JP4233299B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP4233299B2
JP4233299B2 JP2002297356A JP2002297356A JP4233299B2 JP 4233299 B2 JP4233299 B2 JP 4233299B2 JP 2002297356 A JP2002297356 A JP 2002297356A JP 2002297356 A JP2002297356 A JP 2002297356A JP 4233299 B2 JP4233299 B2 JP 4233299B2
Authority
JP
Japan
Prior art keywords
positive electrode
weight
parts
alkaline
load discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002297356A
Other languages
Japanese (ja)
Other versions
JP2003203635A (en
Inventor
光司 足立
享行 梅林
安彦 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002297356A priority Critical patent/JP4233299B2/en
Publication of JP2003203635A publication Critical patent/JP2003203635A/en
Application granted granted Critical
Publication of JP4233299B2 publication Critical patent/JP4233299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強負荷および中負荷放電における正極利用率に優れ、かつ軽負荷放電における電気容量の低下が抑制されたアルカリ乾電池に関する。
【0002】
【従来の技術】
昨今の携帯電話などの携帯情報機器の進歩および発展にともない、強負荷放電が可能なアルカリ乾電池が望まれている。
これに対し、従来のアルカリ乾電池においては、強負荷放電特性を向上させるために、正極添加剤としてアナターゼ型の酸化チタン(例えば特平8−510355号公報)、チタン含有複合酸化物(例えば特開平9−139201号公報)、硫酸バリウムなどのバリウム化合物(例えば国際公開第00/30198号パンフレット)を用いることが行われている。
【0003】
【発明が解決しようとする課題】
しかし、正極に酸化チタン、チタン含有複合酸化物またはバリウム化合物を添加すると、強負荷放電特性はある程度まで向上するものの、活物質利用率は充分でない。また、上記従来の添加剤の効果を充分なものとするためには、多量の添加剤を用いる必要がある。そのため、活物質である二酸化マンガンの正極における充填量が低下し、電池の電気容量が低下して、軽負荷放電特性が低減してしまうという問題がある。このことは、時計などの軽負荷放電を必要とする機器における使用に対しても、アルカリ乾電池の需要が依然として少なくはないことから、非常に不都合である。
本発明の目的は、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明は、負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池において、前記正極が、添加剤として、平均粒径が10 -9 〜10 -8 mのTiO(OH)2 を、二酸化マンガン100重量部あたり0.01〜5重量部含むことを特徴とするアルカリ乾電池を提供する
【0005】
【発明の実施の形態】
本発明は、正極に、Ti(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を含ませることにより、強負荷または中負荷放電における正極活物質の利用率を高める。
一方、上記添加剤を正極に添加すると、正極合剤中の正極活物質の割合は低下するが、これらの添加剤は、結着剤としての作用を有しており、添加により正極合剤の充填性が向上し、同一の成形条件では、正極の充填量が増加する。よって、上記添加剤を添加しても、本発明における添加量の範囲では、正極活物質の充填量は減少せず、軽負荷放電特性の低下は抑制される。
【0006】
すなわち、本発明における正極は、正極活物質である二酸化マンガン、導電剤である黒鉛粉末、および添加剤であるTi(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を含む点に特徴を有する。
これらの添加剤が、正極に含まれると正極活物質における電解液の保持性が向上するため、放電末期に正極活物質内部への電解液の供給が充分でなくなることにより生じる内部抵抗の上昇が抑えられ、放電末期の急激な電圧低下が抑制されると考えられる。
【0007】
本発明におけるTiO(OH)2は、10 -9 〜10-8mの平均粒径を有する微粉状であり、正極の添加剤として従来から用いられているアナターゼ酸化チタンの粒径(10-7〜10-5m)に比べてはるかに小さく、正極内に一定量のTiO(OH)2を添加した場合、正極活物質との接触面積がより大きい。したがって、少量のTiO(OH)2の添加により、従来以上の効果を得ることができ、添加剤として好ましい。
【0008】
-8mを超えると、粒子の表面積が小さくなり、その効果が低減する。
また、これらの添加剤は、二酸化マンガンおよび黒鉛からなる合剤に添加されると、結着剤としても作用し、正極の成形性を向上させ、充填量を増大させる効果がある。
【0009】
前記正極は、二酸化マンガン100重量部あたりTi(OH)4およびTiO(OH)2からなる群より選ばれた少なくとも一種を0.01〜5重量部含むことが好ましい。0.01重量部未満では、強負荷および軽負荷放電特性の向上が不充分となり、5重量部を超えると、軽負荷放電特性が低下するためである。さらには、二酸化マンガン100重量部あたり0.5〜3重量部含むことが特に好ましい。
【0010】
前記二酸化マンガンおよび黒鉛粉末については、従来より用いられているものを用いればよい。また、負極およびアルカリ電解液についても従来からのものを用いることができる。
以下に、実施例を用いて本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
【0011】
【実施例】
参考例1〜5》
参考例において作製したアルカリ乾電池の一部を断面にした正面図を図1に示す。
図1において、電池ケース1の内部には、短筒状のペレットに成形された正極合剤2、ゲル状負極3およびセパレータ4が収容されている。電池ケース1としては、内面にニッケルメッキが施された鋼のケースなどを用いることができる。電池ケース1の内面には、複数個の正極合剤2が密着した状態で収容されている。正極合剤2のさらに内側にはセパレータ4が配され、さらに、その内側にゲル状負極3が充填されている。
【0012】
正極合剤2は次のようにして作製した。
まず、二酸化マンガンと黒鉛とを、90:10の重量比で混合し、さらに、Ti(OH)4を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加し、混合した。なお、本実施例において用いたTi(OH)4の平均粒径は10-6mであった。得られた混合物100重量部あたり3重量部のアルカリ電解液を添加し、充分に攪拌した後、フレーク状に圧縮成形した。ついでフレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形してペレット状の正極合剤2を得た。この正極合剤2個を電池ケース1内に挿入し、加圧治具により正極合剤2を再成形して電池ケース1の内壁に密着させた。
【0013】
上記のようにして電池ケース1内に配置された正極合剤2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ所定量のアルカリ電解液を注入した。所定時間経過した後、アルカリ電解液とゲル化剤と亜鉛粉末とからなるゲル状負極3をセパレータ4内へ充填した。
【0014】
ゲル状負極3としては、ゲル化剤であるポリアクリル酸ナトリウム1重量部、アルカリ電解液である40重量%の水酸化ナトリウム33重量部および亜鉛粉末66重量部からなるゲルを用いた。
また、セパレータ4は、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
【0015】
続いて、負極集電子6をゲル状負極3の中央に差し込んだ。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を一体化させた。
そして、電池ケース1内の開口端部を、ガスケット5の端部を介して、底板7周縁部にかしめつけ、電池ケース1の開口部を封口した。最後に、外装ラベル8で電池ケース1の外表面を被覆して、アルカリ乾電池を得た。
得られたアルカリ乾電池は以下のようにして評価した。
【0016】
[評価]
強負荷放電特性を評価するために、初度(製造直後)のアルカリ乾電池を、2.2Ωの負荷、終止電圧0.9Vまで連続放電させ、そのときの放電時間を測定した。無添加のアルカリ乾電池(比較例1)の結果を基準値である100とし、強負荷放電特性を指数として表した。この評価結果を表1に示した。
また、中負荷放電特性は、10Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。また、軽負荷放電特性は、39Ωの負荷で連続放電させた以外は、上記強負荷放電特性の場合と同様にして評価した。これらの評価結果も表1に示した。
【0017】
《実施例3および参考例6〜7
正極添加剤Ti(OH)4の代わりにTiO(OH)2を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加する以外は参考例1と同様の方法で正極合剤2を作製し、アルカリ乾電池を得た。アルカリ乾電池の電池特性については、参考例1と同様の方法で評価した。なお、本実施例および本参考例において用いたTiO(OH)2の平均粒径は10-9mであった。
【0018】
《比較例1〜4》
正極添加剤Ti(OH)4の代わりにTiO2を二酸化マンガン100重量部あたり表1に示す所定量(x重量部)になるように添加する以外は参考例1と同様の方法で正極合剤2を作製し、アルカリ乾電池を得た。なお、TiO2の平均粒径は10-6mとした。アルカリ乾電池の電池特性については、参考例1と同様の方法で評価した。
【0019】
【表1】

Figure 0004233299
【0020】
表1より、Ti(OH)4およびTiO(OH)2のどちらを用いた場合でも、二酸化マンガン100重量部あたり0.01〜5重量部の場合に、アルカリ乾電池の強負荷放電特性が優れており、しかも軽負荷放電特性も劣化がみられないことがわかる。参考例1および参考例6のように添加量が少ないと、正極活物質利用率を向上させる効果があまり得られないことから、強負荷放電特性はほとんど向上しない。参考例5および参考のように添加量が多すぎると、軽負荷放電特性の劣化がみられる。
【0021】
最適と思われる添加量1重量部について、参考例3より実施例のほうが特性が向上している。これは、TiO(OH)2の粒径が10-9mと小さく、同量の添加であっても、正極活物質との接触面積が大きく、特性を向上させる効果が大きかったためであると考えられる。
また、これ以外にもTi(OH)4およびTiO(OH)2の両者を混合して正極に添加した場合でも同様の効果がみられる。
【0022】
【発明の効果】
以上のように、本発明によれば、強負荷放電特性および中負荷放電特性に優れ、かつ軽負荷放電特性の低下が抑制されたアルカリ乾電池を提供できる。
【図面の簡単な説明】
【図1】 本発明のアルカリ乾電池の一例の一部を断面にした正面図である。
【符号の説明】
1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電子
7 底板
8 外装ラベル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline dry battery that is excellent in positive electrode utilization rate in heavy load and medium load discharge and in which a decrease in electric capacity in light load discharge is suppressed.
[0002]
[Prior art]
With recent progress and development of portable information devices such as mobile phones, alkaline dry batteries capable of heavy load discharge are desired.
In contrast, in the conventional alkaline dry battery, strong in order to improve the load discharge characteristics, anatase type titanium oxide as a positive electrode additive (e.g. Japanese Patent Laid Table flat 8-510355), titanium-containing composite oxide (for example, Japanese No. 9-139201) and barium compounds such as barium sulfate (for example, International Publication No. 00/30198 pamphlet) are used.
[0003]
[Problems to be solved by the invention]
However, when titanium oxide, a titanium-containing composite oxide or a barium compound is added to the positive electrode, the heavy load discharge characteristics are improved to some extent, but the active material utilization rate is not sufficient. Moreover, in order to make the effect of the conventional additive sufficient, it is necessary to use a large amount of additive. Therefore, the filling amount in the positive electrode of the manganese dioxide which is an active material falls, there exists a problem that the electrical capacity of a battery falls and a light load discharge characteristic will reduce. This is very inconvenient for use in devices that require light load discharge, such as watches, because the demand for alkaline batteries is still not small.
An object of the present invention is to provide an alkaline dry battery that is excellent in a heavy load discharge characteristic and a medium load discharge characteristic and in which a decrease in light load discharge characteristic is suppressed.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, wherein the positive electrode has an average particle size of 10 as an additive. Provided is an alkaline battery characterized in that it contains 0.01 to 5 parts by weight of 9 to 10 -8 m of TiO (OH) 2 per 100 parts by weight of manganese dioxide .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention increases the utilization rate of the positive electrode active material in heavy load or medium load discharge by including at least one selected from the group consisting of Ti (OH) 4 and TiO (OH) 2 in the positive electrode.
On the other hand, when the above additives are added to the positive electrode, the proportion of the positive electrode active material in the positive electrode mixture decreases, but these additives have a function as a binder, and the addition of the positive electrode mixture The filling property is improved, and the filling amount of the positive electrode is increased under the same molding conditions. Therefore, even if the above additives are added, the filling amount of the positive electrode active material does not decrease within the range of the addition amount in the present invention, and the decrease in light load discharge characteristics is suppressed.
[0006]
That is, the positive electrode in the present invention includes at least one selected from the group consisting of manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, and Ti (OH) 4 and TiO (OH) 2 as additives. Characterized by points.
When these additives are contained in the positive electrode, the retention of the electrolytic solution in the positive electrode active material is improved, so that an increase in internal resistance caused by insufficient supply of the electrolytic solution into the positive electrode active material at the end of discharge occurs. It is considered that a rapid voltage drop at the end of discharge is suppressed.
[0007]
TiO (OH) 2 in the present invention is in the form of fine powder having an average particle size of 10 −9 to 10 −8 m, and the particle size (10 −7 ) of anatase titanium oxide conventionally used as an additive for the positive electrode. 10-5 m), and when a certain amount of TiO (OH) 2 is added in the positive electrode, the contact area with the positive electrode active material is larger. Therefore, by adding a small amount of TiO (OH) 2 , an effect more than conventional can be obtained, which is preferable as an additive.
[0008]
If it exceeds 1 0 -8 m, the surface area of the particles becomes small, and the effect is reduced.
Further, when these additives are added to a mixture composed of manganese dioxide and graphite, they also act as a binder, and have the effect of improving the formability of the positive electrode and increasing the filling amount.
[0009]
The positive electrode preferably contains 0.01 to 5 parts by weight of at least one selected from the group consisting of Ti (OH) 4 and TiO (OH) 2 per 100 parts by weight of manganese dioxide. If the amount is less than 0.01 parts by weight, the improvement of the heavy load and light load discharge characteristics is insufficient, and if the amount exceeds 5 parts by weight, the light load discharge characteristics deteriorate. Furthermore, it is particularly preferable to contain 0.5 to 3 parts by weight per 100 parts by weight of manganese dioxide.
[0010]
Conventionally used manganese dioxide and graphite powder may be used. Further, conventional negative electrodes and alkaline electrolytes can also be used.
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
[0011]
【Example】
<< Reference Examples 1-5 >>
FIG. 1 is a front view showing a cross section of a part of the alkaline dry battery produced in the reference example.
In FIG. 1, a positive electrode mixture 2, a gelled negative electrode 3, and a separator 4 formed in a short cylindrical pellet are housed inside a battery case 1. As the battery case 1, a steel case having an inner surface plated with nickel can be used. On the inner surface of the battery case 1, a plurality of positive electrode mixtures 2 are accommodated in close contact. A separator 4 is disposed further inside the positive electrode mixture 2, and a gelled negative electrode 3 is filled therein.
[0012]
The positive electrode mixture 2 was produced as follows.
First, manganese dioxide and graphite are mixed at a weight ratio of 90:10, and further, Ti (OH) 4 is added to a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide. , Mixed. The average particle size of Ti (OH) 4 used in this example was 10 −6 m. After adding 3 parts by weight of alkaline electrolyte per 100 parts by weight of the obtained mixture and stirring sufficiently, it was compression molded into flakes. Next, the flaky positive electrode mixture was pulverized into granules, which were classified with a sieve, and those having a 10 to 100 mesh shape were pressure-formed into a hollow cylinder to obtain a pellet-like positive electrode mixture 2. Two of these positive electrode mixtures were inserted into the battery case 1, and the positive electrode mixture 2 was reshaped with a pressurizing jig and was brought into close contact with the inner wall of the battery case 1.
[0013]
A bottomed cylindrical separator 4 was placed in the center of the positive electrode mixture 2 placed in the battery case 1 as described above, and a predetermined amount of alkaline electrolyte was injected into the separator 4. After a predetermined time, a gelled negative electrode 3 composed of an alkaline electrolyte, a gelling agent and zinc powder was filled into the separator 4.
[0014]
As the gelled negative electrode 3, a gel comprising 1 part by weight of sodium polyacrylate as a gelling agent, 33 parts by weight of 40% by weight sodium hydroxide as an alkaline electrolyte and 66 parts by weight of zinc powder was used.
Moreover, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber.
[0015]
Subsequently, the negative electrode current collector 6 was inserted into the center of the gelled negative electrode 3. The negative electrode current collector 6 was integrated with a gasket 5 and a bottom plate 7 that also served as a negative electrode terminal.
And the opening edge part in the battery case 1 was crimped to the peripheral part of the baseplate 7 via the edge part of the gasket 5, and the opening part of the battery case 1 was sealed. Finally, the outer surface of the battery case 1 was covered with the exterior label 8 to obtain an alkaline dry battery.
The obtained alkaline dry battery was evaluated as follows.
[0016]
[Evaluation]
In order to evaluate the heavy load discharge characteristics, the initial (immediately after production) alkaline dry battery was continuously discharged to a load of 2.2Ω and a final voltage of 0.9 V, and the discharge time at that time was measured. The result of the additive-free alkaline dry battery (Comparative Example 1) was taken as a reference value of 100, and the heavy load discharge characteristics were expressed as an index. The evaluation results are shown in Table 1.
Further, the medium load discharge characteristics were evaluated in the same manner as in the case of the above heavy load discharge characteristics except that continuous discharge was performed with a load of 10Ω. The light load discharge characteristics were evaluated in the same manner as in the case of the heavy load discharge characteristics except that the discharge was continuously performed with a load of 39Ω. These evaluation results are also shown in Table 1.
[0017]
<< Examples 1 to 3 and Reference Examples 6 to 7 >>
In the same manner as in Reference Example 1, except that TiO (OH) 2 was added in place of the positive electrode additive Ti (OH) 4 so as to be a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide. A positive electrode mixture 2 was produced to obtain an alkaline battery. The battery characteristics of the alkaline battery were evaluated in the same manner as in Reference Example 1. The average particle diameter of TiO (OH) 2 used in this example and this reference example was 10 −9 m.
[0018]
<< Comparative Examples 1-4 >>
The positive electrode mixture was prepared in the same manner as in Reference Example 1 except that TiO 2 was added in a predetermined amount (x parts by weight) shown in Table 1 per 100 parts by weight of manganese dioxide instead of the positive electrode additive Ti (OH) 4. 2 was prepared to obtain an alkaline battery. The average particle size of TiO 2 was 10 −6 m. The battery characteristics of the alkaline battery were evaluated in the same manner as in Reference Example 1.
[0019]
[Table 1]
Figure 0004233299
[0020]
From Table 1, it can be seen that, when using either Ti (OH) 4 or TiO (OH) 2 , the heavy load discharge characteristics of the alkaline battery are excellent when the amount is 0.01 to 5 parts by weight per 100 parts by weight of manganese dioxide. In addition, it can be seen that the light load discharge characteristics are not deteriorated. If the addition amount is small as in Reference Example 1 and Reference Example 6, the effect of improving the utilization ratio of the positive electrode active material cannot be obtained so much that the heavy load discharge characteristics are hardly improved. If the addition amount is too large as in Reference Example 5 and Reference Example 7 , light load discharge characteristics are deteriorated.
[0021]
With respect to 1 part by weight which is considered to be optimal, the characteristics of Example 2 are improved compared to Reference Example 3. This is thought to be because the particle size of TiO (OH) 2 was as small as 10 −9 m, and even when the same amount was added, the contact area with the positive electrode active material was large and the effect of improving the characteristics was great. It is done.
In addition, the same effect can be seen when both Ti (OH) 4 and TiO (OH) 2 are mixed and added to the positive electrode.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an alkaline dry battery that is excellent in a heavy load discharge characteristic and a medium load discharge characteristic and in which a decrease in light load discharge characteristic is suppressed.
[Brief description of the drawings]
FIG. 1 is a front view, partly in section, of an example of an alkaline battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode current collector 7 Bottom plate 8 Exterior label

Claims (1)

負極と、アルカリ電解液と、二酸化マンガンおよび黒鉛粉末を含む正極とを具備するアルカリ乾電池において、前記正極が、添加剤として、平均粒径が10 -9 〜10 -8 mのTiO(OH)2 を、二酸化マンガン100重量部あたり0.01〜5重量部含むことを特徴とするアルカリ乾電池 In an alkaline dry battery comprising a negative electrode, an alkaline electrolyte, and a positive electrode containing manganese dioxide and graphite powder, the positive electrode has TiO (OH) 2 having an average particle size of 10 −9 to 10 −8 m as an additive. An alkaline dry battery comprising 0.01 to 5 parts by weight per 100 parts by weight of manganese dioxide .
JP2002297356A 2001-11-01 2002-10-10 Alkaline battery Expired - Lifetime JP4233299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297356A JP4233299B2 (en) 2001-11-01 2002-10-10 Alkaline battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-336580 2001-11-01
JP2001336580 2001-11-01
JP2002297356A JP4233299B2 (en) 2001-11-01 2002-10-10 Alkaline battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008002225A Division JP4767978B2 (en) 2001-11-01 2008-01-09 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2003203635A JP2003203635A (en) 2003-07-18
JP4233299B2 true JP4233299B2 (en) 2009-03-04

Family

ID=27666802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297356A Expired - Lifetime JP4233299B2 (en) 2001-11-01 2002-10-10 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4233299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146710A (en) 2007-12-13 2009-07-02 Panasonic Corp Alkaline primary battery
JP5568185B1 (en) 2012-12-20 2014-08-06 パナソニック株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP2003203635A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
AU2006317436B2 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
JP4767978B2 (en) Alkaline battery
AU2002309006B2 (en) Alkaline dry battery
JP4233299B2 (en) Alkaline battery
JP3866903B2 (en) Alkaline battery
JP4121774B2 (en) Alkaline battery
JP3552194B2 (en) Alkaline battery
JP2005276698A (en) Alkaline battery
JP4137417B2 (en) Alkaline battery
JP3866902B2 (en) Alkaline battery
US7405023B2 (en) Alkaline dry battery
JP4056322B2 (en) Alkaline battery
WO2006001302A1 (en) Alkaline cell
JP4265738B2 (en) Alkaline battery
JP2983066B2 (en) Method for producing paste-type nickel electrode
JP2005353447A (en) Alkaline dry battery
JPS60240056A (en) Alkaline-manganese cell
JPH1021904A (en) Alkaline storage battery
JP2002367614A (en) Alkali dry cell
JP2006164862A (en) Alkaline battery
JPH08339808A (en) Alkaline secondary battery
JP2000348738A (en) Cylindrical alkaline dry battery
JP2007115566A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4233299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

EXPY Cancellation because of completion of term