JP2007035506A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2007035506A
JP2007035506A JP2005219130A JP2005219130A JP2007035506A JP 2007035506 A JP2007035506 A JP 2007035506A JP 2005219130 A JP2005219130 A JP 2005219130A JP 2005219130 A JP2005219130 A JP 2005219130A JP 2007035506 A JP2007035506 A JP 2007035506A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
negative electrode
nickel oxyhydroxide
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219130A
Other languages
Japanese (ja)
Inventor
Yasuo Mukai
保雄 向井
Kyoko Fujiwara
教子 藤原
Hidekatsu Izumi
秀勝 泉
Chuya Okada
忠也 岡田
Shigeto Noya
重人 野矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005219130A priority Critical patent/JP2007035506A/en
Priority to PCT/JP2006/314502 priority patent/WO2007013374A1/en
Publication of JP2007035506A publication Critical patent/JP2007035506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M2006/5094Aspects relating to capacity ratio of electrolyte/electrodes or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery in which discharge performance is improved, in which gas generation due to overcharge is suppressed, and which is superior in liquid leakage resistant characteristics. <P>SOLUTION: The alkaline battery is equipped with: a positive electrode containing manganese dioxide and nickel oxyhydroxide as a positive electrode active material; a negative electrode containing zinc as a negative electrode active material, a separator arranged between the positive electrode and the negative electrode, and an alkaline electrolytic solution. An average valence of nickel of the nickel oxyhydroxide is 3.05 to 3.15, and a ratio of an electric capacity of the negative electrode to that of the positive electrode is 1.0 to 1.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極活物質に二酸化マンガンおよびオキシ水酸化ニッケルを用いたアルカリ電池に関する。   The present invention relates to an alkaline battery using manganese dioxide and nickel oxyhydroxide as a positive electrode active material.

アルカリ電池は、正極端子を兼ねる正極ケースの中に、正極ケースに密着して円筒状の正極合剤を配置し、その中央にセパレータを介してゲル状負極を配置した構造を有する。近年、この電池が用いられる機器の負荷が増大しているため、強負荷放電特性に優れたアルカリ電池が要望されている。   An alkaline battery has a structure in which a cylindrical positive electrode mixture is disposed in close contact with a positive electrode case in a positive electrode case also serving as a positive electrode terminal, and a gelled negative electrode is disposed in the center thereof via a separator. In recent years, since the load of the apparatus in which this battery is used is increasing, the alkaline battery excellent in the heavy load discharge characteristic is desired.

そこで、強負荷放電特性の向上に対して、アルカリ電池の正極合剤にオキシ水酸化ニッケルを混合することが検討されている。例えば、特許文献1では、正極活物質に、Al、Ca、Mg、Ti、Sc、Fe、Mn、Y、Yb、およびErからなる群より選択される少なくとも1種の元素と、Coと、Znとを含むオキシ水酸化ニッケルを用い、正極の電気容量に対する負極の電気容量の比を1.1以下にすることが提案されている。   Then, mixing nickel oxyhydroxide with the positive mix of an alkaline battery is examined with respect to the improvement of a heavy load discharge characteristic. For example, in Patent Document 1, the positive electrode active material includes at least one element selected from the group consisting of Al, Ca, Mg, Ti, Sc, Fe, Mn, Y, Yb, and Er, Co, and Zn. It has been proposed that the ratio of the electric capacity of the negative electrode to the electric capacity of the positive electrode be 1.1 or less.

上記のように正極の電気容量に対する負極の電気容量の比を高くすることにより、放電性能を向上させることができる。しかし、正極に対する負極の電気容量比が高すぎると、過放電時のガス発生量が多くなり、漏液し易くなる。このため、特許文献1では、正極の電気容量に対する負極の電気容量の比を1.1以下に規制しており、放電性能の向上に限界がある。
また、特許文献1のオキシ水酸化ニッケルの平均ニッケル価数は3.00であり、過放電時のガス発生による漏液を十分に抑制することができないという問題があった。
特開2003−242990号公報
As described above, the discharge performance can be improved by increasing the ratio of the negative electrode capacitance to the positive electrode capacitance. However, if the electric capacity ratio of the negative electrode to the positive electrode is too high, the amount of gas generated during overdischarge increases and liquid leakage tends to occur. For this reason, in patent document 1, the ratio of the electric capacity of the negative electrode to the electric capacity of the positive electrode is regulated to 1.1 or less, and there is a limit to the improvement of the discharge performance.
Moreover, the average nickel valence of the nickel oxyhydroxide of patent document 1 is 3.00, and there existed a problem that the liquid leakage by the gas generation at the time of overdischarge could not fully be suppressed.
JP 2003-242990 A

そこで、本発明では、放電性能を向上させつつ、過放電によるガス発生を抑制し、耐漏液性に優れたアルカリ電池を提供することを目的とする。   Therefore, an object of the present invention is to provide an alkaline battery that improves gas discharge performance, suppresses gas generation due to overdischarge, and has excellent liquid leakage resistance.

本発明のアルカリ電池は、正極活物質として二酸化マンガンおよびオキシ水酸化ニッケルを含む正極と、負極活物質として亜鉛を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備し、前記オキシ水酸化ニッケルの平均ニッケル価数が3.05〜3.15であり、かつ前記正極の電気容量に対する前記負極の電気容量の比が1.0〜1.2であることを特徴とする。   The alkaline battery of the present invention includes a positive electrode containing manganese dioxide and nickel oxyhydroxide as a positive electrode active material, a negative electrode containing zinc as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and an alkaline electrolyte. The average nickel valence of the nickel oxyhydroxide is 3.05 to 3.15, and the ratio of the electric capacity of the negative electrode to the electric capacity of the positive electrode is 1.0 to 1.2 It is characterized by that.

前記オキシ水酸化ニッケル中にマンガンが0.5〜10mol%固溶しているのが好ましい。
前記二酸化マンガンとオキシ水酸化ニッケルとの重量比が、20〜90:80〜10であるのが好ましい。
前記二酸化マンガンとオキシ水酸化ニッケルとの重量比が、40〜70:60〜30であるのが好ましい。
It is preferable that 0.5 to 10 mol% of manganese is dissolved in the nickel oxyhydroxide.
The weight ratio of manganese dioxide to nickel oxyhydroxide is preferably 20 to 90:80 to 10.
The weight ratio of manganese dioxide to nickel oxyhydroxide is preferably 40 to 70:60 to 30.

本発明によれば、放電性能を向上させつつ、過放電によるガス発生を抑制し、耐漏液性に優れたアルカリ電池を提供することができる。   According to the present invention, it is possible to provide an alkaline battery excellent in leakage resistance by suppressing gas generation due to overdischarge while improving discharge performance.

本発明は、正極活物質として二酸化マンガンおよびオキシ水酸化ニッケルを含む正極と、負極活物質として亜鉛を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備し、前記オキシ水酸化ニッケルの平均ニッケル価数が3.05〜3.15であり、かつ前記正極の電気容量に対する前記負極の電気容量の比(以下、負極容量/正極容量と表す)が1.0〜1.2であるアルカリ電池に関する。
上記の構成より、放電性能を向上させつつ、過放電によるガス発生を抑制し、耐漏液性を向上させることができる。
The present invention comprises a positive electrode containing manganese dioxide and nickel oxyhydroxide as a positive electrode active material, a negative electrode containing zinc as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and an alkaline electrolyte. The average nickel valence of the nickel oxyhydroxide is 3.05 to 3.15, and the ratio of the electric capacity of the negative electrode to the electric capacity of the positive electrode (hereinafter referred to as negative electrode capacity / positive electrode capacity) is 1. It is related with the alkaline battery which is 0.0-1.2.
From the above configuration, it is possible to improve the leakage performance while suppressing the gas generation due to overdischarge while improving the discharge performance.

負極容量/正極容量が1.0未満では、負極の電気容量が小さすぎるため、放電性能が低下する。一方、負極容量/正極容量が1.2を超えると、負極の電気容量に対して正極の電気容量が小さ過ぎるため、過放電時に水素ガスが発生し、電池内圧が上昇し、漏液し易くなる。   When the negative electrode capacity / positive electrode capacity is less than 1.0, the electric capacity of the negative electrode is too small, so that the discharge performance is lowered. On the other hand, if the negative electrode capacity / positive electrode capacity exceeds 1.2, the electric capacity of the positive electrode is too small relative to the electric capacity of the negative electrode, so that hydrogen gas is generated during overdischarge, the battery internal pressure rises, and liquid leakage tends to occur. Become.

オキシ水酸化ニッケルの平均ニッケル価数が3.05未満であると、オキシ水酸化ニッケルの単位重量あたりの容量(mAh/g)が低下するため、過放電時のガス発生量が多くなり、漏液し易くなる。一方、オキシ水酸化ニッケルの平均ニッケル価数が3.15を超えると、オキシ水酸化ニッケル中においてγ型の結晶構造の割合が増大し、強負荷放電特性が低下する。   If the average nickel valence of nickel oxyhydroxide is less than 3.05, the capacity per unit weight of nickel oxyhydroxide (mAh / g) will decrease, and the amount of gas generated during overdischarge will increase. It becomes easy to liquid. On the other hand, when the average nickel valence of nickel oxyhydroxide exceeds 3.15, the proportion of the γ-type crystal structure in nickel oxyhydroxide increases and the heavy load discharge characteristics deteriorate.

オキシ水酸化ニッケル中のマンガンの固溶量が0.5mol%未満であると、γ型の生成を容易にする効果を十分に発現することができない。一方、オキシ水酸化ニッケル中のマンガンの固溶量が10mol%を超えると、オキシ水酸化ニッケル中のニッケル量が相対的に減ることになり満足な電池容量を得るのが困難となる。これらの観点から、オキシ水酸化ニッケル中にマンガンが0.5〜10mol%固溶しているのが好ましい。   If the solid solution amount of manganese in the nickel oxyhydroxide is less than 0.5 mol%, the effect of facilitating the formation of γ-type cannot be sufficiently exhibited. On the other hand, when the solid solution amount of manganese in nickel oxyhydroxide exceeds 10 mol%, the amount of nickel in nickel oxyhydroxide is relatively reduced, making it difficult to obtain a satisfactory battery capacity. From these viewpoints, it is preferable that manganese is dissolved in 0.5 to 10 mol% in nickel oxyhydroxide.

オキシ水酸化ニッケルの平均ニッケル価数は、例えば、以下のような方法により求められる。
ジメチルグリオキシム法による重量法によりニッケル重量比率を求め、酸化還元滴定によりニッケルイオン量を求める。そして、ニッケルイオン量および上記で得られたニッケルの重量比率を用い、オキシ水酸化ニッケルの平均ニッケル価数を求めることができる。
オキシ水酸化ニッケルがマンガンを含む場合は、上記の方法に加えて、さらにICP発光分析によりマンガンの重量比率を求め、マンガンの価数を4価と仮定することにより、平均ニッケル価数を求めることができる。
The average nickel valence of nickel oxyhydroxide is obtained, for example, by the following method.
The nickel weight ratio is obtained by a weight method based on the dimethylglyoxime method, and the nickel ion amount is obtained by oxidation-reduction titration. And the average nickel valence of nickel oxyhydroxide can be calculated | required using the nickel ion amount and the weight ratio of nickel obtained above.
When nickel oxyhydroxide contains manganese, in addition to the above method, obtain the weight ratio of manganese by ICP emission analysis, and obtain the average nickel valence by assuming that the valence of manganese is tetravalent. Can do.

上記の構成において、正極活物質である二酸化マンガンとオキシ水酸化ニッケルとの混合重量比は、20〜90:80〜10が好ましい。過放電時のガス発生が抑制され、かつオキシ水酸化ニッケルによる優れた強負荷放電特性が得られる。さらに、好ましくは二酸化マンガンとオキシ水酸化ニッケルとの混合重量比は、40〜70:60〜30である。   Said structure WHEREIN: 20-90: 80-10 are preferable for the mixing weight ratio of manganese dioxide which is a positive electrode active material, and nickel oxyhydroxide. Gas generation during overdischarge is suppressed, and excellent heavy load discharge characteristics due to nickel oxyhydroxide can be obtained. Furthermore, the mixing weight ratio of manganese dioxide and nickel oxyhydroxide is preferably 40 to 70:60 to 30.

正極には、例えば、正極活物質としての二酸化マンガンおよびオキシ水酸化ニッケルと、導電剤としての黒鉛と、電解液とからなる正極合剤が用いられる。
負極には、例えば、ゲル化剤としてのポリアクリル酸ナトリウムと、負極活物質としての亜鉛粉末と、電解液とからなるゲル状負極が用いられる。
セパレータには、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。
For the positive electrode, for example, a positive electrode mixture composed of manganese dioxide and nickel oxyhydroxide as a positive electrode active material, graphite as a conductive agent, and an electrolytic solution is used.
For the negative electrode, for example, a gelled negative electrode composed of sodium polyacrylate as a gelling agent, zinc powder as a negative electrode active material, and an electrolytic solution is used.
For the separator, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used.

(1)正極合剤の作製
正極活物質としての二酸化マンガンおよびオキシ水酸化ニッケルと、導電剤としての黒鉛と、電解液とを、50:50:6:1の重量比で混合した後、フレーク状に圧縮成型した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成型してペレット状の正極合剤を得た。なお、電解液には、38重量%の水酸化カリウムおよび2重量%の酸化亜鉛を含むアルカリ水溶液を用いた。
(1) Preparation of positive electrode mixture After mixing manganese dioxide and nickel oxyhydroxide as a positive electrode active material, graphite as a conductive agent, and an electrolytic solution in a weight ratio of 50: 50: 6: 1, flakes are mixed. It was compression molded into a shape. Subsequently, the flaky positive electrode mixture was pulverized into granules, which were classified by a sieve, and those having a 10 to 100 mesh shape were pressure-molded into a hollow cylinder to obtain a pellet-like positive electrode mixture. Note that an alkaline aqueous solution containing 38% by weight of potassium hydroxide and 2% by weight of zinc oxide was used as the electrolytic solution.

(2)ゲル状負極の作製
上記と同様の電解液、ゲル化剤としてのポリアクリル酸ナトリウム、および負極活物質としての亜鉛粉末を重量比100:2.5:200の割合で混合し、ゲル状負極を得た。
(2) Preparation of gelled negative electrode An electrolyte solution similar to the above, sodium polyacrylate as a gelling agent, and zinc powder as a negative electrode active material were mixed in a weight ratio of 100: 2.5: 200 to obtain a gel. A negative electrode was obtained.

(3)アルカリ電池の組み立て
以下に示す手順で、図1に示す構造の単3形アルカリ電池を作製した。図1は、アルカリ電池の一部を断面とした正面図である。
電池ケース1内に上記で得られた正極合剤を2個挿入し、加圧治具により正極合剤2を再成型して電池ケース1の内壁に密着させた。そして、電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ上記と同様の電解液を所定量注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内へ充填した。なお、セパレータ4には、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
(3) Assembly of alkaline battery AA alkaline batteries having the structure shown in FIG. 1 were prepared according to the following procedure. FIG. 1 is a front view with a cross section of a part of an alkaline battery.
Two pieces of the positive electrode mixture obtained above were inserted into the battery case 1, and the positive electrode mixture 2 was remolded with a pressure jig and brought into close contact with the inner wall of the battery case 1. And the bottomed cylindrical separator 4 was arrange | positioned in the center of the positive mix 2 arrange | positioned in the battery case 1, and predetermined amount electrolyte solution similar to the above was inject | poured into the separator 4. FIG. After a predetermined time had elapsed, the gelled negative electrode 3 obtained above was filled into the separator 4. In addition, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.

続いて、負極集電子6をゲル状負極3の中央に挿入した。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を予め一体化させた。そして、電池ケース1内の開口端部を、ガスケット5の端部を介して、底板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ電池を得た。   Subsequently, the negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 was previously integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal. And the opening edge part in the battery case 1 was crimped to the peripheral part of the baseplate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. Finally, the outer surface of the battery case 1 was covered with the exterior label 8 to obtain an alkaline battery.

《実施例1》
上記のアルカリ電池作製時において、オキシ水酸化ニッケルは、水酸化ニッケル粉末に対して以下の化学酸化処理を行うことにより得た。
水酸化ニッケル粉末(平均粒径:15μm)を水酸化ナトリウム水溶液中に投入し、次亜塩素酸ナトリウム水溶液(有効塩素濃度:12wt%)を十分量(2当量相当)加えて、3時間攪拌してオキシ水酸化ニッケル粉末を作製した。得られた粉末は十分に水洗を行った後、60℃の真空乾燥を行い正極活物質粉末とした。このとき、次亜塩素酸ナトリウム水溶液と共存させる水酸化ナトリウム水溶液の濃度を0.025〜2.5mol/L、および反応雰囲気温度を30〜50℃まで変化させて、オキシ水酸化ニッケルの平均ニッケル価数を表1に示すように種々に変えた。
Example 1
At the time of preparing the alkaline battery, nickel oxyhydroxide was obtained by performing the following chemical oxidation treatment on the nickel hydroxide powder.
Nickel hydroxide powder (average particle size: 15 μm) is put into an aqueous sodium hydroxide solution, a sufficient amount of sodium hypochlorite aqueous solution (effective chlorine concentration: 12 wt%) is added (equivalent to 2 equivalents), and the mixture is stirred for 3 hours. Thus, nickel oxyhydroxide powder was prepared. The obtained powder was sufficiently washed with water and then vacuum dried at 60 ° C. to obtain a positive electrode active material powder. At this time, the concentration of the sodium hydroxide aqueous solution coexisting with the sodium hypochlorite aqueous solution was changed from 0.025 to 2.5 mol / L, and the reaction atmosphere temperature was changed from 30 to 50 ° C. The valence was variously changed as shown in Table 1.

Figure 2007035506
Figure 2007035506

オキシ水酸化ニッケル粉末の平均ニッケル価数を以下の化学測定により求めた。
(A)重量法(ジメチルグリオキシム法)によるニッケル重量比率の測定
オキシ水酸化ニッケル粉末0.05gに濃硝酸10cm3を加えて加熱・溶解させ、酒石酸水溶液10cm3を加えた後、イオン交換水を加えて全量を200cm3に調整した。この溶液のpHをアンモニア水及び酢酸を用いて調整した後、臭素酸カリウム1gを加えて測定誤差となりうるコバルトイオンを3価の状態に酸化させた。次に、この溶液を加熱攪拌しながらジメチルグリオキシムのエタノール溶液を添加し、ニッケル(II)イオンをジメチルグリオキシム錯化合物として沈殿させた。次いで吸引濾過し、生成した沈殿物を捕集して110℃雰囲気で乾燥させ、沈殿物の重量を測定した。そして、オキシ水酸化ニッケル粉末中に含まれるニッケルの重量比率を次式により算出した。
ニッケル重量比率=(沈殿物の重量(g)×0.2032)/オキシ水酸化ニッケル粉末の試料重量(g)
The average nickel valence of the nickel oxyhydroxide powder was determined by the following chemical measurement.
(A) Measurement of nickel weight ratio by gravimetric method (dimethylglyoxime method) After adding 10 cm 3 of concentrated nitric acid to 0.05 g of nickel oxyhydroxide powder and heating and dissolving it, adding 10 cm 3 of aqueous tartaric acid solution, ion-exchanged water Was added to adjust the total amount to 200 cm 3 . After adjusting the pH of this solution using aqueous ammonia and acetic acid, 1 g of potassium bromate was added to oxidize cobalt ions that could cause measurement errors to a trivalent state. Next, an ethanol solution of dimethylglyoxime was added while heating and stirring the solution to precipitate nickel (II) ions as a dimethylglyoxime complex compound. Subsequently, suction filtration was performed, and the generated precipitate was collected and dried in an atmosphere of 110 ° C., and the weight of the precipitate was measured. The weight ratio of nickel contained in the nickel oxyhydroxide powder was calculated by the following formula.
Nickel weight ratio = (precipitate weight (g) × 0.2032) / sample weight of nickel oxyhydroxide powder (g)

(B)酸化還元滴定による平均ニッケル価数の測定
オキシ水酸化ニッケル粉末0.2gにヨウ化カリウム1gおよび硫酸25cm3を加え、十分に攪拌してオキシ水酸化ニッケル粉末を溶解させた。この過程で価数の高いニッケルイオンは、ヨウ化カリウムをヨウ素に酸化し、自身は2価に還元される。20分間放置した後、pH緩衝液として酢酸−酢酸アンモニウム水溶液とイオン交換水を加えて反応を停止させ、生成・遊離したヨウ素を0.1mol/Lのチオ硫酸ナトリウム水溶液で滴定した。このとき得られる滴定量は、価数が2価よりも大きい金属イオン量を反映する。
そこで、(B)で求めたニッケルイオンの量と、(A)で求めたニッケルの重量比率とを用いて、オキシ水酸化ニッケル粉末の平均ニッケル価数を求めた。
(B) Measurement of average nickel valence by oxidation-reduction titration 1 g of potassium iodide and 25 cm 3 of sulfuric acid were added to 0.2 g of nickel oxyhydroxide powder and sufficiently stirred to dissolve the nickel oxyhydroxide powder. In this process, nickel ions having a high valence oxidize potassium iodide to iodine and reduce themselves to bivalence. After standing for 20 minutes, an acetic acid-ammonium acetate aqueous solution and ion-exchanged water were added as a pH buffer solution to stop the reaction, and the produced and liberated iodine was titrated with a 0.1 mol / L sodium thiosulfate aqueous solution. The titer obtained at this time reflects the amount of metal ions whose valence is greater than divalent.
Therefore, the average nickel valence of the nickel oxyhydroxide powder was determined using the amount of nickel ions determined in (B) and the weight ratio of nickel determined in (A).

また、上記のアルカリ電池の作製時において、正極合剤の重量およびゲル状負極の重量を調整して、負極容量/正極容量を表1に示すように種々に変えた。
負極容量/正極容量の異なる正極合剤およびゲル状負極と、平均ニッケル価数の異なるオキシ水酸化ニッケルとを種々組み合わせて、電池1〜18を作製した。
なお、電池4、5、7〜12、14、および15は実施例の電池であり、電池1〜3、6、13、および16〜18は比較例の電池である。
Further, at the time of manufacturing the alkaline battery, the weight of the positive electrode mixture and the weight of the gelled negative electrode were adjusted, and the negative electrode capacity / positive electrode capacity were changed variously as shown in Table 1.
Batteries 1 to 18 were produced by variously combining positive electrode mixtures and gelled negative electrodes having different negative electrode capacities / positive electrode capacities and nickel oxyhydroxides having different average nickel valences.
In addition, the batteries 4, 5, 7-12, 14, and 15 are the batteries of the examples, and the batteries 1-3, 6, 13, and 16-18 are the batteries of the comparative examples.

[電池の評価]
(4)放電性能
強負荷放電性能を評価するため、20℃の環境下、電池の閉路電圧が1.0Vに達するまで1000mWの定電力で連続放電した。そして、放電性能を電池13の場合の放電時間を100とした指数として表し、指数が85以上の場合に放電性能が優れていると評価した。
また、弱負荷放電性能を評価するため、20℃の環境下、電池の閉路電圧が0.9Vに達するまで50mAで連続放電した。そして、放電性能を電池13の場合の放電時間を100とした指数として表し、指数が90以上の場合に放電性能が優れていると評価した。
[Battery evaluation]
(4) Discharge performance In order to evaluate the heavy load discharge performance, continuous discharge was performed at a constant power of 1000 mW in a 20 ° C environment until the closed circuit voltage of the battery reached 1.0V. The discharge performance was expressed as an index with the discharge time in the case of the battery 13 being 100, and when the index was 85 or more, the discharge performance was evaluated as excellent.
Further, in order to evaluate the light load discharge performance, continuous discharge was performed at 50 mA in a 20 ° C. environment until the closed circuit voltage of the battery reached 0.9V. The discharge performance was expressed as an index with the discharge time in the case of the battery 13 being 100, and when the index was 90 or more, it was evaluated that the discharge performance was excellent.

(5)耐漏液特性
30℃、90%RHの環境下で、10Ωで10日間連続放電した。そして、放電後の電池を水中にて分解し、電池内部に蓄積されたガスをメスシリンダーに捕集し、ガスの発生量を調べた。また、放電後に、漏液した電池の個数を調べた。この時、試験した電池数は100個とした。
これらの評価結果を表1に示す。
(5) Liquid Leakage Resistant Discharge was continuously performed at 10Ω for 10 days in an environment of 30 ° C. and 90% RH. And the battery after discharge was decomposed | disassembled in water, the gas accumulate | stored inside the battery was collected by the measuring cylinder, and the generation amount of gas was investigated. In addition, the number of leaked batteries was examined after discharging. At this time, 100 batteries were tested.
These evaluation results are shown in Table 1.

オキシ水酸化ニッケルの平均ニッケル価数が3.05〜3.15であり、負極容量/正極容量が1.0〜1.2である場合に、良好な強負荷放電性能および弱負荷放電性能が得られるとともに、優れた耐漏液性が得られた。
比較例の電池1〜3、6、および16では、放電性能が低下した。また、比較例の電池13、17および18では、漏液した電池がみられた。
When the average nickel valence of nickel oxyhydroxide is 3.05 to 3.15 and the negative electrode capacity / positive electrode capacity is 1.0 to 1.2, good heavy load discharge performance and low load discharge performance are obtained. As a result, excellent leakage resistance was obtained.
In the batteries 1 to 3, 6, and 16 of the comparative examples, the discharge performance was lowered. Moreover, in the batteries 13, 17 and 18 of the comparative examples, leaked batteries were observed.

《実施例2》
マンガンが固溶したオキシ水酸化ニッケル粉末を以下の方法により作製した。
(1)水酸化ニッケル粉末の作製
2.5mol/L硫酸ニッケル水溶液、硫酸マンガン水溶液、0.05mol/Lの水酸化ナトリウム水溶液、5mol/Lのアンモニア水溶液を準備し、40℃に保持された攪拌翼を備えた反応装置内に、それぞれ0.5ml/minの流量で連続的にポンプで供給した。続いて、反応装置内のpHが一定となり、金属塩濃度と金属水酸化物粒子濃度のバランスが一定となり、定常状態になったところで、オーバーフローにて得られた懸濁液を採取し、デカンテーションにより沈殿物を分離した。これをpH13〜14の水酸化ナトリウム水溶液でアルカリ処理し、金属水酸化物粒子中の硫酸イオン等のアニオンを除去し、水洗し、乾燥した。このようにして、レーザー回折式粒度分布計による体積基準の平均粒径が15μmの粉末を得た。
Example 2
A nickel oxyhydroxide powder in which manganese was dissolved was produced by the following method.
(1) Preparation of nickel hydroxide powder A 2.5 mol / L nickel sulfate aqueous solution, a manganese sulfate aqueous solution, a 0.05 mol / L sodium hydroxide aqueous solution, and a 5 mol / L ammonia aqueous solution were prepared and stirred at 40 ° C. Each was continuously pumped into a reactor equipped with blades at a flow rate of 0.5 ml / min. Subsequently, when the pH in the reaction apparatus becomes constant, the balance between the metal salt concentration and the metal hydroxide particle concentration becomes constant, and when it reaches a steady state, the suspension obtained by overflow is collected and decanted. Separated the precipitate. This was alkali-treated with an aqueous sodium hydroxide solution having a pH of 13 to 14 to remove anions such as sulfate ions in the metal hydroxide particles, washed with water, and dried. In this way, a powder having a volume-based average particle diameter of 15 μm by a laser diffraction particle size distribution meter was obtained.

上記の水酸化ニッケル粉末の作製時において、後述で得られるオキシ水酸化ニッケル粉末中のマンガンの固溶量が表2に示す量になるように、硫酸マンガン水溶液の濃度を種々に変えた。   At the time of producing the above nickel hydroxide powder, the concentration of the manganese sulfate aqueous solution was variously changed so that the solid solution amount of manganese in the nickel oxyhydroxide powder obtained later became the amount shown in Table 2.

(2)オキシ水酸化ニッケル粉末の作製
続いて、前記の水酸化ニッケル粉末に対する化学酸化処理として、粉末を水酸化ナトリウム水溶液中に投入し、次亜塩素酸ナトリウム水溶液(有効塩素濃度:12wt%)を十分量(2当量相当)加えて、3時間攪拌してオキシ水酸化ニッケル粉末を作製した。得られた粉末は十分に水洗を行った後、60℃の真空乾燥を行い正極活物質粉末とした。
(2) Preparation of nickel oxyhydroxide powder Subsequently, as a chemical oxidation treatment for the nickel hydroxide powder, the powder was put into an aqueous sodium hydroxide solution, and an aqueous sodium hypochlorite solution (effective chlorine concentration: 12 wt%) A sufficient amount (corresponding to 2 equivalents) was added and stirred for 3 hours to prepare a nickel oxyhydroxide powder. The obtained powder was sufficiently washed with water and then vacuum dried at 60 ° C. to obtain a positive electrode active material powder.

上記のオキシ水酸化ニッケル粉末の作製時において、次亜塩素酸ナトリウム水溶液と共存させる水酸化ナトリウム水溶液の濃度を0.025〜2.5mol/L、および反応雰囲気温度を30〜50℃まで変化させて、オキシ水酸化ニッケルの平均ニッケル価数を表1に示すように種々に変えた。   When preparing the above nickel oxyhydroxide powder, the concentration of the sodium hydroxide aqueous solution coexisting with the sodium hypochlorite aqueous solution was changed from 0.025 to 2.5 mol / L, and the reaction atmosphere temperature was changed from 30 to 50 ° C. Thus, the average nickel valence of nickel oxyhydroxide was variously changed as shown in Table 1.

得られたマンガンを含むオキシ水酸化ニッケル粉末の平均ニッケル価数を以下の化学測定により算出した。
(A)ニッケルおよびマンガンの重量比率の測定
ニッケルの重量比率を上記と同様の方法により算出した。一方、オキシ水酸化ニッケル中に固溶するマンガンの重量比率は、オキシ水酸化ニッケル粉末に硝酸水溶液を加えて加熱・全溶解させた後、得られた溶液に関してICP発光分析(VARIAN社製のVISTA−RL)を行って、定量することにより求めた。
The average nickel valence of the obtained nickel oxyhydroxide powder containing manganese was calculated by the following chemical measurement.
(A) Measurement of weight ratio of nickel and manganese The weight ratio of nickel was calculated by the same method as described above. On the other hand, the weight ratio of manganese solid-dissolved in nickel oxyhydroxide was determined by adding an aqueous nitric acid solution to nickel oxyhydroxide powder and heating and dissolving it completely. Then, the obtained solution was subjected to ICP emission analysis (VISTA manufactured by VARIAN). -RL) and determined by quantification.

(B)酸化還元滴定による平均ニッケル価数の測定
マンガンが固溶したオキシ水酸化ニッケル粉末0.2gにヨウ化カリウム1gと硫酸25cm3を加え、十分に攪拌を続けることで完全に溶解させた。この過程で価数の高いニッケルイオンおよびマンガンイオンは、ヨウ化カリウムをヨウ素に酸化し、自身は2価に還元される。20分の放置後、pH緩衝液としての酢酸−酢酸アンモニウム水溶液とイオン交換水を加えて反応を停止させ、生成・遊離したヨウ素を0.1mol/Lのチオ硫酸ナトリウム水溶液で滴定した。この際の滴定量は上記のような価数が2価よりも大きい金属イオン量を反映する。
そこで、(B)で求めたニッケルイオンおよびマンガンイオンの量と、(A)で求めたニッケルおよびマンガンの重量比率とを用い、オキシ水酸化ニッケル中のマンガンの価数を4価と仮定して、各オキシ水酸化ニッケル粉末の平均ニッケル価数を求めた。
(B) Measurement of average nickel valence by oxidation-reduction titration 1 g of potassium iodide and 25 cm 3 of sulfuric acid were added to 0.2 g of nickel oxyhydroxide powder in which manganese was solid-dissolved, and completely dissolved by continuing sufficient stirring. . In this process, nickel ions and manganese ions having high valences oxidize potassium iodide to iodine, and are themselves reduced to bivalence. After standing for 20 minutes, the reaction was stopped by adding an acetic acid-ammonium acetate aqueous solution and ion-exchanged water as a pH buffer, and the produced and liberated iodine was titrated with a 0.1 mol / L sodium thiosulfate aqueous solution. The titer at this time reflects the amount of metal ions having a valence of greater than 2 as described above.
Therefore, assuming that the valence of manganese in nickel oxyhydroxide is tetravalent using the amounts of nickel ions and manganese ions obtained in (B) and the weight ratio of nickel and manganese obtained in (A). The average nickel valence of each nickel oxyhydroxide powder was determined.

負極容量/正極容量の異なる正極合剤およびゲル状負極と、マンガンの固溶量および平均ニッケル価数の異なるオキシ水酸化ニッケルとを表2に示すように組み合わせて、実施例1と同様の方法により電池19〜34を作製した。なお、電池21〜32は実施例の電池であり、電池19、20、33、および34は比較例の電池である。これらの電池の評価結果を表2に示す。表2中の放電性能指数は、電池20の放電時間を100とした指数で表した。   A method similar to that of Example 1 by combining a positive electrode mixture and a gelled negative electrode having different negative electrode capacities / positive electrode capacities with nickel oxyhydroxide having different manganese solid solution amounts and different average nickel valences as shown in Table 2. Thus, batteries 19 to 34 were produced. The batteries 21 to 32 are the batteries of the examples, and the batteries 19, 20, 33, and 34 are the batteries of the comparative examples. Table 2 shows the evaluation results of these batteries. The discharge performance index in Table 2 is an index with the discharge time of the battery 20 as 100.

Figure 2007035506
Figure 2007035506

マンガンが0.5〜10mol%固溶し、平均ニッケル価数が3.05〜3.15であるオキシ水酸化ニッケル粉末と、負極容量/正極容量が1.0〜1.2である電池21〜32では、強負荷放電性能および弱負荷放電性能が良好であるとともに、優れた耐漏液性が得られた。   Manganese is dissolved in 0.5 to 10 mol%, nickel oxyhydroxide powder having an average nickel valence of 3.05 to 3.15, and battery 21 having negative electrode capacity / positive electrode capacity of 1.0 to 1.2 In .about.32, high load discharge performance and low load discharge performance were good, and excellent liquid leakage resistance was obtained.

《実施例3》
二酸化マンガンとオキシ水酸化ニッケルとの重量比を表3に示すように種々に変えた以外は、電池3〜5または13〜15と同様の構成の電池35〜60を作製した。これらの電池の評価結果を表3に示す。表3中の放電性能指数は、電池13の放電時間を100とした指数で表した。
Example 3
Batteries 35 to 60 having the same configuration as the batteries 3 to 5 or 13 to 15 were prepared except that the weight ratio of manganese dioxide and nickel oxyhydroxide was variously changed as shown in Table 3. Table 3 shows the evaluation results of these batteries. The discharge performance index in Table 3 is an index with the discharge time of the battery 13 as 100.

Figure 2007035506
Figure 2007035506

二酸化マンガンと、オキシ水酸化ニッケルとの重量比が20〜90:80〜10の場合に、優れた耐漏液性および放電性能が得られた。   When the weight ratio of manganese dioxide to nickel oxyhydroxide was 20 to 90:80 to 10, excellent liquid leakage resistance and discharge performance were obtained.

本発明のアルカリ電池は、通信機器や携帯機器等の電子機器の電源として好適に用いられる。   The alkaline battery of the present invention is suitably used as a power source for electronic devices such as communication devices and portable devices.

本発明のアルカリ電池の一例の一部を断面にした正面図である。It is the front view which made a part of one example of the alkaline battery of the present invention into the section.

符号の説明Explanation of symbols

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル

DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Bottom plate 8 Exterior label

Claims (4)

正極活物質として二酸化マンガンおよびオキシ水酸化ニッケルを含む正極と、負極活物質として亜鉛を含む負極と、前記正極と負極との間に配されるセパレータと、アルカリ電解液とを具備するアルカリ電池であって、
前記オキシ水酸化ニッケルの平均ニッケル価数が3.05〜3.15であり、かつ前記正極の電気容量に対する前記負極の電気容量の比が1.0〜1.2であることを特徴とするアルカリ電池。
An alkaline battery comprising: a positive electrode including manganese dioxide and nickel oxyhydroxide as a positive electrode active material; a negative electrode including zinc as a negative electrode active material; a separator disposed between the positive electrode and the negative electrode; and an alkaline electrolyte. There,
The nickel oxyhydroxide has an average nickel valence of 3.05 to 3.15, and a ratio of an electric capacity of the negative electrode to an electric capacity of the positive electrode is 1.0 to 1.2. Alkaline battery.
前記オキシ水酸化ニッケル中にマンガンが0.5〜10mol%固溶している請求項1記載のアルカリ電池。   The alkaline battery according to claim 1, wherein 0.5 to 10 mol% of manganese is dissolved in the nickel oxyhydroxide. 前記二酸化マンガンとオキシ水酸化ニッケルとの重量比が、20〜90:80〜10である請求項1記載のアルカリ電池。   The alkaline battery according to claim 1, wherein a weight ratio of manganese dioxide to nickel oxyhydroxide is 20 to 90:80 to 10. 前記二酸化マンガンとオキシ水酸化ニッケルとの重量比が、40〜70:60〜30である請求項1記載のアルカリ電池。

The alkaline battery according to claim 1, wherein a weight ratio of the manganese dioxide to nickel oxyhydroxide is 40 to 70:60 to 30.

JP2005219130A 2005-07-28 2005-07-28 Alkaline battery Pending JP2007035506A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005219130A JP2007035506A (en) 2005-07-28 2005-07-28 Alkaline battery
PCT/JP2006/314502 WO2007013374A1 (en) 2005-07-28 2006-07-21 Alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219130A JP2007035506A (en) 2005-07-28 2005-07-28 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2007035506A true JP2007035506A (en) 2007-02-08

Family

ID=37683272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219130A Pending JP2007035506A (en) 2005-07-28 2005-07-28 Alkaline battery

Country Status (2)

Country Link
JP (1) JP2007035506A (en)
WO (1) WO2007013374A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162745A1 (en) * 2007-12-19 2009-06-25 Shinichi Iwamoto Alkaline battery
JP2013054860A (en) * 2011-09-01 2013-03-21 Fdk Energy Co Ltd Alkaline cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4322472B2 (en) * 2002-05-31 2009-09-02 東芝電池株式会社 Sealed nickel zinc primary battery
JP2004164863A (en) * 2002-11-08 2004-06-10 Toshiba Battery Co Ltd Sealed type nickel zinc primary cell
JPWO2005045958A1 (en) * 2003-11-06 2007-11-29 松下電器産業株式会社 Method for producing alkaline battery and positive electrode material for alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162745A1 (en) * 2007-12-19 2009-06-25 Shinichi Iwamoto Alkaline battery
JP2013054860A (en) * 2011-09-01 2013-03-21 Fdk Energy Co Ltd Alkaline cell

Also Published As

Publication number Publication date
WO2007013374A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5021940B2 (en) Preparation of inorganic hydrogel electrolyte for all-solid alkaline secondary battery
EP1919012A1 (en) Alkaline dry battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP5850548B2 (en) Method for producing cobalt cerium compound
KR100882403B1 (en) Alkaline cell
US8877372B2 (en) Alkaline secondary battery
JP2006040887A (en) Alkaline battery
JP2007035506A (en) Alkaline battery
WO2005015666A1 (en) Alkaline battery
JP2006294288A (en) Alkaline dry cell
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP3695927B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, electrolytic solution for alkaline storage battery, and alkaline storage battery using these nickel positive electrode and electrolytic solution
JP4056322B2 (en) Alkaline battery
WO2019164564A1 (en) Sulfate and sulfonate based surfactants for alkaline battery anode
JP2006221831A (en) Alkaline dry cell
JPH1197009A (en) Non-sintered type electrode for alkaline storage battery
JP3631206B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP2000159522A (en) Magnesium-including lithium-manganese compound oxide having spinel structure, and production and use of the same compound oxide
WO2007020828A1 (en) Alkaline dry cell
CN106328932A (en) Li-Ni composite oxide particle powder and manufacture method thereof and lithium ion secondary cell
JP2000251924A (en) Sealed alkaline zinc storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2000251925A (en) Sealed alkaline zinc storage battery
JP2012059574A (en) Cobalt zirconium compound and active material, method for manufacturing the same, and alkaline storage battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226