JP4852875B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP4852875B2
JP4852875B2 JP2005124643A JP2005124643A JP4852875B2 JP 4852875 B2 JP4852875 B2 JP 4852875B2 JP 2005124643 A JP2005124643 A JP 2005124643A JP 2005124643 A JP2005124643 A JP 2005124643A JP 4852875 B2 JP4852875 B2 JP 4852875B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
active material
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005124643A
Other languages
Japanese (ja)
Other versions
JP2005332811A (en
Inventor
治成 島村
侯志 高村
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005124643A priority Critical patent/JP4852875B2/en
Publication of JP2005332811A publication Critical patent/JP2005332811A/en
Application granted granted Critical
Publication of JP4852875B2 publication Critical patent/JP4852875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、アルカリ電池の負極活物質として用いる亜鉛または亜鉛合金粉末に関し、とくに負極活物質粉末状態の改良により電池のハイレート放電特性の向上を図るものである。   The present invention relates to zinc or zinc alloy powder used as a negative electrode active material of an alkaline battery, and particularly to improve the high-rate discharge characteristics of the battery by improving the state of the negative electrode active material powder.

従来からアルカリ電池の負極には、負極活物質に亜鉛または亜鉛合金の粉末を用い、これにアルカリ電解液、ゲル化剤を混合したゲル状負極を用いていた。
特開2001−332249号公報
Conventionally, a negative electrode of an alkaline battery uses a gelled negative electrode in which zinc or a zinc alloy powder is used as a negative electrode active material, and an alkaline electrolyte and a gelling agent are mixed therewith.
JP 2001-332249 A

しかしながら、負極活物質粉末は放電時にその表面にZn(OH)4 2-を生成し、その濃度が活物質粒子表面で急激に上昇することがあり、このイオンが亜鉛粒子の表面でZnOやZn(OH)2となって析出していた。そして、これらの生成物は負極活物質表面で抵抗として働き、粒子間の接触状態が悪くなって電池の放電、とくに高率放電時の特性が低下していた。 However, the negative electrode active material powder generates Zn (OH) 4 2− on the surface at the time of discharge, and its concentration may rapidly increase on the surface of the active material particles. It was precipitated as (OH) 2 . And these products acted as resistance on the surface of the negative electrode active material, and the contact state between the particles deteriorated, and the characteristics of the battery discharge, particularly at the high rate discharge, were lowered.

本発明はこのような課題を解決するためのものであり、亜鉛または亜鉛合金の活物質粉末を用いたアルカリ電池の高率放電特性を向上させることを目的とするものである。   The present invention has been made to solve such problems, and it is an object of the present invention to improve the high rate discharge characteristics of an alkaline battery using an active material powder of zinc or a zinc alloy.

上記の課題を解決するために、本発明は、亜鉛又は亜鉛合金の粉末を活物質とする負極合剤とアルカリ電解液とゲル化剤とを含むゲル状負極、および正極を備えたアルカリ電池において、前記活物質粉末は粒子間がで結合されており、前記錫の含有量が前記亜鉛又は亜鉛合金に対して1〜20wt%であることを特徴とするものである。 In order to solve the above-mentioned problems, the present invention provides a gelled negative electrode comprising a negative electrode mixture containing zinc or zinc alloy powder as an active material, an alkaline electrolyte and a gelling agent , and an alkaline battery comprising a positive electrode. , the active material powder is characterized in that is coupled with tin between the particles, the content of the tin is 1 to 20 wt% relative to the zinc or zinc alloy.

また、活物質粉末の粒子間の比表面積が0.01〜10m2/gであることが好ましい。 Moreover, it is preferable that the specific surface area between the particles of the active material powder is 0.01 to 10 m 2 / g.

また、活物質粉末に対するアルカリ電解液量の重量比率が0.1〜2の範囲であることが好ましい。さらに負極合剤は水酸化リチウムを0.15〜0.9wt%の割合で含有することが好ましい。   Moreover, it is preferable that the weight ratio of the amount of the alkaline electrolyte to the active material powder is in the range of 0.1 to 2. Further, the negative electrode mixture preferably contains lithium hydroxide in a proportion of 0.15 to 0.9 wt%.

本発明は、亜鉛又は亜鉛合金の粉末を活物質とする負極合剤を用いた負極、アルカリ電解液、正極を備えたアルカリ電池において、前記活物質粉末の粒子間を焼結または亜鉛以外の金属で結合したことを特徴とするものであるので、活物質粉末間の導電性を向上させて、電池のハイレート放電特性を向上させることができる。   The present invention relates to an alkaline battery including a negative electrode using a negative electrode mixture containing zinc or zinc alloy powder as an active material, an alkaline electrolyte, and a positive electrode. Therefore, it is possible to improve the conductivity between the active material powders and improve the high rate discharge characteristics of the battery.

上記の課題を解決するために、本発明は、亜鉛又は亜鉛合金の粉末を活物質とする負極合剤とアルカリ電解液とゲル化剤とを含むゲル状負極、および正極を備えたアルカリ電池において、前記活物質粉末は粒子間がで結合されており、前記錫の含有量が前記亜鉛又は亜鉛合金に対して1〜20wt%であることを特徴とするものである。 In order to solve the above-mentioned problems, the present invention provides a gelled negative electrode comprising a negative electrode mixture containing zinc or zinc alloy powder as an active material, an alkaline electrolyte and a gelling agent , and an alkaline battery comprising a positive electrode. , the active material powder is characterized in that is coupled with tin between the particles, the content of the tin is 1 to 20 wt% relative to the zinc or zinc alloy.

また、活物質粉末の粒子間の比表面積が0.01〜10m2/gであることが好ましい。 Moreover, it is preferable that the specific surface area between the particles of the active material powder is 0.01 to 10 m 2 / g.

また、活物質粉末に対するアルカリ電解液量の重量比率が0.1〜2の範囲であることが好ましい。さらに負極合剤は水酸化リチウムの0.15〜0.9wt%の割合で含有することが好ましい。   Moreover, it is preferable that the weight ratio of the amount of the alkaline electrolyte to the active material powder is in the range of 0.1 to 2. Further, the negative electrode mixture is preferably contained at a ratio of 0.15 to 0.9 wt% of lithium hydroxide.

この構成により、前記活物質粉末の周囲にZn(OH)4 2-が存在して活物質表面にZn(OH)2やZnOの絶縁被膜が生成されたとしても、活物質粒子間は焼結あるいは亜鉛以外の金属で結合されているため粒子間の導電性が維持され続け、導電性低下を招くことはない。 With this configuration, even if Zn (OH) 4 2− exists around the active material powder and an insulating coating of Zn (OH) 2 or ZnO is generated on the active material surface, the active material particles are sintered between the active material particles. Or since it is couple | bonded with metals other than zinc, the electroconductivity between particle | grains is maintained and it does not cause electroconductivity fall.

また、活物質粉末の比表面積は0.01〜10m2/gであることがとくに好ましい。活物質粉末の比表面積を0.01m2/gより小さくすると活物質粒子自体の大きさが大きくなってしまい、活物質と電解液との反応性が低下し、分極が大きくなる傾向が見られる。逆にこの比表面積が10m2/gより大きくなると活物質と電解液との反応性が高くなりすぎて活物質粉末の腐食が進みガス発生量が増加する傾向が見られる。 The specific surface area of the active material powder is particularly preferably 0.01 to 10 m 2 / g. When the specific surface area of the active material powder is made smaller than 0.01 m 2 / g, the size of the active material particle itself is increased, the reactivity between the active material and the electrolytic solution is lowered, and the polarization tends to increase. . On the contrary, when the specific surface area is larger than 10 m 2 / g, the reactivity between the active material and the electrolytic solution becomes too high, and the active material powder tends to corrode and the gas generation amount tends to increase.

また、活物質粉末に対するアルカリ電解液の重量比率は0.1〜2であることが好ましい。活物質粉末の重量に対する電解液の重量の比率を0.1より小さくすると前記粉末周囲のZn(OH)4 2-の濃度が急激に上昇してしまい、ZnOやZn(OH)2の生成が促進され、そのZnOやZn(OH)2膨張が大き過ぎてしまい、粒子間の結合が切れ、粒子間の導電性が低下する傾向が見られる。逆にこの比率を2より大きくすると負極合剤中で電解液の占める割合が大きくなり、その結果負極合剤中の活物質粉末の量が減り電池容量を低下させる傾向が見られる。 The weight ratio of the alkaline electrolyte to the active material powder is preferably 0.1-2. When the ratio of the weight of the electrolytic solution to the weight of the active material powder is smaller than 0.1, the concentration of Zn (OH) 4 2− around the powder rapidly rises, and ZnO and Zn (OH) 2 are generated. As a result, the expansion of ZnO or Zn (OH) 2 is excessively large, the bonds between the particles are broken, and the conductivity between the particles tends to decrease. Conversely, when this ratio is greater than 2, the proportion of the electrolyte in the negative electrode mixture increases, and as a result, the amount of the active material powder in the negative electrode mixture decreases and the battery capacity tends to decrease.

さらに、負極合剤が水酸化リチウムを0.15wt%〜0.9wt%の割合で含有することにより、亜鉛または亜鉛合金粉末の腐食が抑制されて水素ガス発生をさらに防止することができる。   Furthermore, when the negative electrode mixture contains lithium hydroxide at a ratio of 0.15 wt% to 0.9 wt%, corrosion of zinc or zinc alloy powder can be suppressed and hydrogen gas generation can be further prevented.

また、亜鉛合金の組成としては、水素過電圧の大きなAl,Bi,In,Caを少なくとも1つを亜鉛に含有させた合金にすることで、ガス発生の抑制に効果がある。   In addition, the composition of the zinc alloy is effective in suppressing gas generation by using an alloy in which at least one of Al, Bi, In, and Ca having a large hydrogen overvoltage is contained in zinc.

空気電池の構成について、図1を用いて説明する。図1は空気電池の部分断面図であり、1は負極ケース、2は亜鉛からなる負極、3はリング状の絶縁ガスケット、4は正、負極間のショート防止用セパレータ、5は空気極であり、6は空気極5への酸素供給と電解液の電池外部への漏液を防止するための撥水膜、7は空気を均一に拡散させるための空気拡散紙、8は正極ケースで、その底面には空気拡散紙7を収納するための空気拡散室9を有する。10は正極ケース8底面に設けられた空気孔、11はシール紙で未使用時に空気孔10を封じて空気の侵入を遮断し、自己放電による電池の劣化を防止するためのものである。空気極5は、金属酸化物、黒鉛、活性炭およびフッ素系結着剤を主成分とする触媒12をネット状の集電体13に圧着することにより構成させる。   The configuration of the air battery will be described with reference to FIG. FIG. 1 is a partial cross-sectional view of an air battery, wherein 1 is a negative electrode case, 2 is a negative electrode made of zinc, 3 is a ring-shaped insulating gasket, 4 is a positive electrode, a separator for preventing a short circuit between the negative electrodes, and 5 is an air electrode. , 6 is a water repellent film for preventing oxygen supply to the air electrode 5 and leakage of electrolyte to the outside of the battery, 7 is an air diffusion paper for uniformly diffusing air, and 8 is a positive electrode case. An air diffusion chamber 9 for accommodating the air diffusion paper 7 is provided on the bottom surface. Reference numeral 10 denotes an air hole provided in the bottom surface of the positive electrode case 8, and 11 denotes a seal paper for sealing the air hole 10 when not in use to block air from entering and preventing deterioration of the battery due to self-discharge. The air electrode 5 is configured by pressing a catalyst 12 mainly composed of a metal oxide, graphite, activated carbon, and a fluorine-based binder to a net-like current collector 13.

アルカリ乾電池の構成について、一部を断面にした正面図の図2を用いて説明する。図2において、電池ケース101の内部には、短筒状のペレット形状に成形された正極合剤102、セパレータ104およびゲル状負極103が収容されている。電池ケース101
としては、内面にニッケルメッキが施された鋼のケースを用いることができる。電池ケース101の内面には、複数個の正極合剤102が密着した状態で収容されている。正極合剤102のさらに内側にはセパレータ104が配され、さらにその内側にゲル状負極103が充填されている。正極合剤102はつぎのようにして作製した。まず、二酸化マンガンと黒鉛と電解液とを、90:6:1の重量割合で混合し、得られた混合物を充分に撹拌した後にフレーク状に圧縮成形した。ついで、フレーク状の正極合剤を粉砕して顆粒状の正極合剤とし、顆粒状の正極合剤を篩によって分級し、10〜100メッシュの顆粒を中空円筒形に加圧成形してペレット状の正極合剤102を得た。ここで、正極は二酸化マンガンとオキシ水酸化ニッケルの混合物であっても良い。ついで4個の正極合剤102を電池ケース101内に挿入し、加圧治具によって正極合剤102を再成形して電池ケース101の内壁に密着させた。上記のようにして電池ケース101内に配置された正極合剤102の中央に有底円筒形のセパレータ104を配置し、セパレータ104内へ所定量のアルカリ電解液を注入した。所定時間経過後、アルカリ電解液とゲル化剤と亜鉛合金粉末とを含むゲル状負極103をセパレータ104内へ充填した。ゲル状負極103には、ゲル化剤であるポリアクリル酸ナトリウム1重量部、水酸化カリウム水溶液33重量部、ならびに66重量部の亜鉛合金粉末を含むものを用いた。また、セパレータ104は、ポリビニルアルコール繊維とレーヨン繊維を重量比率7:10で混抄した不織布(厚さ220μm)を用いた。なお、用いたセパレータの密度は0.30g/cm3、前記セパレータを構成する繊維の繊度は0.3デニールであった。なお、繊維の比率はこれに限られず、また、バインダーとして他の繊維を加えてもよい。続いて、負極集電子106をゲル状負極103の中央に差し込んだ。なお、負極集電子106には、ガスケット105および負極端子を兼ねる底板107を一体化させた。そして、電池ケース101の開口端部を、ガスケット105の端部を介して、底板107の周縁部にかしめつけ、電池ケース101の開口部を封口した。最後に、外装ラベル108で電池ケース101の外表面を被覆して、アルカリ乾電池を得た。
The configuration of the alkaline battery will be described with reference to FIG. In FIG. 2, a positive electrode mixture 102, a separator 104, and a gelled negative electrode 103 formed in a short cylindrical pellet shape are accommodated in the battery case 101. Battery case 101
For example, a steel case whose inner surface is nickel-plated can be used. On the inner surface of the battery case 101, a plurality of positive electrode mixtures 102 are accommodated in close contact. A separator 104 is disposed further inside the positive electrode mixture 102, and a gelled negative electrode 103 is further filled therein. The positive electrode mixture 102 was produced as follows. First, manganese dioxide, graphite, and an electrolytic solution were mixed at a weight ratio of 90: 6: 1, and the resulting mixture was sufficiently stirred and then compression-molded into flakes. Next, the flaky positive electrode mixture is pulverized into a granular positive electrode mixture, the granular positive electrode mixture is classified by a sieve, and a 10-100 mesh granule is pressure-molded into a hollow cylindrical shape to form a pellet. Of the positive electrode mixture 102 was obtained. Here, the positive electrode may be a mixture of manganese dioxide and nickel oxyhydroxide. Next, the four positive electrode mixtures 102 were inserted into the battery case 101, and the positive electrode mixture 102 was remolded with a pressure jig and adhered to the inner wall of the battery case 101. A bottomed cylindrical separator 104 was placed in the center of the positive electrode mixture 102 placed in the battery case 101 as described above, and a predetermined amount of alkaline electrolyte was injected into the separator 104. After elapse of a predetermined time, a gelled negative electrode 103 containing an alkaline electrolyte, a gelling agent, and a zinc alloy powder was filled into the separator 104. As the gelled negative electrode 103, one containing 1 part by weight of sodium polyacrylate as a gelling agent, 33 parts by weight of aqueous potassium hydroxide, and 66 parts by weight of zinc alloy powder was used. The separator 104 was a non-woven fabric (thickness 220 μm) obtained by mixing polyvinyl alcohol fibers and rayon fibers at a weight ratio of 7:10. The separator used had a density of 0.30 g / cm 3 , and the fineness of the fibers constituting the separator was 0.3 denier. In addition, the ratio of a fiber is not restricted to this, You may add another fiber as a binder. Subsequently, the negative electrode current collector 106 was inserted into the center of the gelled negative electrode 103. The negative electrode current collector 106 is integrated with a gasket 105 and a bottom plate 107 that also serves as a negative electrode terminal. Then, the opening end portion of the battery case 101 was caulked to the peripheral edge portion of the bottom plate 107 via the end portion of the gasket 105, and the opening portion of the battery case 101 was sealed. Finally, the outer surface of the battery case 101 was covered with the exterior label 108 to obtain an alkaline dry battery.

尚、電解液としては、KOHを水に溶解したアルカリ電解液を用いる。アルカリ電解液のKOH濃度は30wt%〜45wt%である。電解液中には、亜鉛の自己放電を抑制するためにZnOを溶解させてもよく、その溶解量は各アルカリ濃度に対し、飽和するまでの範囲すべてを含む。また、電解液には、水素ガス発生抑制のために、有機防食剤を溶解させても良い。有機防食剤は、水素発生を抑制するものであれば何でもよく、例えば、フルオロアルキルポリオキシエチレン(商品名:サーフロン#S−161)等が挙げられる。また、電解液がゲル化状態であっても良い。ゲル化剤は、アルカリ電解液とゲル化するものであれば、何でもよく、ポリアクリル酸ナトリウム以外に、例えば、カルボキシメチルセルロース,ポリビニルアルコール,ポリエチレンオキサイド,ポリアクリル酸,ポリアクリル酸ソーダ,キトサンゲル,またはそれらをベースに重合反応、架橋度、分子量を変化させたもの等が挙げられる。   As an electrolytic solution, an alkaline electrolytic solution in which KOH is dissolved in water is used. The KOH concentration of the alkaline electrolyte is 30 wt% to 45 wt%. In the electrolytic solution, ZnO may be dissolved in order to suppress the self-discharge of zinc, and the dissolved amount includes the entire range until saturation for each alkali concentration. In addition, an organic anticorrosive may be dissolved in the electrolytic solution in order to suppress the generation of hydrogen gas. The organic anticorrosive is not particularly limited as long as it suppresses the generation of hydrogen, and examples thereof include fluoroalkylpolyoxyethylene (trade name: Surflon # S-161). Further, the electrolytic solution may be in a gelled state. The gelling agent may be anything as long as it gels with an alkaline electrolyte. For example, carboxymethylcellulose, polyvinyl alcohol, polyethylene oxide, polyacrylic acid, sodium polyacrylate, chitosan gel, Or what changed polymerization reaction, a crosslinking degree, and molecular weight etc. based on them is mentioned.

〈比表面積の測定について〉
比表面積の測定は、窒素吸着方法を利用し、マイクロメリテックス社製ASAP2010装置を用いて、測定した。以下条件を示す。
<About measurement of specific surface area>
The specific surface area was measured using a nitrogen adsorption method and using an ASAP2010 apparatus manufactured by Micromeritex Corporation. The conditions are shown below.

予備乾燥(脱気条件):真空中 120℃ 5時間
吸着ガス :N2(窒素)
〈負極の作製について〉
亜鉛粉末は、アトマイズ法を用いて合成したものを、分級して得られる。そして、表1に示すように亜鉛粉末を、還元雰囲気中で、350℃〜500℃の範囲で焼成し、粒子どうしを結合させた状態の負極を作製する。
Pre-drying (deaeration condition): 120 ° C in vacuum for 5 hours Adsorption gas: N 2 (nitrogen)
<About production of negative electrode>
Zinc powder is obtained by classifying what was synthesized using the atomizing method. And as shown in Table 1, zinc powder is baked in the range of 350 to 500 degreeC in a reducing atmosphere, and the negative electrode of the state which couple | bonded the particles is produced.

また、亜鉛粉体どうしが、Snを介して結合状態のものを作る場合は、Sn量として1
〜20wt%を亜鉛に混合して、還元雰囲気中、180℃〜250℃の範囲で焼成することにより作製することができる。表1には、焼成温度が230℃の場合について示した。
In addition, when zinc powders are bonded together via Sn, the Sn amount is 1
It can be produced by mixing ˜20 wt% with zinc and firing in a reducing atmosphere in the range of 180 ° C. to 250 ° C. Table 1 shows the case where the firing temperature is 230 ° C.

また、亜鉛は、ガス発生の観点から、アトマイズ法で合成する際に、Al,Bi,In,Caのうち少なくとも1つを50〜1000ppm含有した合金として使用することも可能である。その他の添加元素として、SnやPbも効果的である。   In addition, zinc can be used as an alloy containing 50 to 1000 ppm of at least one of Al, Bi, In, and Ca when synthesized by the atomization method from the viewpoint of gas generation. Sn and Pb are also effective as other additive elements.

〈電池試験〉
各電池を、20℃、相対湿度60%に保持した恒温槽に入れ、各電流密度で放電し、放電容量C2(mAh)を求めた。また、各電池のZn重量から、理論容量C1(mAh)を計算した。理論容量C1に対する放電容量C2の比率P(%)を数式1に基づき算出して、各電池の高率放電特性を評価した。Pの値が大きい電池ほど、高率放電特性が良い電池である。結果を表2〜表6に示す。
<Battery test>
Each battery was placed in a constant temperature bath maintained at 20 ° C. and a relative humidity of 60%, and discharged at each current density to obtain a discharge capacity C2 (mAh). The theoretical capacity C1 (mAh) was calculated from the Zn weight of each battery. The ratio P (%) of the discharge capacity C2 to the theoretical capacity C1 was calculated based on Formula 1 to evaluate the high rate discharge characteristics of each battery. A battery having a larger value of P is a battery having better high rate discharge characteristics. The results are shown in Tables 2-6.

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

Figure 0004852875
Figure 0004852875

(実施例1)
表2に、表1の負極材料B1〜B19を用いて作製した空気電池およびアルカリ乾電池電池の放電電流55mA/cm2時及び1A時におけるP(%)の測定した結果を示した。
Example 1
Table 2 shows the measurement results of P (%) at the discharge currents of 55 mA / cm 2 and 1 A of the air battery and the alkaline battery manufactured using the negative electrode materials B1 to B19 shown in Table 1.

負極用材料の作製方法としては、亜鉛粉末または亜鉛合金粉末の集合体(プレスしてペレット状に成形したものを含む)を、還元雰囲気中で、350℃〜500℃の各温度で焼成して作製した。焼成温度によりその集合体が、素焼き状のものになるものや溶融し過ぎて板状になるものが存在した。   As a method for producing a negative electrode material, an aggregate of zinc powder or zinc alloy powder (including one that is pressed and formed into a pellet) is fired at a temperature of 350 ° C. to 500 ° C. in a reducing atmosphere. Produced. Depending on the firing temperature, some aggregates were unglazed and others were melted into plates.

材料B2〜B6または、材料B9〜B18を負極材料として用いた空気電池及びアルカリ乾電池では、放電電流55mA/cm2時及び1A時におけるP(%)の値が、未焼成の材料B1やB8を負極材料として用いた場合に比べ、ともに70%以上と良好であった。しかし、焼成温度が500℃の負極材料(B7,B19)は、亜鉛形態が板状となり、それを負極材料として用いた空気電池並びにアルカリ乾電池は、Pの値が著しく低いものとなった。 In the air battery and the alkaline dry battery using the materials B2 to B6 or the materials B9 to B18 as the negative electrode material, the value of P (%) at the discharge current of 55 mA / cm 2 and 1 A is higher than that of the unfired materials B1 and B8. Both were better than 70% compared to the case of using as a negative electrode material. However, the negative electrode materials (B7, B19) having a firing temperature of 500 ° C. have a plate shape of zinc, and air batteries and alkaline dry batteries using the zinc form as negative electrode materials have extremely low P values.

このように、素焼き状に、すなわち亜鉛または亜鉛合金の粉体どうしが結合した状態であれば、放電レート特性がかなり向上し効果的であることがわかる。   Thus, it can be understood that the discharge rate characteristics are considerably improved and effective when the powder is made in an unglazed state, that is, when zinc or zinc alloy powders are bonded together.

また、負極に用いる亜鉛に、Al,Bi,In,Caが少なくとも1つが含有した合金を用いると、ほとんど放電後の漏液が起こらなかった。これは、合金化することで,水素ガス発生が抑えられているものと考えられる。その他として、Sn,Pbも添加効果がある。   Further, when an alloy containing at least one of Al, Bi, In, and Ca was used for zinc used for the negative electrode, liquid leakage after discharge hardly occurred. This is considered to be because hydrogen gas generation is suppressed by alloying. In addition, Sn and Pb also have an additive effect.

これら添加量としては、50ppm〜5000ppm範囲であれば効果的であり、50ppm〜300ppm範囲であればさらに効果的である。   These addition amounts are effective if they are in the range of 50 ppm to 5000 ppm, and more effective if they are in the range of 50 ppm to 300 ppm.

(実施例2)
表1のC1〜C21に示すような亜鉛粉末または亜鉛合金粉末と錫粉末との混合物を230℃で焼成した負極材料を用いて作製した空気電池及びアルカリ乾電池の、放電電流60mA/cm2時及び1.1A時におけるP(%)の値を測定した結果を表3に示した。
(Example 2)
A discharge current of 60 mA / cm 2 at the discharge current of an air battery and an alkaline battery produced using a negative electrode material obtained by firing a mixture of zinc powder or zinc alloy powder and tin powder as shown in C1 to C21 of Table 1 at 230 ° C. and The results of measuring the value of P (%) at 1.1 A are shown in Table 3.

負極材料の作製方法としては、亜鉛粉末または亜鉛合金粉末と、亜鉛粉末または亜鉛合金粉末と同程度以下の粒度のSn粉末を乳鉢で混合し、その集合体(プレスしてペレット状に成形したものを含む)を、還元雰囲気中で、230℃で焼成して作製した。   As a method for producing the negative electrode material, zinc powder or zinc alloy powder and Sn powder having a particle size less than or equal to that of zinc powder or zinc alloy powder are mixed in a mortar, and an aggregate (pressed and formed into a pellet shape) And was fired at 230 ° C. in a reducing atmosphere.

材料C3〜C6または、材料C10〜C20を負極材料に用いた空気電池及びアルカリ乾電池のPの値は、Sn含有量が1wt%に満たないC1,C2やC8,C9に比べ良好であった。また、Sn含有量が20wt%より多いC7,C21は、亜鉛形状が板状となり、それらを負極材料に用いた空気電池及びアルカリ乾電池のPの値は低くなった。   The values of P of the air battery and the alkaline dry battery using the materials C3 to C6 or the materials C10 to C20 as the negative electrode material were better than those of C1, C2, C8, and C9 whose Sn content was less than 1 wt%. Further, C7 and C21 having a Sn content of more than 20 wt% had a plate shape of zinc, and the values of P of air batteries and alkaline batteries using these as negative electrode materials were low.

このように、亜鉛粉末または亜鉛合金どうしが、Snを介して結合した素焼き状の状態であれば、放電レート特性がかなり向上し効果的である。   As described above, if the zinc powder or the zinc alloy is in an unglazed state bonded via Sn, the discharge rate characteristics are considerably improved, which is effective.

また、負極に用いる亜鉛にAl,Bi,In,Caのうち少なくとも1つが含有した合金を用いると、ほとんど放電後の漏液が起こらなかった。これは、合金化することで、水素ガス発生が抑えられて入るものと考えられる。その他として、Sn,Pbも添加効果がある。   Further, when an alloy containing at least one of Al, Bi, In, and Ca was used for zinc used in the negative electrode, liquid leakage after discharge hardly occurred. This is considered to be caused by alloying to suppress generation of hydrogen gas. In addition, Sn and Pb also have an additive effect.

これら添加量としては、50ppm〜5000ppm範囲であれば効果的であり、50ppm〜300ppm範囲であればさらに効果的である。   These addition amounts are effective if they are in the range of 50 ppm to 5000 ppm, and more effective if they are in the range of 50 ppm to 300 ppm.

(実施例3)
表1のA1〜A19に示すような比表面積の異なる亜鉛粉末または亜鉛合金粉末を用い
て作製した空気電池及びアルカリ乾電池の、放電電流50mA/cm2時及び950mA時におけるP(%)の値と、放電電流1mA/cm2時及び50mA時おける放電容量(mAh)を測定した結果を表4に示した。材料A2〜A7または、材料A9〜A19を負極材料として用いた空気電池及びアルカリ乾電池のPの値は、50%以上と良好であった。また、材料A1〜A6または、材料A8〜A18を負極材料として用いた空気電池及びアルカリ乾電池の放電容量(mAh)は、900mAh以上及び2450mAh以上確保され良好であった。
(Example 3)
Values of P (%) at discharge currents of 50 mA / cm 2 and 950 mA of air batteries and alkaline batteries produced using zinc powders or zinc alloy powders having different specific surface areas as shown in A1 to A19 of Table 1 The results of measuring the discharge capacity (mAh) at a discharge current of 1 mA / cm 2 and 50 mA are shown in Table 4. The value of P of the air battery and the alkaline dry battery using the materials A2 to A7 or the materials A9 to A19 as the negative electrode material was as good as 50% or more. Moreover, the discharge capacity (mAh) of the air battery and alkaline dry battery which used material A1-A6 or material A8-A18 as a negative electrode material was ensured 900 mAh or more and 2450 mAh or more, and was favorable.

このように、亜鉛または亜鉛合金の比表面積が0.01〜10m2/gの範囲にある場合、放電レート特性に優れ、高い放電容量が得られることがわかった。また、亜鉛または亜鉛合金の比表面積が、0.01〜1m2/gの範囲にあれば、空気電池及びアルカリ乾電池の電池容量(mAh)が、955mAh以上及び2600mAh以上確保され、さらに良い。 Thus, it was found that when the specific surface area of zinc or zinc alloy is in the range of 0.01 to 10 m 2 / g, the discharge rate characteristics are excellent and a high discharge capacity can be obtained. Moreover, if the specific surface area of zinc or a zinc alloy is in the range of 0.01 to 1 m 2 / g, the battery capacities (mAh) of air batteries and alkaline batteries are ensured to be 955 mAh or more and 2600 mAh or more, which is even better.

また、負極に用いる亜鉛に、Al,Bi,In,Caのうち少なくとも1つが含有した合金を用いると、ほとんど放電後の漏液が起こらなかった。これは、合金化することで、水素ガス発生が抑えられて入るものと考えられる。その他として、Sn,Pbも添加効果がある。亜鉛へのこれらの添加量としては、50ppm〜5000ppm範囲であれば効果的であり、50ppm〜300ppm範囲であればさらに効果的である。   Further, when an alloy containing at least one of Al, Bi, In, and Ca was used for zinc used for the negative electrode, almost no leakage occurred after discharge. This is considered to be caused by alloying to suppress generation of hydrogen gas. In addition, Sn and Pb also have an additive effect. The amount of addition to zinc is effective in the range of 50 ppm to 5000 ppm, and more effective in the range of 50 ppm to 300 ppm.

(実施例4)
表5に、表1に示すB17の材料に対して、電解液/亜鉛の重量比の異なる空気電池及びアルカリ乾電池を作製し、それぞれ放電電流65mA/cm2時及び1.15A時におけるP(%)値と、放電電流1.1mA/cm2時及び51mAにおける放電容量(mAh)を測定し、その結果を示した。
Example 4
In Table 5, air batteries and alkaline dry batteries having different electrolyte / zinc weight ratios were prepared with respect to the material B17 shown in Table 1, and P (%) at discharge currents of 65 mA / cm 2 and 1.15 A, respectively. ) Value and the discharge capacity (mAh) at a discharge current of 1.1 mA / cm 2 and 51 mA, and the results are shown.

電解液/亜鉛の重量比が、0.1〜2の範囲において、空気電池及びアルカリ乾電池のP(%)の値は、それぞれ70%以上及び80%以上と良好であった。また、空気電池及びアルカリ乾電池の放電電流1.1mA/cm2時及び51mA時における放電容量(mAh)は、それぞれ800mAh以上及び2200mAh以上となり良好であった。 When the weight ratio of electrolytic solution / zinc was in the range of 0.1 to 2, the values of P (%) of the air battery and the alkaline battery were as good as 70% or more and 80% or more, respectively. Moreover, the discharge capacity (mAh) at the time of 1.1 mA / cm < 2 > and 51 mA at the discharge current of an air battery and an alkaline battery was 800 mAh or more and 2200 mAh or more, respectively, and was favorable.

このように、電解液/亜鉛の重量比が、0.1〜2であれば、放電レート特性に優れ、高い放電容量が得られることがわかった。さらに、電解液/亜鉛の重量比が、0.5〜2であれば、空気電池のP(%)の値が80%以上で、かつ放電容量が900mAh以上であり、またアルカリ乾電池のP(%)の値が80%以上で、かつ放電容量が2200mAh以上であり、かなり効果的なものとなる。   Thus, it was found that when the electrolyte / zinc weight ratio was 0.1 to 2, the discharge rate characteristics were excellent and a high discharge capacity was obtained. Furthermore, if the weight ratio of electrolyte / zinc is 0.5-2, the value of P (%) of the air battery is 80% or more, the discharge capacity is 900 mAh or more, and the P ( %) Is 80% or more and the discharge capacity is 2200 mAh or more, which is quite effective.

また、負極に用いる亜鉛粉や板に、Al,Bi,In,Caのうち少なくとも1つが含有した合金粉や板を用いると、ほとんど放電後の漏液が起こらなかった。これは、合金化することで、水素ガス発生が抑えられて入るものと考えられる。その他として、Sn,Pbも添加効果がある。   Further, when an alloy powder or plate containing at least one of Al, Bi, In, and Ca was used for the zinc powder and plate used for the negative electrode, almost no leakage occurred after discharge. This is considered to be caused by alloying to suppress generation of hydrogen gas. In addition, Sn and Pb also have an additive effect.

これらの添加量としては、50ppm〜5000ppm範囲であれば効果的であり、50ppm〜300ppm範囲であればさらに効果的である。   These addition amounts are effective if they are in the range of 50 ppm to 5000 ppm, and more effective if they are in the range of 50 ppm to 300 ppm.

(実施例5)
表1に示すB17の材料を用いて、負極合剤に対する水酸化リチウム添加量の異なる空気電池とアルカリ乾電池を作製した電池を作製した。表6に空気電池及びアルカリ乾電池の放電電流67mA/cm2時及び1.2A時におけるそれぞれのP(%)の値と、放電電流1.2mA/cm2時及び52mA時におけるそれぞれの放電容量(mAh)を測定
した結果を示した。負極合剤に対する水酸化リチウム量が、0.15〜0.9の範囲では、空気電池及びアルカリ乾電池のP(%)の値は、ともに90%以上と良好であり、放電容量は、それぞれ950mAh以上、2600mAh以上と高容量を示した。このように、負極合剤に対する水酸化リチウム量が、0.15〜0.9の範囲であれば、放電レート特性に優れ、高い放電容量が得られることがわかった。また、負極合剤に対する水酸化リチウム量が、0.21〜0.72の範囲であれば、空気電池及びアルカリ乾電池のP(%)の値が、それぞれ91%以上及び92%以上であり、かつ空気電池及びアルカリ乾電池の放電電流1.2mA/cm2時及び52mA時における電池容量(mAh)が、それぞれ970mAh以上及び2650mAh以上とさらに良好であることがわかった。
(Example 5)
Using the material of B17 shown in Table 1, a battery in which an air battery and an alkaline battery with different amounts of lithium hydroxide added to the negative electrode mixture were produced was produced. Table 6 shows the values of P (%) at discharge currents of 67 mA / cm 2 and 1.2 A for air batteries and alkaline batteries, and discharge capacities at discharge currents of 1.2 mA / cm 2 and 52 mA ( The results of measuring mAh) are shown. When the amount of lithium hydroxide with respect to the negative electrode mixture is in the range of 0.15 to 0.9, the P (%) value of the air battery and the alkaline battery is both 90% or more, and the discharge capacity is 950 mAh, respectively. As described above, a high capacity of 2600 mAh or more was shown. Thus, it was found that when the amount of lithium hydroxide relative to the negative electrode mixture is in the range of 0.15 to 0.9, the discharge rate characteristics are excellent and a high discharge capacity can be obtained. Moreover, if the amount of lithium hydroxide with respect to the negative electrode mixture is in the range of 0.21 to 0.72, the values of P (%) of the air battery and the alkaline battery are 91% or more and 92% or more, respectively. In addition, it was found that the battery capacities (mAh) at the discharge currents of 1.2 mA / cm 2 and 52 mA of the air battery and the alkaline dry battery were 970 mAh or more and 2650 mAh or more, respectively, which were even better.

また、負極に用いる亜鉛粉や板に、Al,Bi,In,Caのうち少なくとも1つが含有した合金粉や板を用いると、ほとんど放電後の漏液が起こらなかった。これは、合金化することで、水素ガス発生が抑えられて入るものと考えられる。その他として、Sn,Pbも添加効果がある。   Further, when an alloy powder or plate containing at least one of Al, Bi, In, and Ca was used for the zinc powder and plate used for the negative electrode, almost no leakage occurred after discharge. This is considered to be caused by alloying to suppress generation of hydrogen gas. In addition, Sn and Pb also have an additive effect.

これらの添加量としては、50ppm〜5000ppm範囲であれば効果的であり、50ppm〜300ppm範囲であればさらに効果的である。   These addition amounts are effective if they are in the range of 50 ppm to 5000 ppm, and more effective if they are in the range of 50 ppm to 300 ppm.

本発明は、負極活物質として亜鉛または亜鉛合金を用いるアルカリ電池に適用されるものである。   The present invention is applied to an alkaline battery using zinc or a zinc alloy as a negative electrode active material.

本発明の空気電池の縦断面図Vertical section of the air battery of the present invention 本発明のアルカリ乾電池の縦断面図Longitudinal sectional view of the alkaline battery of the present invention

符号の説明Explanation of symbols

1 負極ケース
2 負極
3 ガスケット
4 セパレータ
5 空気極
6 撥水膜
7 空気拡散紙
8 正極ケース
9 空気拡散室
10 空気孔
11 シール紙
101 電池ケース
102 正極合剤
103 ゲル状負極
104 セパレータ
105 ガスケット
106 負極集電子
107 底板
108 外装ラベル
DESCRIPTION OF SYMBOLS 1 Negative electrode case 2 Negative electrode 3 Gasket 4 Separator 5 Air electrode 6 Water repellent film 7 Air diffusion paper 8 Positive electrode case 9 Air diffusion chamber 10 Air hole 11 Seal paper 101 Battery case 102 Positive electrode mixture 103 Gelled negative electrode 104 Separator 105 Gasket 106 Negative electrode Current collector 107 Bottom plate 108 Exterior label

Claims (4)

亜鉛又は亜鉛合金の活物質粉末を含む合剤とアルカリ電解液とゲル化剤とを含むゲル状負極、および正極を備え、前記活物質粉末は粒子間がで結合されており、前記錫の含有量が前記亜鉛又は亜鉛合金に対して1〜20wt%であることを特徴とするアルカリ電池。 A mixture comprising a zinc or zinc alloy active material powder, a gelled negative electrode containing an alkaline electrolyte and a gelling agent , and a positive electrode, wherein the active material powder is bonded with tin between the particles ; Content is 1-20 wt% with respect to the said zinc or zinc alloy, The alkaline battery characterized by the above-mentioned . 活物質粉末の比表面積が0.01〜10m/gである請求項1記載のアルカリ電池。 The alkaline battery according to claim 1, wherein the active material powder has a specific surface area of 0.01 to 10 m 2 / g. 活物質粉末に対するアルカリ電解液量の重量比率が0.1〜2の範囲である請求項1記載のアルカリ電池。 The alkaline battery according to claim 1, wherein the weight ratio of the amount of the alkaline electrolyte to the active material powder is in the range of 0.1 to 2. 負極合剤は、水酸化リチウムを0.15〜0.9wt%の割合で含有する請求項1記載のアルカリ電池。 The alkaline battery according to claim 1, wherein the negative electrode mixture contains lithium hydroxide in a proportion of 0.15 to 0.9 wt%.
JP2005124643A 2004-04-23 2005-04-22 Alkaline battery Expired - Fee Related JP4852875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124643A JP4852875B2 (en) 2004-04-23 2005-04-22 Alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004127846 2004-04-23
JP2004127846 2004-04-23
JP2005124643A JP4852875B2 (en) 2004-04-23 2005-04-22 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2005332811A JP2005332811A (en) 2005-12-02
JP4852875B2 true JP4852875B2 (en) 2012-01-11

Family

ID=35487281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124643A Expired - Fee Related JP4852875B2 (en) 2004-04-23 2005-04-22 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4852875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834019B2 (en) * 2008-03-10 2011-12-07 パナソニック株式会社 Method for producing gelled negative electrode for alkaline battery and alkaline battery
JP5369188B2 (en) * 2010-10-07 2013-12-18 パナソニック株式会社 Alkaline primary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312802A (en) * 1997-05-14 1998-11-24 Katayama Tokushu Kogyo Kk Metal for alkaline dry battery negative electrode and manufacture therefor and alkaline dry battery
EP1232532B1 (en) * 1999-11-24 2006-05-31 Eveready Battery Company, Inc. Electrochemical cell constructions and methods of making the same

Also Published As

Publication number Publication date
JP2005332811A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
US3956018A (en) Primary electric current-producing dry cell using a (CFx)n cathode and an aqueous alkaline electrolyte
JP4694561B2 (en) Alkaline battery including a nickel oxyhydroxide cathode and a zinc anode
US7553586B2 (en) Alkaline battery
WO2005112155A1 (en) Alkaline battery
JP2005524948A (en) Alkaline battery with improved cathode
JP2009259706A (en) Aa alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP5172181B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP4852875B2 (en) Alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
US8206851B2 (en) AA alkaline battery and AAA alkaline battery
JPH11167933A (en) Sealed alkaline zinc storage battery
JP2003151539A (en) Alkaline dry cell
JP4253172B2 (en) Sealed nickel zinc primary battery
JP4255762B2 (en) Zinc alkaline battery
JP2003017078A (en) Zinc alkaline battery
JP2007220373A (en) Sealed alkaline zinc primary cell
JP2003017042A (en) Sealed alkaline-zinc primary battery
JP7315381B2 (en) alkaline battery
JP2003257423A (en) Sealed alkaline zinc primary battery, and alkaline zinc compound positive electrode mix used in the same
JP2003197206A (en) Sealed alkaline zinc primary battery
JP2000030695A (en) Manufacture of gelatinous zinc negative electrode for zinc alkaline battery
JP2007220374A (en) Alkaline zinc primary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees