで得られた放電曲線を図2(電池1)および図3(電池2)に、パルス放電サイクル数、ならびに1サイクル時と最終サイクル(1.05V到達)時の1500mWパルス放電の電圧低下量(図2、図3中にも表示)をまとめて表1に示す。
(Battery evaluation)
About the battery 1 and the battery 2 (the initial state) produced above, a cycle of discharging at a constant power of 650 mW for 28 seconds in an atmosphere at 20 ° C. and then performing pulse discharge for 2 seconds at a constant power of 1500 mW is performed by 1500 mW pulse discharge. The process was repeated until the lower limit voltage of 1.05 V was reached. This discharge pattern is intended for use with a digital still camera, and simulates a state in which a 650 mW discharge turns on the camera and drives a liquid crystal monitor or the like, and a 1500 mW discharge performs flash photography of the camera. . The discharge curves obtained here are shown in FIG. 2 (Battery 1) and FIG. 3 (Battery 2). The number of pulse discharge cycles and the voltage drop amount of 1500 mW pulse discharge at the 1st cycle and the final cycle (1.05V reached). Table 1 summarizes (also shown in FIGS. 2 and 3).

Figure 2006221831
Figure 2006221831

電解液中にLiOHを添加した電池1は、電解液中にLiOHを含まない電池2よりも1.05V到達までのサイクル数が多く、最終サイクル時(放電末期)のパルス放電の電圧低下量が少ないことがわかる。これは、実際のデジタルスチルカメラの用途では、電池1本あたりの可能撮影枚数が多く、かつ、使用中に機器が突然停止するといった問題が起こりにくいことに対応する。   The battery 1 in which LiOH is added to the electrolytic solution has a larger number of cycles to reach 1.05 V than the battery 2 that does not contain LiOH in the electrolytic solution, and the voltage drop amount of pulse discharge at the final cycle (end of discharge) is larger. I understand that there are few. This corresponds to the fact that in actual digital still camera applications, the number of possible shots per battery is large, and the problem that the device suddenly stops during use is unlikely to occur.

上記の現象について定性的な解釈を行うため、初度の電池1、電池2それぞれの正極ケースの一部に孔を設けて塩橋で電池外の水銀/酸化水銀参照極に液絡を取り、パルス放電サイクルを行った際の正・負極の電位変化を測定した。得られた電位曲線を図4(電池1)および図5(電池2)に示す。電池1では、電池2よりもサイクル末期における正極・負極の分極度合いが共に低減しており、この両方の効果によって特性向上がなされたことが確認できる。   In order to qualitatively interpret the above phenomenon, a hole is formed in a part of the positive electrode case of each of the first battery 1 and the battery 2, and a liquid bridge is formed at the mercury / mercury oxide reference electrode outside the battery through a salt bridge. The potential change of the positive electrode and the negative electrode during the discharge cycle was measured. The obtained potential curve is shown in FIG. 4 (battery 1) and FIG. 5 (battery 2). In the battery 1, the degree of polarization of the positive electrode and the negative electrode at the end of the cycle is lower than that in the battery 2, and it can be confirmed that the characteristics are improved by both effects.

正極・負極の分極度合いの低減は、両活物質と電解液中に添加したLiOHとの相互作用による。正極の分極度合いが低減するのは、オキシ水酸化ニッケル結晶中にLi+が取り込まれて格子欠陥濃度が増大し、イオン伝導度が増すためと推察される。また、負極の分極度合いが低減するのは、放電に伴って亜鉛合金表面に形成される酸化物の皮膜内にLi+が取り込まれ、皮膜のイオン伝導度が高まるためと考えられる。 The reduction in the degree of polarization of the positive electrode and the negative electrode is due to the interaction between both active materials and LiOH added to the electrolyte. The reason for the decrease in the degree of polarization of the positive electrode is presumed to be that Li + is incorporated into the nickel oxyhydroxide crystal, the lattice defect concentration increases, and the ionic conductivity increases. The reason why the degree of polarization of the negative electrode is reduced is thought to be that Li + is taken into the oxide film formed on the surface of the zinc alloy with discharge, and the ionic conductivity of the film is increased.

(実施例2)
ここでは、正極合剤中の二酸化マンガンとオキシ水酸化ニッケルの配合比率に関する検討を行った。電解二酸化マンガン、実施例1で作製したオキシ水酸化ニッケルおよび黒鉛を表2中に示したような重量比率で混合し、混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液の注液と、ゲル状負極(純粋な亜鉛粉末を活物質に使用)の充填を行って、各々の正極合剤に対応する単3サイズのアルカリ乾電池(電池X1〜電池X10)を組み立てた。なお、電池X1〜電池X10で、正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液はいずれについても、36重量%のKOHと1重量%のLiOHからなるアルカリ水溶液を用いた。
(Example 2)
Here, the compounding ratio of manganese dioxide and nickel oxyhydroxide in the positive electrode mixture was examined. Electrolytic manganese dioxide, nickel oxyhydroxide prepared in Example 1 and graphite were mixed at a weight ratio as shown in Table 2, and 1 part by weight of the electrolyte was mixed with 100 parts by weight of the mixed powder. The mixture was uniformly stirred and mixed to adjust the particle size to a constant particle size. The obtained granular material is pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, and after inserting a separator, an electrolyte solution is injected and a gelled negative electrode (using pure zinc powder as an active material) is filled. AA size alkaline batteries (battery X1 to battery X10) corresponding to each positive electrode mixture were assembled. In each of the batteries X1 to X10, the electrolyte solution to be included in the positive electrode mixture, the electrolyte solution to be injected into the separator, and the electrolyte solution to be included in the gelled zinc negative electrode were each 36% by weight KOH and 1% by weight. An alkaline aqueous solution made of LiOH was used.

こうして作製した10種類の電池(初度の状態)について実施例1の場合と同様に、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。また、デジタルスチルカメラ以外の用途も考慮して、20℃で100mA(低負荷)の定電流で連続放電させ、電池電圧が0.9Vに至るまでの放電容量を測定した。得られた結果(100mA放電に関しては、電池X5の放電容量を100として規格化)を表2中に示す。   In the same manner as in Example 1, the 10 types of batteries thus prepared (initial state) were discharged at 20 ° C. with a constant power of 650 mW for 28 seconds and then pulse-discharged with a constant power of 1500 mW for 2 seconds. The cycle was repeated until the lower limit voltage of 1500 mW pulse discharge reached 1.05V. In consideration of uses other than digital still cameras, the battery was continuously discharged at a constant current of 100 mA (low load) at 20 ° C., and the discharge capacity until the battery voltage reached 0.9 V was measured. Table 2 shows the obtained results (regarding 100 mA discharge, the discharge capacity of the battery X5 is normalized to 100).

Figure 2006221831
Figure 2006221831

正極合剤中のオキシ水酸化ニッケルの比率が80重量%よりも大(電池X9、電池X10)になると、電解液中にLiOHを含まない電池(実施例1中の電池2)よりは良好なパルス特性を与えるものの、100mA(低負荷)の放電容量が、電池X1〜電池X8よりも大きく低下する。一方で、オキシ水酸化ニッケルの比率が10重量%未満(電池X1)になると、電解液中にLiOHを含まない電池(実施例1中の電池2)よりは良好だが、電池X2〜X10よりもパルス放電サイクル特性が大きく低下することがわかる。この結果から、本発明では正極合剤中のオキシ水酸化ニッケルの比率を10〜80重量%にするのがより好ましいと推察される。   When the ratio of nickel oxyhydroxide in the positive electrode mixture is larger than 80% by weight (battery X9, battery X10), it is better than a battery not containing LiOH in the electrolyte (battery 2 in Example 1). Although giving pulse characteristics, the discharge capacity of 100 mA (low load) is significantly lower than that of the batteries X1 to X8. On the other hand, when the ratio of nickel oxyhydroxide is less than 10% by weight (battery X1), it is better than the battery not containing LiOH in the electrolyte (battery 2 in Example 1), but more than batteries X2 to X10. It can be seen that the pulse discharge cycle characteristics are greatly reduced. From this result, it is presumed that in the present invention, the ratio of nickel oxyhydroxide in the positive electrode mixture is preferably 10 to 80% by weight.

(実施例3)
続いて、電解液中に添加するLiOH量の検討を行った。表3中に示したような組成のKOHとLiOHとからなるアルカリ電解液y1〜y12を用意し、同時に、これらをそれぞれ用いた12種類のゲル状負極(純粋な亜鉛粉末を活物質に使用)も作製した。
(Example 3)
Subsequently, the amount of LiOH added to the electrolytic solution was examined. Alkaline electrolytes y1 to y12 composed of KOH and LiOH having the composition shown in Table 3 were prepared, and at the same time, 12 types of gelled negative electrodes using these respectively (using pure zinc powder as an active material) Also made.

電解二酸化マンガン、実施例1で作製したオキシ水酸化ニッケルおよび黒鉛を重量比50:45:5の割合で混合し、混合粉100重量部に対して電解液Y1の1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液y1の注液と、ゲル状負極(電解液y1に対応するもの)の充填を行って、単3サイズのアルカリ乾電池(電池Y1)を組み立てた。   Electrolytic manganese dioxide, nickel oxyhydroxide prepared in Example 1 and graphite were mixed at a weight ratio of 50: 45: 5, and after mixing 1 part by weight of electrolyte Y1 with 100 parts by weight of the mixed powder, The mixture was uniformly stirred and mixed with a mixer to regulate the particle size. The obtained granular material is pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, and after inserting a separator, an electrolyte y1 injection and a gelled negative electrode (corresponding to the electrolyte y1) are filled. AA size alkaline batteries (battery Y1) were assembled.

また上記で、正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液のすべてを電解液y1から電解液y2に変え、他はまったく同じとして、単3サイズのアルカリ乾電池(電池Y2)を作製した。以下、同様にして電解液組成を電解液y3〜電解液y12と変化させ、それぞれの電解液に対応するアルカリ電池(電池Y3〜電池Y12)を作製した。   In addition, in the above description, all of the electrolytic solution to be included in the positive electrode mixture, the electrolytic solution to be injected into the separator, and the electrolytic solution to be included in the gelled zinc negative electrode are changed from the electrolytic solution y1 to the electrolytic solution y2, and the others are exactly the same. A three-size alkaline battery (battery Y2) was produced. Thereafter, the electrolytic solution composition was changed in the same manner as the electrolytic solution y3 to the electrolytic solution y12, and alkaline batteries (batteries Y3 to Y12) corresponding to the respective electrolytic solutions were produced.

こうして作製した12種の電池(初度の状態)について実施例1の場合と同様に、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。得られた結果を表3中に示す。   In the same manner as in Example 1, the 12 types of batteries thus produced (initial state) were discharged at 20 ° C. for 28 seconds with a constant power of 650 mW and then pulse-discharged for 2 seconds with a constant power of 1500 mW. The cycle was repeated until the lower limit voltage of 1500 mW pulse discharge reached 1.05V. The obtained results are shown in Table 3.

Figure 2006221831
Figure 2006221831

電解液中のLiOHが0.1重量%未満の場合(電池Y1、Y7)や、電解液中のLiOHが2重量%よりも大きい場合(電池Y6、Y12)には、電解液中にLiOHを含まない電池2よりは良好であるものの、パルス放電サイクル特性の向上効果が十分には得られないことがわかる。LiOHの量が0.1重量%未満であると、その絶対量が少なすぎるために効果の度合いが少なく、また、LiOH量が2重量%よりも多くなると、電解液の電気伝導度の低下が起こったものと推察される。この結果から、本発明では電解液中のLiOHの量を0.1〜2重量%の範囲にするのがより好ましいと推察される。   When LiOH in the electrolytic solution is less than 0.1% by weight (batteries Y1, Y7), or when LiOH in the electrolytic solution is larger than 2% by weight (batteries Y6, Y12), LiOH is added to the electrolytic solution. Although it is better than the battery 2 that does not contain, it can be seen that the effect of improving the pulse discharge cycle characteristics is not sufficiently obtained. If the amount of LiOH is less than 0.1% by weight, the absolute amount is too small, and thus the degree of effect is small. If the amount of LiOH is more than 2% by weight, the electrical conductivity of the electrolytic solution is lowered. It is presumed that it happened. From this result, it is presumed that in the present invention, the amount of LiOH in the electrolytic solution is more preferably in the range of 0.1 to 2% by weight.

(実施例4)
ここでは、負極に使用する亜鉛粉末の種類、ならびに負極ゲル中の添加剤(水酸化アルミニウム)の検討を行った。亜鉛粉末として、純粋なZn(a)、Alを35ppm含有したZn(b)、Alを35ppm、Biを200ppm、Inを300ppmを含有したZn(c)の3種を、ガスアトマイズ法によって作製した。これら亜鉛粉末a〜亜鉛粉末cの粒度分布、BET比表面積はほぼ同程度となるように調整した。
Example 4
Here, the kind of zinc powder used for the negative electrode and the additive (aluminum hydroxide) in the negative electrode gel were examined. As zinc powder, three kinds of Zn (c) containing pure Zn (a), Zn (b) containing 35 ppm of Al, 35 ppm of Al, 200 ppm of Bi, and 300 ppm of In were prepared by a gas atomizing method. The particle size distribution and the BET specific surface area of these zinc powder a to zinc powder c were adjusted to be approximately the same.

電池の作製に際しては、正極合剤に含ませる電解液(1)、セパレータに注液する電解液(2)、ゲル状亜鉛負極(3)について、表4に示す組み合わせで変化させた。電解二酸化マンガン、実施例1で作製したオキシ水酸化ニッケルおよび黒鉛を重量比50:45:5の割合で混合し、混合粉100重量部に対して電解液(1)の1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液(2)の注液と、ゲル状負極(3)の充填を行って、表4の組み合わせに該当する単3サイズのアルカリ乾電池(電池A1〜電池A3、電池B1〜電池B3、電池C1〜電池C3)を組み立てた。なお、電池A3、電池B3、電池C3では、ゲル状負極に添加する水酸化アルミニウムの量が(1〜3)内の電解液(すなわち、電池内に含まれるすべての電解液)の総重量に対して1重量%となるようにした。   In producing the battery, the electrolyte solution (1) contained in the positive electrode mixture, the electrolyte solution (2) injected into the separator, and the gelled zinc negative electrode (3) were changed in the combinations shown in Table 4. Electrolytic manganese dioxide, nickel oxyhydroxide prepared in Example 1 and graphite were mixed at a weight ratio of 50: 45: 5, and 1 part by weight of the electrolytic solution (1) was mixed with 100 parts by weight of the mixed powder. Thereafter, the mixture was uniformly stirred and mixed with a mixer to adjust the particle size to a constant particle size. The obtained granular material was pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, and after inserting the separator, the electrolyte solution (2) was injected and the gelled negative electrode (3) was filled. AA size alkaline batteries (battery A1 to battery A3, battery B1 to battery B3, battery C1 to battery C3) corresponding to the combinations were assembled. In addition, in the battery A3, the battery B3, and the battery C3, the amount of aluminum hydroxide added to the gelled negative electrode is equal to the total weight of the electrolyte solution in (1-3) (that is, all electrolyte solutions contained in the battery). On the other hand, the content was 1% by weight.

Figure 2006221831
Figure 2006221831

こうして作製した9種の電池(初度の状態)について実施例1の場合と同様に、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。また、実用的なアルカリ乾電池の保存特性(貯蔵性)も考慮して、ここでは、これら9種の電池を45℃雰囲気下で1ヶ月間保存し、その後の電池について同様のパルス放電サイクル試験を行った。結果を表5にまとめる。   In the same manner as in Example 1, the nine types of batteries thus manufactured (initial state) were discharged for 28 seconds at a constant power of 650 mW in a 20 ° C. atmosphere, and then pulse-discharged for 2 seconds at a constant power of 1500 mW. The cycle was repeated until the lower limit voltage of 1500 mW pulse discharge reached 1.05V. In consideration of the storage characteristics (storability) of practical alkaline batteries, these nine batteries are stored in a 45 ° C. atmosphere for one month, and the same pulse discharge cycle test is performed on the subsequent batteries. went. The results are summarized in Table 5.

Figure 2006221831
Figure 2006221831

初度の電池では、亜鉛粉の種類に関わらず、電解液中にLiOHを添加したもの(電池A2、電池A3、電池B2、電池B3、電池C2、電池C3)でほぼ同等の高い特性が得られる。これは、実施例1で記したように、正・負極活物質と電解液中に添加したLiOHとの相互作用による。正極の分極度合いが低減するのは、オキシ水酸化ニッケル結晶中にLi+が取り込まれて格子欠陥濃度が増大し、イオン伝導度が増すためと推察される。また、負極の分極度合いが低減するのは、放電に伴って亜鉛合金表面に形成される酸化物の皮膜内にLi+が取り込まれ、皮膜のイオン伝導度が高まるためと考えられる。 In the first battery, regardless of the type of zinc powder, almost the same high characteristics can be obtained by adding LiOH to the electrolyte (battery A2, battery A3, battery B2, battery B3, battery C2, battery C3). . As described in Example 1, this is due to the interaction between the positive and negative electrode active materials and LiOH added to the electrolytic solution. The reason for the decrease in the degree of polarization of the positive electrode is presumed to be that Li + is incorporated into the nickel oxyhydroxide crystal, the lattice defect concentration increases, and the ionic conductivity increases. The reason why the degree of polarization of the negative electrode is reduced is thought to be that Li + is taken into the oxide film formed on the surface of the zinc alloy with discharge, and the ionic conductivity of the film is increased.

また、保存後の電池では、Alを含有させた亜鉛粉を用いて、ゲル状負極にも水酸化アルミニウムを添加した系(電池B3、電池C3)で特性が最も高く、Alを含有しない亜鉛粉を用いた系(電池A2、電池A3)や、ゲル状負極に水酸化アルミニウムを添加しない系(電池B2、電池C2)、電解液にLiOHを含まない系(電池B1、電池C1)では、保存劣化の抑制度合いが少ない。そして、上記いずれの添加もいっさい含んでいない系(電池A1)の特性低下が最も顕著となる。   Moreover, in the battery after storage, the zinc powder containing Al is the highest in the system (battery B3, battery C3) in which aluminum hydroxide is also added to the gelled negative electrode, and the zinc powder does not contain Al. In a system using B2 (battery A2, battery A3), a system in which aluminum hydroxide is not added to the gelled negative electrode (battery B2, battery C2), or a system not containing LiOH in the electrolyte (battery B1, battery C1) There is little suppression of deterioration. And the characteristic fall of the system (battery A1) which does not contain any said addition becomes the most remarkable.

ここで、電池B3、電池C3の特性が高く維持されるのは、亜鉛合金中のアルミニウムが合金表面を平滑化させる点、および、亜鉛合金表面に、水酸化アルミニウムに由来するAl含有酸化物の良質な保護皮膜が形成される点とが相俟って、保存時の亜鉛粉の耐食性が最大限に高められたためと思われる。   Here, the characteristics of the battery B3 and the battery C3 are maintained high because the aluminum in the zinc alloy smoothes the surface of the alloy and the surface of the zinc alloy has an Al-containing oxide derived from aluminum hydroxide. This seems to be due to the fact that the corrosion resistance of the zinc powder during storage was maximized in combination with the formation of a good quality protective film.

このように、保存後のパルス放電サイクル特性の維持という点まで加味すると、本発明においては、負極に少なくともアルミニウムを含有した亜鉛合金を使用し、アルカリ電解液にLiOHとアルミニウム化合物(水酸化アルミニウム等)を添加したKOH水溶液を使用することが、最も好ましい。   Thus, taking into account the maintenance of the pulse discharge cycle characteristics after storage, in the present invention, a zinc alloy containing at least aluminum is used for the negative electrode, and LiOH and an aluminum compound (such as aluminum hydroxide) are used for the alkaline electrolyte. It is most preferable to use a KOH aqueous solution to which is added).

(実施例5)
ここでは、アルミニウムを含有した亜鉛合金、およびLiOHと水酸化アルミニウムを添加したKOH水溶液を用いた電池において、正極合剤中の二酸化マンガンとオキシ水酸化ニッケルの配合比率に関する検討を行った。
(Example 5)
Here, in the battery using the zinc alloy containing aluminum and the KOH aqueous solution to which LiOH and aluminum hydroxide were added, the mixing ratio of manganese dioxide and nickel oxyhydroxide in the positive electrode mixture was examined.

電解二酸化マンガン、実施例1で作製したオキシ水酸化ニッケルおよび黒鉛を表6中に示したような重量比率で混合し、混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液の注液と、ゲル状負極(Alを35ppm含有したZnを活物質に使用)の充填を行って、各々の正極合剤に対応する単3サイズのアルカリ乾電池(電池Z1〜電池Z10)を組み立てた。なお、ここでは正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液のいずれについても、36重量%のKOHと1重量%のLiOHからなるアルカリ水溶液を使用し、ゲル状亜鉛負極には電池内に含まれる電解液の総量に対して1重量%の量に相当する水酸化アルミニウムを添加した。   Electrolytic manganese dioxide, nickel oxyhydroxide prepared in Example 1 and graphite were mixed at a weight ratio as shown in Table 6, and 1 part by weight of the electrolyte was mixed with 100 parts by weight of the mixed powder. The mixture was uniformly stirred and mixed to adjust the particle size to a constant particle size. The obtained granular material is pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, a separator is inserted, an electrolyte solution is injected, and a gelled negative electrode (Zn containing 35 ppm of Al is used as an active material) is filled. AA size alkaline dry batteries (battery Z1 to battery Z10) corresponding to each positive electrode mixture were assembled. In addition, alkaline solution which consists of 36 weight% KOH and 1 weight% LiOH about all of the electrolyte solution included in a positive electrode mixture, the electrolyte solution poured into a separator, and the electrolyte solution included in a gel-like zinc negative electrode here. And aluminum hydroxide corresponding to 1% by weight with respect to the total amount of the electrolyte contained in the battery was added to the gelled zinc negative electrode.

こうして作製した10種類の電池(初度の状態)について実施例1の場合と同様に、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。また、デジタルスチルカメラ以外の用途も考慮して、20℃で100mA(低負荷)の定電流で連続放電させ、電池電圧が0.9Vに至るまでの放電容量を測定した。得られた結果(100mA放電に関しては、電池Z5の放電容量を100として規格化)を表6中に示す。   The 10 types of batteries thus prepared (initial state) were discharged for 28 seconds at a constant power of 650 mW in a 20 ° C. atmosphere in the same manner as in Example 1, followed by pulse discharge for 2 seconds at a constant power of 1500 mW. The cycle was repeated until the lower limit voltage of 1500 mW pulse discharge reached 1.05V. In consideration of uses other than digital still cameras, the battery was continuously discharged at a constant current of 100 mA (low load) at 20 ° C., and the discharge capacity until the battery voltage reached 0.9 V was measured. Table 6 shows the obtained results (regarding 100 mA discharge, the discharge capacity of the battery Z5 is normalized to 100).

Figure 2006221831
Figure 2006221831

正極合剤中のオキシ水酸化ニッケルの比率が80重量%よりも大(電池Z9、電池Z10)になると、電池2(電解液にLiOH等を一切含まない比較電池)よりは良好なパルス特性を与えるものの、100mA(低負荷)の放電容量が電池Z1〜電池Z8よりも大きく低下する。一方で、オキシ水酸化ニッケルの比率が10重量%未満(電池Z1)になると、電池2よりは良好だが、電池Z2〜Z10よりもパルス放電サイクル特性が大きく低下することがわかる。この結果から、アルミニウムを含有した亜鉛合金、およびLiOHと水酸化アルミニウムを添加したKOH水溶液を用いた本発明電池においても、正極合剤中のオキシ水酸化ニッケルの比率を10〜80重量%にするのが最も好ましいと推察される。   When the ratio of nickel oxyhydroxide in the positive electrode mixture is greater than 80% by weight (battery Z9, battery Z10), better pulse characteristics than battery 2 (comparative battery that does not contain LiOH or the like in the electrolyte). Although given, the discharge capacity of 100 mA (low load) is significantly lower than that of the batteries Z1 to Z8. On the other hand, when the ratio of nickel oxyhydroxide is less than 10% by weight (battery Z1), it is better than battery 2, but it is understood that the pulse discharge cycle characteristics are greatly reduced as compared with batteries Z2 to Z10. From this result, also in the present invention battery using the zinc alloy containing aluminum and the KOH aqueous solution to which LiOH and aluminum hydroxide are added, the ratio of nickel oxyhydroxide in the positive electrode mixture is set to 10 to 80% by weight. Is presumed to be most preferable.

(実施例6)
ここでは、電解液中に添加するLiOH量と水酸化アルミニウム量の検討を行った。電解二酸化マンガン、実施例1で作製したオキシ水酸化ニッケルおよび黒鉛を重量比50:45:5の割合で混合し、混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータを挿入後、電解液の注液と、ゲル状負極(Alを35ppm含有したZnを活物質に使用)の充填を行って、単3サイズのアルカリ乾電池(電池P1)を組み立てた。電池P1では正極合剤に含ませる電解液、セパレータに注液する電解液、ゲル状亜鉛負極に含ませる電解液のいずれについても、36重量%のKOHと0.05重量%のLiOHからなるアルカリ水溶液を使用し、ゲル状亜鉛負極には電池内に含まれる電解液の総量に対して0.01重量%の量に相当する水酸化アルミニウムを添加した。
(Example 6)
Here, the amount of LiOH and the amount of aluminum hydroxide added to the electrolytic solution were examined. Electrolytic manganese dioxide, nickel oxyhydroxide prepared in Example 1 and graphite were mixed at a weight ratio of 50: 45: 5, and 1 part by weight of the electrolyte was mixed with 100 parts by weight of the mixed powder. The mixture was uniformly stirred and mixed to obtain a fixed particle size. The obtained granular material is press-molded into a hollow cylindrical shape to form a positive electrode mixture, a separator is inserted, an electrolyte solution is injected, and a gelled negative electrode (Zn containing 35 ppm of Al is used as an active material) is filled. AA size alkaline dry battery (battery P1) was assembled. In the battery P1, the alkaline solution composed of 36% by weight KOH and 0.05% by weight LiOH is used for any of the electrolytic solution contained in the positive electrode mixture, the electrolytic solution injected into the separator, and the electrolytic solution contained in the gelled zinc negative electrode. An aqueous solution was used, and aluminum hydroxide corresponding to an amount of 0.01% by weight with respect to the total amount of the electrolyte contained in the battery was added to the gelled zinc negative electrode.

続いて、電解液中のLiOHの比率を0.1重量%、2.0重量%、2.5重量%と変えること以外はすべて上記と同様として、電池P2、電池P3、電池P4を作製した。以下同様にして、表7中に示したような組み合わせで電解液中のLiOH比率とゲル負極中の水酸化アルミニウム添加量とを変化させ、電池Q1〜電池Q4、電池R1〜電池R4、電池S1〜電池S4を作製した。   Subsequently, a battery P2, a battery P3, and a battery P4 were produced in the same manner as described above except that the ratio of LiOH in the electrolytic solution was changed to 0.1 wt%, 2.0 wt%, and 2.5 wt%. . In the same manner, the LiOH ratio in the electrolyte and the amount of aluminum hydroxide added in the gel negative electrode are changed in combinations as shown in Table 7, and batteries Q1 to Q4, batteries R1 to R4, and batteries S1 are changed. -Battery S4 was produced.

こうして作製した12種の電池(初度の状態)について実施例1の場合と同様に、20℃雰囲気下、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返した。また、実用的なアルカリ乾電池の保存特性(貯蔵性)も考慮して、ここでは、これら12種の電池を45℃雰囲気下で1ヶ月間保存し、その後の電池について同様のパルス放電サイクル試験を行った。結果を表7にまとめる。   In the same manner as in Example 1, the 12 types of batteries thus produced (initial state) were discharged at 20 ° C. for 28 seconds with a constant power of 650 mW and then pulse-discharged for 2 seconds with a constant power of 1500 mW. The cycle was repeated until the lower limit voltage of 1500 mW pulse discharge reached 1.05V. In consideration of the storage characteristics (storability) of practical alkaline batteries, these 12 types of batteries are stored in a 45 ° C. atmosphere for one month, and the same pulse discharge cycle test is performed on the subsequent batteries. went. The results are summarized in Table 7.

Figure 2006221831
Figure 2006221831

初度の電池では、水酸化アルミニウムの添加量に関わらず、電解液中のLiOHの量を0.1〜2重量%の範囲とした電池(電池P2、電池P3、電池Q2、電池Q3、電池R2、電池R3、電池S2、電池S3)で高い性能が得られる。電解液中のLiOHが0.1重量%未満の場合(電池P1、電池Q1、電池R1、電池S1)や、電解液中のLiOHが2重量%よりも大きい場合(電池P4、電池Q4、電池R4、電池S4)は、電解液中にLiOHを含まない電池2よりは良好であるものの、パルス放電サイクル特性の向上効果が十分には得られないことがわかる。LiOHの量が0.1重量%未満であると、その絶対量が少なすぎるために効果の度合いが少なく、また、LiOH量が2重量%よりも多くなると、電解液の電気伝導度の低下が起こったものと推察される。この結果から、本発明では電解液中のLiOHの量を0.1〜2重量%の範囲にするのがより好ましいと推察される。   In the first battery, regardless of the amount of aluminum hydroxide added, the batteries (battery P2, battery P3, battery Q2, battery Q3, battery R2) in which the amount of LiOH in the electrolyte solution was in the range of 0.1 to 2% by weight. Battery R3, Battery S2, and Battery S3) provide high performance. When LiOH in the electrolyte is less than 0.1% by weight (battery P1, battery Q1, battery R1, battery S1), or when LiOH in the electrolyte is greater than 2% by weight (battery P4, battery Q4, battery Although R4 and battery S4) are better than battery 2 that does not contain LiOH in the electrolyte, it can be seen that the effect of improving the pulse discharge cycle characteristics cannot be sufficiently obtained. If the amount of LiOH is less than 0.1% by weight, the absolute amount is too small, and thus the degree of the effect is small. If the amount of LiOH exceeds 2% by weight, the electrical conductivity of the electrolytic solution is reduced. It is presumed that it happened. From this result, it is presumed that in the present invention, the amount of LiOH in the electrolytic solution is more preferably in the range of 0.1 to 2% by weight.

そして、これらの電池の中で、特に保存後の電池特性についても高いレベルを維持しているのは、電解液中に水酸化アルミニウムを0.01〜2重量%の比率で添加した電池(電池P2、電池P3、電池Q2、電池Q3、電池R2、電池R3)である。水酸化アルミニウムの添加量が電解液総量の2重量%よりも大きいもの(電池S2、電池S3)では、保存劣化抑制の効果が全く得られていないわけではないが、電池保存後に電解液の伝導度が下がる等の弊害が発生して、保存後の特性低下がやや大きくなっている。   Among these batteries, particularly, the battery characteristics after storage are maintained at a high level because batteries (batteries) in which aluminum hydroxide is added at a ratio of 0.01 to 2% by weight in the electrolytic solution. P2, battery P3, battery Q2, battery Q3, battery R2, battery R3). In the case where the amount of aluminum hydroxide added is larger than 2% by weight of the total amount of the electrolyte (battery S2, battery S3), the effect of suppressing storage deterioration is not obtained at all. Deterioration such as a decrease in the degree occurs, and the characteristic deterioration after storage is slightly increased.

以上の結果から、アルミニウムを含有した亜鉛合金、およびLiOHと水酸化アルミニウムを添加したKOH水溶液を用いた本発明電池では、アルカリ電解液中に含まれるLiOHおよびアルミニウム化合物(水酸化アルミニウム等)の量を、それぞれ0.1〜2重量%および0.01〜2重量%の範囲とするのが最も好ましい。   From the above results, in the battery of the present invention using the zinc alloy containing aluminum and the KOH aqueous solution to which LiOH and aluminum hydroxide were added, the amounts of LiOH and aluminum compounds (such as aluminum hydroxide) contained in the alkaline electrolyte Is most preferably in the range of 0.1 to 2% by weight and 0.01 to 2% by weight, respectively.

なお、上記の実施例では、亜鉛・コバルトを少量固溶したオキシ水酸化ニッケル(組成:Ni0.95Zn0.03Co0.02(OH)2の原料水酸化ニッケルに由来)を用いたが、本発明自体はこれに限定されるものではない。また、電解液へ添加するアルミニウム化合物として水酸化アルミニウムを用いたが、酸化アルミニウム等の他のアルミニウム化合物を用いても同様の効果を得ることができる。 In the above examples, nickel oxyhydroxide (composition: Ni 0.95 Zn 0.03 Co 0.02 (OH) 2 raw material nickel hydroxide) in which a small amount of zinc / cobalt was dissolved was used. It is not limited to this. Moreover, although aluminum hydroxide was used as the aluminum compound to be added to the electrolytic solution, the same effect can be obtained by using other aluminum compounds such as aluminum oxide.

本発明にかかるアルカリ乾電池は高いパルス放電特性を有するため、従来の乾電池では十分に対応できなかった、消費電力の大きいデジタル機器(デジタルスチルカメラ等)の電源に活用することが可能である。   Since the alkaline dry battery according to the present invention has high pulse discharge characteristics, it can be used as a power source for digital equipment (such as a digital still camera) with high power consumption, which cannot be adequately handled by conventional dry batteries.

本発明の実施例に係るアルカリ乾電池の一部を断面にした正面図1 is a cross-sectional front view of an alkaline battery according to an embodiment of the present invention. 電池1のパルス放電サイクル時の放電曲線を表した図The figure which showed the discharge curve at the time of the pulse discharge cycle of the battery 1 電池2のパルス放電サイクル時の放電曲線を表した図The figure which showed the discharge curve at the time of the pulse discharge cycle of the battery 2 電池1のパルス放電サイクル時の正・負極分極曲線を表した図The figure which showed the positive / negative polarization curve at the time of the pulse discharge cycle of the battery 1 電池2のパルス放電サイクル時の正・負極分極曲線を表した図The figure which showed the positive / negative polarization curve at the time of the pulse discharge cycle of the battery 2

符号の説明Explanation of symbols

1 正極ケース
2 黒鉛塗装膜
3 正極合剤ペレット
4 セパレータ
5 絶縁キャップ
6 ゲル状負極
7 樹脂製封口板
8 底板
9 絶縁ワッシャ
10 負極集電体
11 外装ラベル
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Graphite coating film 3 Positive electrode mixture pellet 4 Separator 5 Insulation cap 6 Gel-like negative electrode 7 Resin sealing board 8 Bottom plate 9 Insulation washer 10 Negative electrode collector 11 Exterior label

Claims (6)

オキシ水酸化ニッケルと二酸化マンガンを含有した正極、亜鉛を活物質としたゲル状負極、アルカリ電解液を備え、前記アルカリ電解液がLiOHを添加したKOH水溶液であることを特徴とするアルカリ乾電池。 An alkaline battery comprising a positive electrode containing nickel oxyhydroxide and manganese dioxide, a gelled negative electrode using zinc as an active material, and an alkaline electrolyte, wherein the alkaline electrolyte is a KOH aqueous solution to which LiOH is added. 前記正極合剤中のオキシ水酸化ニッケルの比率は正極合剤全体に対して10〜80重量%である請求項1記載のアルカリ乾電池。 The alkaline dry battery according to claim 1, wherein the ratio of nickel oxyhydroxide in the positive electrode mixture is 10 to 80 wt% with respect to the whole positive electrode mixture. 前記アルカリ電解液の全量(ゲル状負極や正極合剤中の電解液を含む)に含まれるLiOHの量は0.1〜2重量%である請求項1または2記載のアルカリ乾電池。 The alkaline dry battery according to claim 1 or 2, wherein the amount of LiOH contained in the total amount of the alkaline electrolyte (including the electrolyte in the gelled negative electrode and the positive electrode mixture) is 0.1 to 2% by weight. オキシ水酸化ニッケルと二酸化マンガンを含有した正極、少なくともアルミニウムを含有した亜鉛合金を活物質としたゲル状負極、アルカリ電解液を備え、前記アルカリ電解液がLiOHとアルミニウム化合物を添加したKOH水溶液であることを特徴とするアルカリ乾電池。 A positive electrode containing nickel oxyhydroxide and manganese dioxide, a gelled negative electrode using at least a zinc alloy containing aluminum as an active material, an alkaline electrolyte, and the alkaline electrolyte is a KOH aqueous solution to which LiOH and an aluminum compound are added. An alkaline battery characterized by that. 前記正極合剤中のオキシ水酸化ニッケルの比率は正極合剤全体に対して10〜80重量%である請求項4記載のアルカリ乾電池。 5. The alkaline dry battery according to claim 4, wherein a ratio of nickel oxyhydroxide in the positive electrode mixture is 10 to 80 wt% with respect to the whole positive electrode mixture. 前記アルカリ電解液の全量(ゲル状負極や正極合剤中の電解液を含む)に含まれるLiOHおよびアルミニウム化合物の量は、それぞれ0.1〜2重量%および0.01〜2重量%である請求項4または5記載のアルカリ乾電池。 The amount of LiOH and aluminum compound contained in the total amount of the alkaline electrolyte (including the electrolyte in the gelled negative electrode and the positive electrode mixture) is 0.1 to 2% by weight and 0.01 to 2% by weight, respectively. The alkaline dry battery according to claim 4 or 5.
JP2005031384A 2005-02-08 2005-02-08 Alkaline dry cell Withdrawn JP2006221831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031384A JP2006221831A (en) 2005-02-08 2005-02-08 Alkaline dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031384A JP2006221831A (en) 2005-02-08 2005-02-08 Alkaline dry cell

Publications (1)

Publication Number Publication Date
JP2006221831A true JP2006221831A (en) 2006-08-24

Family

ID=36984019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031384A Withdrawn JP2006221831A (en) 2005-02-08 2005-02-08 Alkaline dry cell

Country Status (1)

Country Link
JP (1) JP2006221831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579717A (en) * 2012-07-18 2014-02-12 瓦尔达微电池有限责任公司 Zinc cells having improved anode composition and their use
JP2014135259A (en) * 2013-01-14 2014-07-24 Semiconductor Energy Lab Co Ltd Electrochemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579717A (en) * 2012-07-18 2014-02-12 瓦尔达微电池有限责任公司 Zinc cells having improved anode composition and their use
EP3144999A1 (en) * 2012-07-18 2017-03-22 VARTA Microbattery GmbH Use of electrochemical cells with an electrode made of zinc or a zinc alloy and a portion of aluminium hydroxide and / or at least one aluminate
JP2014135259A (en) * 2013-01-14 2014-07-24 Semiconductor Energy Lab Co Ltd Electrochemical device

Similar Documents

Publication Publication Date Title
JP3866884B2 (en) Alkaline battery
EP1988590A1 (en) Alkaline battery
JP5172181B2 (en) Zinc alkaline battery
CN100428538C (en) Alkaline battery
KR100882403B1 (en) Alkaline cell
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP4040829B2 (en) Alkaline battery and method for producing positive electrode active material thereof
JP2005056733A (en) Alkaline battery and manufacturing method for cathode active material for alkaline batteries
JP4914983B2 (en) Negative electrode composition for alkaline battery, zinc alloy powder used in the composition, and alkaline battery using the composition
JP2006040887A (en) Alkaline battery
JP2006221831A (en) Alkaline dry cell
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP2002093413A (en) Battery
US20080193842A1 (en) Alkaline Battery
JPWO2006040907A1 (en) Alkaline battery
JP2006294288A (en) Alkaline dry cell
JP2002289187A (en) beta TYPE NICKEL OXYHYDROXIDE, MANUFACTURING METHOD THEREOF, POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE FOR BATTERY, AND NICKEL ZINC BATTERY
JP2007123149A (en) Alkaline cell
JP2005310752A (en) Alkaline battery
JP2006179429A (en) Alkaline dry battery
JP2002203546A (en) Beta-type oxynickel hydroxide and its manufacturing method, positive electrode active substance, as well as nickel-zinc battery
JP2005071991A (en) Alkaline battery
WO2021186805A1 (en) Alkaline dry battery
JP2007035506A (en) Alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101022