JP4056322B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP4056322B2
JP4056322B2 JP2002233751A JP2002233751A JP4056322B2 JP 4056322 B2 JP4056322 B2 JP 4056322B2 JP 2002233751 A JP2002233751 A JP 2002233751A JP 2002233751 A JP2002233751 A JP 2002233751A JP 4056322 B2 JP4056322 B2 JP 4056322B2
Authority
JP
Japan
Prior art keywords
positive electrode
tio
alkaline
battery
load discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002233751A
Other languages
Japanese (ja)
Other versions
JP2004079203A (en
Inventor
泰史 住廣
安彦 小路
誠司 和田
光司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002233751A priority Critical patent/JP4056322B2/en
Publication of JP2004079203A publication Critical patent/JP2004079203A/en
Application granted granted Critical
Publication of JP4056322B2 publication Critical patent/JP4056322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ乾電池、さらに詳しくは正極活物質の利用率向上に関する。
【0002】
【従来の技術】
昨今の携帯電話などの携帯情報機器の進歩および発展にともない、強負荷放電が可能なアルカリ乾電池が望まれている。しかし、従来のアルカリ乾電池の寿命は短いため、長い寿命を有するアルカリ乾電池、さらに、優れた強負荷放電特性を有するアルカリ乾電池が要求されている。
アルカリ乾電池の正極においては、活物質として二酸化マンガンが用いられ、導電材として黒鉛が用いられている。これに対し、強負荷放電特性を向上させるために、さらに添加剤としてアナターゼ型の酸化チタン(例えば特開平8−510355号公報)、チタン含有複合酸化物(例えば特開平9−139201号公報)、硫酸バリウムなどのバリウム化合物(例えば国際公開第00/30198号パンフレット)などが用いられている。
【0003】
しかし、正極に酸化チタン、チタン含有複合酸化物またはバリウム化合物を添加すると、強負荷放電特性はある程度まで向上するが、活物質利用率は充分でない。また、上記従来の添加剤の効果を充分なものとするためには、多量の添加剤を用いる必要がある。そのため、正極における活物質である二酸化マンガンの充填量が減少し、軽負荷放電特性が低下するという問題がある。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、上記従来の問題を解決するため、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のアルカリ乾電池は、負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池であって、前記正極が、二酸化マンガンの0.01重量%以上3重量%以下に相当する量のTiO(OH)2を含み、前記TiO(OH)2の(101)面におけるX線回折ピークの半価幅βが、0.25°以上1.30°以下であることを特徴とする。
【0006】
【発明の実施の形態】
本発明者らは、上述のような従来の問題点を解決すべく、正極用の添加剤について鋭意検討を重ねた。そして、正極用の添加剤としてTiO(OH)2を用いれば有効であることを見出した。TiO(OH)2は、工業的にはイルメナイト鉱(FeTiO3)を硫酸と反応させた後、加水分解することにより得られ、低結晶性および多孔性を有する。このため、洗浄した後においても、Fe2+イオンなどの不純物イオンが結晶内に残留しやすい。また、低結晶性に起因して電池内にあっては電解液に溶解しやすく、不純物イオンが溶出しやすい。この不純物イオンは、負極と反応して水素ガスを発生する。したがって、TiO(OH)2の添加量が多くなると発生する水素ガスの量が多くなり、電解液が外部へ漏れ出す可能性がある。そのため、本発明者らは、TiO(OH)2の好ましい結晶性および添加量についても検討した。
【0007】
すなわち、本発明は、負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池において、前記正極にTiO(OH)2を添加することを特徴とする。さらに、具体的には、X線回折測定により得られるTiO(OH)2の(101)面における回折ピークの半価幅βは、通常0.25°以上3.12°以下であるが、本発明では前記半価幅βが、0.25°以上1.30°以下であるTiO(OH)2を用いる。
【0008】
半価幅βが0.25°よりも小さいと結晶性が高くなり過ぎ、結晶粒子の粒子径が大きく比表面積が小さくなってしまう。その結果、個々の粒子の液保持性が低下し、添加量が多くなって軽負荷放電特性が低下してしまう。一方、半価幅βが1.30°よりも大きくなると結晶粒子中にFe2+イオンなどの不純物イオンが残留しやすくなる。また、結晶粒子の結晶性が低いため電解液への溶解度が高く、不純物イオンが溶出しやすくなる。この不純物イオンが負極と反応して、水素ガスを発生し漏液の原因となる。
【0009】
また、前記正極への二酸化マンガンに対するTiO(OH)2の添加量を0.01重量%以上3重量%以下とする。添加量が0.01重量%未満では、強負荷および中負荷放電特性の向上が不充分となり、添加量が3重量%を超えると、漏液が発生する。
このような構成とすることにより、得られるアルカリ乾電池の強負荷および中負荷放電における正極活物質の利用率を向上させることができる。
【0010】
本発明における正極用の添加剤であるTiO(OH)2は、比表面積が70〜243m2/gと大きいため、電解液を保持する効果が大きい。単位量当たりの粒子の表面に吸着される電解液が増大するため、少量の添加量で大きな効果が得られる。
【0011】
このため、正極の液保持性が改善され、正極の内部抵抗が低減することにより、放電末期の電圧降下が抑制され、強負荷および中負荷放電における正極活物質の利用率が向上する。また、少量の添加でも十分な効果が得られるため、添加量は少なくて済み、軽負荷放電特性の低下も抑制できる。
負極およびアルカリ電解液については、従来のものを用いればよい。
【0012】
【実施例】
以下に、実施例を用いて本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
【0013】
《実施例1〜8および比較例1〜3》
本発明の実施例において作製したアルカリ乾電池の一部を断面にした正面図を図1に示す。
i)正極用の添加剤TiO(OH)2の調製
イルメナイト鉱(FeTiO3)を硫酸と反応させた後、加水分解することによりTiO(OH)2を得た。さらに、得られたTiO(OH)2を表1に示す所定の温度で30分間焼成した。このようにして結晶性および半価幅の異なる5種類のTiO(OH)2を作製した。
【0014】
ii)正極合剤の作製
二酸化マンガンと黒鉛とを、90:10の重量比で混合し、さらに、上記で得られた結晶性の異なる5種類のTiO(OH)2を二酸化マンガンに対して表1に示す所定量(x重量%)になるように添加し、混合した。得られた混合物とアルカリ電解液とを、100:3の重量比で混合し、充分に攪拌した後、フレーク状に圧縮成型した。ついで、フレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを円筒形に加圧成型してペレット状の正極合剤2を得た。この正極合剤2個を電池ケース1内に挿入し、加圧治具により正極合剤2を再成型して電池ケース1の内壁に密着させた。
【0015】
iii)負極の作製
ゲル化剤としてポリアクリル酸ナトリウムと、アルカリ電解液として40重量%の水酸化ナトリウム水溶液と、負極活物質として亜鉛粉末とを1:33:66の重量比で混合し、ゲル状負極3を得た。
【0016】
iv)アルカリ乾電池の作製
上記のようにして電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ所定量のアルカリ電解液を注入した。所定時間経過した後、上記で得られたゲル状負極3をセパレータ4内に充填した。なお、セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を用いた。
【0017】
負極集電子6をゲル状負極3の中央に差し込んだ。なお、負極集電子6には、ガスケット5および負極端子を兼ねた底板7を一体化させた。そして、電池ケース1内の開口端部を、ガスケット5の端部を介して底板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。外装ラベル8で電池ケース1の外表面を被覆して、単一型のアルカリ乾電池を得た。
【0018】
《比較例4〜7》
正極用の添加剤として表1に示すTiO2を所定量(x重量%)になるように添加した以外は、実施例1と同様の方法により従来のアルカリ乾電池を得た。
得られた各種添加剤およびアルカリ乾電池は以下のようにして評価した。
【0019】
[評価]
▲1▼正極用の添加剤の粉末X線回折測定
表1に示す正極用の各種添加剤について以下の方法で粉末X線回折測定を行った。
回転対陰極型X線発生装置を用い、CuKα線を管電圧40kV、管電流40mAおよび出力1.6kWの条件で発生させて各種添加剤を測定した。なお、測定条件は、測定範囲を回折角2θで10〜80°、発散スリットを1°、散乱スリットを1°受光スリットを0.3mm、スキャンステップを0.01°、スキャンスピードを1.0s/stepとした。
そして、測定の結果得られた回折線より(101)面に帰属する回折ピークの半価幅を求めた。なお、回折ピークの半価幅は、回折ピーク強度の半分の強度における2θで測定したピーク幅である。また、θはX線の入射角である。
【0020】
▲2▼各種放電試験
強負荷放電特性を評価するために、初度(製造直後)のアルカリ乾電池を、閉路電圧が0.9Vに達するまで2.2Ωの負荷で連続放電させ、そのときの放電時間を測定した。正極に添加剤を添加しないアルカリ乾電池(比較例1)の放電時間を100として、強負荷放電特性を相対的に評価した。
また、中負荷放電特性は、10Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。
また、軽負荷放電特性は、39Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。
【0021】
▲3▼漏液試験
実施例1〜8および比較例1〜7で作製した初度(製造直後)のアルカリ乾電池各10個を60℃の環境下で3ヶ月間保存した。そして、保存後のアルカリ乾電池について、漏液の発生頻度を調査した。
上記各試験の評価結果を表1に示す。
【0022】
【表1】

Figure 0004056322
【0023】
表1より、実施例1〜8の電池、すなわち、二酸化マンガンに対する添加量xが0.01重量%以上3重量%以下であり、半価幅βが0.25°以上1.30°以下であるTiO(OH)2を正極用の添加剤として含んだ正極を用いた電池では、優れた強負荷および中負荷放電特性を示しており、軽負荷放電特性も低下していないことがわかった。
なお、添加量xが3重量%を超え、半価幅βが1.30°を超えると電池の漏液がみられた。したがって、優れた放電特性と同時に漏液を防止するためには、添加量xが3重量%以下で、半価幅βが1.30°以下であることが好ましいことが示された。
【0024】
【発明の効果】
以上のように本発明によれば、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供できる。
【図面の簡単な説明】
【図1】本発明のアルカリ乾電池の一例の一部を断面にした正面図である。
【符号の説明】
1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline dry battery, and more particularly to an improvement in utilization rate of a positive electrode active material.
[0002]
[Prior art]
With recent progress and development of portable information devices such as mobile phones, alkaline dry batteries capable of heavy load discharge are desired. However, since the lifetime of the conventional alkaline battery is short, there is a demand for an alkaline battery having a long life and an alkaline battery having excellent heavy load discharge characteristics.
In the positive electrode of an alkaline battery, manganese dioxide is used as an active material, and graphite is used as a conductive material. On the other hand, in order to improve the heavy load discharge characteristics, anatase type titanium oxide (for example, JP-A-8-510355), titanium-containing composite oxide (for example, JP-A-9-139201), as additives, Barium compounds such as barium sulfate (for example, International Publication No. 00/30198 pamphlet) are used.
[0003]
However, when titanium oxide, a titanium-containing composite oxide or a barium compound is added to the positive electrode, the heavy load discharge characteristics are improved to some extent, but the active material utilization rate is not sufficient. Moreover, in order to make the effect of the conventional additive sufficient, it is necessary to use a large amount of additive. Therefore, there is a problem that the amount of filling of manganese dioxide, which is an active material in the positive electrode, is reduced, and light load discharge characteristics are deteriorated.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an alkaline dry battery that is excellent in heavy load discharge characteristics and medium load discharge characteristics and suppresses a decrease in light load discharge characteristics in order to solve the above-described conventional problems.
[0005]
[Means for Solving the Problems]
The alkaline dry battery of the present invention is an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, wherein the positive electrode is 0.01 wt% or more and 3 wt% or less of manganese dioxide. wherein the amount of TiO (OH) 2 which corresponds to, in that the TiO (OH) half value width of the X-ray diffraction peak at 2 (101) plane β is at 0.25 ° or more 1.30 ° or less Features.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the conventional problems as described above, the present inventors have conducted intensive studies on additives for positive electrodes. The inventors have found that it is effective to use TiO (OH) 2 as an additive for the positive electrode. TiO (OH) 2 is industrially obtained by reacting ilmenite ore (FeTiO 3 ) with sulfuric acid and then hydrolyzing it, and has low crystallinity and porosity. For this reason, even after washing, impurity ions such as Fe 2+ ions tend to remain in the crystal. Also, due to the low crystallinity, in the battery, it is easy to dissolve in the electrolytic solution, and impurity ions are likely to elute. The impurity ions react with the negative electrode to generate hydrogen gas. Therefore, when the amount of TiO (OH) 2 added increases, the amount of hydrogen gas generated increases and the electrolyte may leak out. Therefore, the present inventors also examined the preferable crystallinity and addition amount of TiO (OH) 2 .
[0007]
That is, the present invention is characterized in that, in an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, TiO (OH) 2 is added to the positive electrode. More specifically, the half-value width β of the diffraction peak on the (101) plane of TiO (OH) 2 obtained by X-ray diffraction measurement is usually 0.25 ° to 3.12 °. In the invention, TiO (OH) 2 having a half width β of 0.25 ° to 1.30 ° is used.
[0008]
If the half width β is smaller than 0.25 °, the crystallinity becomes too high, and the particle diameter of the crystal particles is large and the specific surface area is small. As a result, the liquid retention of individual particles is reduced, the amount of addition is increased, and the light load discharge characteristics are reduced. On the other hand, when the half width β is larger than 1.30 °, impurity ions such as Fe 2+ ions easily remain in the crystal grains. Further, since the crystallinity of the crystal particles is low, the solubility in the electrolytic solution is high, and impurity ions are easily eluted. The impurity ions react with the negative electrode to generate hydrogen gas and cause leakage.
[0009]
Moreover, the addition amount of TiO (OH) 2 with respect to manganese dioxide to the positive electrode is 0.01 wt% or more and 3 wt% or less. When the addition amount is less than 0.01% by weight, the improvement of the heavy load and medium load discharge characteristics is insufficient, and when the addition amount exceeds 3% by weight, liquid leakage occurs.
By setting it as such a structure, the utilization factor of the positive electrode active material in the heavy load and medium load discharge of the obtained alkaline dry battery can be improved.
[0010]
Since the specific surface area of TiO (OH) 2 which is an additive for the positive electrode in the present invention is as large as 70 to 243 m 2 / g, the effect of retaining the electrolytic solution is large. Since the electrolytic solution adsorbed on the surface of the particles per unit amount increases, a large effect can be obtained with a small amount of addition.
[0011]
For this reason, the liquid retention of the positive electrode is improved and the internal resistance of the positive electrode is reduced, so that the voltage drop at the end of the discharge is suppressed, and the utilization rate of the positive electrode active material in heavy load and medium load discharge is improved. In addition, since a sufficient effect can be obtained even with a small amount of addition, the addition amount can be small, and a decrease in light load discharge characteristics can be suppressed.
As the negative electrode and the alkaline electrolyte, conventional ones may be used.
[0012]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
[0013]
<< Examples 1-8 and Comparative Examples 1-3 >>
FIG. 1 is a front view showing a cross section of a part of an alkaline battery produced in an example of the present invention.
i) Preparation of additive TiO (OH) 2 for positive electrode After reacting ilmenite ore (FeTiO 3 ) with sulfuric acid, it was hydrolyzed to obtain TiO (OH) 2 . Further, the obtained TiO (OH) 2 was baked at a predetermined temperature shown in Table 1 for 30 minutes. In this way, five types of TiO (OH) 2 having different crystallinity and half width were produced.
[0014]
ii) Preparation of positive electrode mixture Manganese dioxide and graphite were mixed at a weight ratio of 90:10, and the five types of TiO (OH) 2 having different crystallinity obtained above were mixed with respect to manganese dioxide. It added so that it might become the predetermined amount (x weight%) shown in 1, and mixed. The obtained mixture and the alkaline electrolyte were mixed at a weight ratio of 100: 3, sufficiently stirred, and then compression molded into flakes. Next, the flaky positive electrode mixture was pulverized into granules, classified by a sieve, and pressed into a cylindrical shape by 10 to 100 mesh to obtain a pellet-like positive electrode mixture 2. Two of these positive electrode mixtures were inserted into the battery case 1, and the positive electrode mixture 2 was remolded with a pressure jig and adhered to the inner wall of the battery case 1.
[0015]
iii) Preparation of negative electrode Sodium polyacrylate as a gelling agent, 40% by weight sodium hydroxide aqueous solution as an alkaline electrolyte, and zinc powder as a negative electrode active material were mixed at a weight ratio of 1:33:66 to obtain a gel. A negative electrode 3 was obtained.
[0016]
iv) Production of Alkaline Dry Battery A bottomed cylindrical separator 4 is arranged in the center of the positive electrode mixture 2 arranged in the battery case 1 as described above, and a predetermined amount of alkaline electrolyte is injected into the separator 4. . After a predetermined time had elapsed, the gelled negative electrode 3 obtained above was filled in the separator 4. In addition, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.
[0017]
The negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 was integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal. And the opening edge part in the battery case 1 was crimped to the peripheral part of the bottom plate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. The outer surface of the battery case 1 was covered with the exterior label 8 to obtain a single type alkaline dry battery.
[0018]
<< Comparative Examples 4-7 >>
A conventional alkaline battery was obtained in the same manner as in Example 1 except that TiO 2 shown in Table 1 was added as a positive electrode additive so as to have a predetermined amount (x wt%).
The various additives and alkaline batteries obtained were evaluated as follows.
[0019]
[Evaluation]
(1) Powder X-ray diffraction measurement of positive electrode additive Powder X-ray diffraction measurement was carried out by the following method for the various positive electrode additives shown in Table 1.
Using a rotating counter-cathode X-ray generator, CuKα rays were generated under the conditions of a tube voltage of 40 kV, a tube current of 40 mA, and an output of 1.6 kW, and various additives were measured. The measurement conditions were as follows: the measurement range was 10 to 80 ° at a diffraction angle 2θ, the divergence slit was 1 °, the scattering slit was 1 °, the light receiving slit was 0.3 mm, the scanning step was 0.01 °, and the scanning speed was 1.0 s. / Step.
Then, the half width of the diffraction peak attributed to the (101) plane was determined from the diffraction line obtained as a result of the measurement. The half width of the diffraction peak is a peak width measured by 2θ at half the intensity of the diffraction peak. Θ is the incident angle of X-rays.
[0020]
(2) Various discharge tests In order to evaluate the heavy load discharge characteristics, the initial (immediately after production) alkaline dry battery was continuously discharged with a load of 2.2Ω until the closed circuit voltage reached 0.9V, and the discharge time at that time Was measured. The heavy load discharge characteristics were relatively evaluated with the discharge time of an alkaline dry battery (Comparative Example 1) in which no additive was added to the positive electrode being 100.
Further, the medium load discharge characteristics were evaluated in the same manner as in the case of the above heavy load discharge characteristics except that continuous discharge was performed with a load of 10Ω.
The light load discharge characteristics were evaluated in the same manner as in the case of the heavy load discharge characteristics except that the discharge was continuously performed with a load of 39Ω.
[0021]
{Circle around (3)} Liquid Leakage Test Each of the 10 first-time (immediately after production) alkaline dry batteries prepared in Examples 1-8 and Comparative Examples 1-7 was stored in an environment of 60 ° C. for 3 months. And the occurrence frequency of liquid leakage was investigated about the alkaline dry battery after a preservation | save.
Table 1 shows the evaluation results of the above tests.
[0022]
[Table 1]
Figure 0004056322
[0023]
From Table 1, the batteries x of Examples 1 to 8, that is, the addition amount x with respect to manganese dioxide is 0.01 wt% or more and 3 wt% or less, and the half width β is 0.25 ° or more and 1.30 ° or less. It was found that a battery using a positive electrode containing certain TiO (OH) 2 as an additive for the positive electrode showed excellent heavy load and medium load discharge characteristics, and light load discharge characteristics were not deteriorated.
When the addition amount x exceeded 3% by weight and the half width β exceeded 1.30 °, battery leakage was observed. Therefore, it was shown that the addition amount x is preferably 3% by weight or less and the half-value width β is preferably 1.30 ° or less in order to prevent leakage as well as excellent discharge characteristics.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an alkaline dry battery that is excellent in a heavy load discharge characteristic and a medium load discharge characteristic and in which a decrease in light load discharge characteristic is suppressed.
[Brief description of the drawings]
FIG. 1 is a front view, partly in section, of an example of an alkaline battery according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Bottom plate 8 Exterior label

Claims (1)

負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池であって、
前記正極が、二酸化マンガンの0.01重量%以上3重量%以下に相当する量のTiO(OH)2を含み、前記TiO(OH)2の(101)面におけるX線回折ピークの半価幅βが、0.25°以上1.30°以下であることを特徴とするアルカリ乾電池。
An alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder,
The positive electrode contains TiO (OH) 2 in an amount corresponding to 0.01% by weight or more and 3% by weight or less of manganese dioxide, and the half width of the X-ray diffraction peak on the (101) plane of the TiO (OH) 2 An alkaline dry battery characterized in that β is 0.25 ° or more and 1.30 ° or less.
JP2002233751A 2002-08-09 2002-08-09 Alkaline battery Expired - Lifetime JP4056322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233751A JP4056322B2 (en) 2002-08-09 2002-08-09 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233751A JP4056322B2 (en) 2002-08-09 2002-08-09 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2004079203A JP2004079203A (en) 2004-03-11
JP4056322B2 true JP4056322B2 (en) 2008-03-05

Family

ID=32018802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233751A Expired - Lifetime JP4056322B2 (en) 2002-08-09 2002-08-09 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4056322B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037489A (en) * 2001-11-01 2005-04-22 마쯔시다덴기산교 가부시키가이샤 Alkaline dry cell
JP4827501B2 (en) * 2005-11-18 2011-11-30 日立マクセルエナジー株式会社 Alkaline battery
JP2009146710A (en) * 2007-12-13 2009-07-02 Panasonic Corp Alkaline primary battery

Also Published As

Publication number Publication date
JP2004079203A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1739773B1 (en) Alkaline battery
JP5235060B2 (en) Positive electrode for alkaline battery and alkaline battery
JP2009517805A (en) Rechargeable alkaline manganese batteries with reduced capacity degradation and improved cycle life
CN1653631A (en) Alkaline cell with improved cathode
CN1315749A (en) Pasted positive electrode for alkaline accumulator and nickel-hydrogen battery
EP2479824B1 (en) Cylindrical alkaline battery
US8728652B2 (en) Cylindrical alkaline battery having specific electrode packing densities and electrode thickness
JPH11500258A (en) Additives for primary electrochemical cells with manganese dioxide cathode
JPWO2018163485A1 (en) Alkaline battery
JP4056322B2 (en) Alkaline battery
JP5602313B2 (en) Alkaline battery
JP2006040887A (en) Alkaline battery
US7931986B2 (en) Alkaline battery
JP4767978B2 (en) Alkaline battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JP4852875B2 (en) Alkaline battery
JP4233299B2 (en) Alkaline battery
JP2007035506A (en) Alkaline battery
JP3663071B2 (en) Sealed alkaline zinc storage battery
WO2023157469A1 (en) Alkaline dry cell
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP4137417B2 (en) Alkaline battery
JP2000159522A (en) Magnesium-including lithium-manganese compound oxide having spinel structure, and production and use of the same compound oxide
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP2007048737A (en) Alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Ref document number: 4056322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term