JP3482478B2 - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JP3482478B2
JP3482478B2 JP2001307814A JP2001307814A JP3482478B2 JP 3482478 B2 JP3482478 B2 JP 3482478B2 JP 2001307814 A JP2001307814 A JP 2001307814A JP 2001307814 A JP2001307814 A JP 2001307814A JP 3482478 B2 JP3482478 B2 JP 3482478B2
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
storage battery
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001307814A
Other languages
Japanese (ja)
Other versions
JP2002158032A (en
Inventor
利雄 村田
和弘 中満
田中  義則
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP2001307814A priority Critical patent/JP3482478B2/en
Publication of JP2002158032A publication Critical patent/JP2002158032A/en
Application granted granted Critical
Publication of JP3482478B2 publication Critical patent/JP3482478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素の可逆的な吸蔵お
よび放出が可能な水素吸蔵合金を備えて、その水素の電
気化学的な酸化還元反応を起電反応に用いる負極と、水
酸化ニッケルを主たる活物質とする正極とを備えるニッ
ケル−金属水素化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen in an electromotive reaction, and a hydroxylation. The present invention relates to a nickel-metal hydride storage battery including a positive electrode containing nickel as a main active material.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池は、水素
の可逆的な吸蔵および放出が可能な水素吸蔵合金を備え
て、その水素の電気化学的な酸化還元反応を起電反応に
用いる負極と、水酸化ニッケルを活物質とする正極と、
水酸化カリウム水溶液などのアルカリ電解液とを備えて
いる。
2. Description of the Related Art A nickel-metal hydride storage battery is equipped with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen for an electromotive reaction. A positive electrode using nickel hydroxide as an active material,
It is provided with an alkaline electrolyte such as an aqueous potassium hydroxide solution.

【0003】この負極は水素吸蔵電極と呼ばれ、この電
極に用いられる水素吸蔵合金にはLaNi、ZrNi
、TiNiおよびTiNiなどの金属間化合物や、
これらの金属間化合物の構成元素を他の元素で置換した
ものがある。これらの水素吸蔵合金は、その組成が異な
ると、水素吸蔵量、平衡水素圧力、アルカリ電解液中で
充放電を繰り返す場合の保持容量特性などの性質が変化
するので、合金の組成を変えて水素吸蔵電極の性能の改
良が試みられている。
This negative electrode is called a hydrogen storage electrode, and the hydrogen storage alloys used for this electrode are LaNi 5 and ZrNi.
2 , intermetallic compounds such as TiNi and Ti 2 Ni,
There is one in which the constituent elements of these intermetallic compounds are replaced with other elements. When the composition of these hydrogen storage alloys is different, properties such as hydrogen storage capacity, equilibrium hydrogen pressure, and retention capacity characteristics when charging and discharging are repeated in an alkaline electrolyte change. Attempts have been made to improve the performance of the occlusion electrode.

【0004】この水素吸蔵電極を、同じアルカリ電解液
中で作動するカドミウム電極と比較すると、これらの電
極の作動電位はほぼ同じであり、電極の体積当たりの放
電容量は、水素吸蔵電極がカドミウム電極の2〜3倍の
大きさになる。したがって、カドミウム電極を用いてい
た従来のアルカリ蓄電池の負極に水素吸蔵電極を用いる
場合には、正極と負極との放電容量の比が一定になるよ
うに、負極の体積を小さくし、正極の体積を大きくする
ことができるので、カドミウム電極を用いる蓄電池と作
動電圧が同じで、しかも1.5倍以上の放電容量を有す
るアルカリ蓄電池が得られる。
Comparing this hydrogen storage electrode with a cadmium electrode that operates in the same alkaline electrolyte, the operating potentials of these electrodes are almost the same, and the discharge capacity per volume of the electrode is that the hydrogen storage electrode is a cadmium electrode. 2 to 3 times the size. Therefore, when a hydrogen storage electrode is used for the negative electrode of a conventional alkaline storage battery that uses a cadmium electrode, the volume of the negative electrode is reduced and the volume of the positive electrode is reduced so that the discharge capacity ratio between the positive electrode and the negative electrode is constant. Therefore, it is possible to obtain an alkaline storage battery having the same operating voltage as the storage battery using the cadmium electrode and having a discharge capacity of 1.5 times or more.

【0005】この電池の正極の水酸化ニッケル電極の1
つとして、発泡ニッケルやニッケル繊維の焼結体などか
らなる耐アルカリ性導電性の3次元多孔体に、水酸化ニ
ッケルを主体とする活物質粉末と、金属コバルト、水酸
化コバルト、および酸化コバルトとからなる群から選択
した少なくとも1つからなる添加物とを充填したものが
用いられてきた。この正極を、以下では非焼結式ニッケ
ル極と呼ぶ。
One of the nickel hydroxide electrodes of the positive electrode of this battery
As an example, an alkali-resistant conductive three-dimensional porous body made of foamed nickel, a sintered body of nickel fibers, or the like, and an active material powder mainly composed of nickel hydroxide, and metallic cobalt, cobalt hydroxide, and cobalt oxide are used. Filled with at least one additive selected from the group consisting of Hereinafter, this positive electrode is referred to as a non-sintered nickel electrode.

【0006】この正極は、焼結式の水酸化ニッケル電極
と異なって、ニッケルのネットワークが疎であるので、
電極内の集電性が高くない。そこで、金属コバルト、水
酸化コバルト、および酸化コバルトとからなる群から選
択した少なくとも1つを添加する方法が用いられる。こ
れらの添加物は、正極を充電する際に酸化されるととも
に、正極活物質である水酸化ニッケルの放電を容易にし
て、正極の活物質利用率を高くするという効果が大き
い。
Unlike the sintered nickel hydroxide electrode, this positive electrode has a sparse nickel network.
The current collection in the electrode is not high. Therefore, a method of adding at least one selected from the group consisting of metallic cobalt, cobalt hydroxide, and cobalt oxide is used. These additives have a great effect of being oxidized when the positive electrode is charged, facilitating the discharge of nickel hydroxide which is a positive electrode active material, and increasing the utilization rate of the active material of the positive electrode.

【0007】[0007]

【発明が解決しようとする課題】ニッケル・金属水素化
物蓄電池に用いられる上記の非焼結式ニッケル極は、例
えば1時間率よりも大きい電流で過充電する場合には、
水酸化ニッケルの充電生成物にγ相オキシ水酸化ニッケ
ルと呼ばれる化合物が生成しやすい。このγ相の化合物
はモル体積が大きいので、これが生成すると正極板が膨
張して、セパレータ中の電解液が吸収されたり、正極板
の強度が低下する。しかも、このγ相は、その結晶の内
部にも、水やカリウムイオンが挿入されるので、電解液
がさらに吸収されるものと考えられる。
The non-sintered nickel electrode used in the nickel-metal hydride storage battery is, for example, when overcharged with a current larger than 1 hour rate,
A compound called γ-phase nickel oxyhydroxide is likely to be generated in the charge product of nickel hydroxide. Since this γ-phase compound has a large molar volume, when it is generated, the positive electrode plate expands, the electrolytic solution in the separator is absorbed, and the strength of the positive electrode plate decreases. Moreover, this γ phase is considered to be further absorbed by the electrolytic solution since water and potassium ions are also inserted inside the crystal.

【0008】このようなことが起こると、充放電サイク
ルを繰り返す間にセパレータの電解液が正極に吸収され
て、セパレータ中の電解液量が少なくなり、ニッケル・
金属水素化物蓄電池の内部抵抗が高くなって、電池の充
放電が困難になり、電池の充放電サイクル寿命が短くな
るという不都合が発生する。
When this happens, the electrolytic solution in the separator is absorbed by the positive electrode during repeated charge and discharge cycles, and the amount of electrolytic solution in the separator decreases, resulting in nickel.
Since the internal resistance of the metal hydride storage battery becomes high, charging and discharging of the battery becomes difficult, and the charge and discharge cycle life of the battery becomes short, which is a disadvantage.

【0009】水酸化ニッケル電極の性能は、従来はニッ
ケル・カドミウム電池において詳しく調べられてきてお
り、水酸化ニッケル電極のγ相の抑制についても種種の
対策が施されてきた。そこで、従来のニッケル・金属水
素化物蓄電池では、正極のγ相の生成を抑制するため
に、ニッケル・カドミウム蓄電池でおこなわれてきた手
段を採用していた。その手段は、具体的には、ニッケル
・カドミウム電池の場合と同様に、水酸化ニッケルに、
カドミウム、亜鉛などを共沈したり、カドミウムの酸化
物や水酸化物を水酸化ニッケルと別の相として添加する
方法である。
The performance of nickel hydroxide electrodes has been conventionally investigated in detail in nickel-cadmium batteries, and various measures have been taken to suppress the γ phase of nickel hydroxide electrodes. Therefore, in the conventional nickel-metal hydride storage battery, in order to suppress the generation of the γ phase of the positive electrode, the means used in the nickel-cadmium storage battery has been adopted. Specifically, as in the case of the nickel-cadmium battery, the means is nickel hydroxide,
This is a method of coprecipitating cadmium, zinc, etc., or adding an oxide or hydroxide of cadmium as a separate phase from nickel hydroxide.

【0010】しかし、これらの手段には次のような欠点
がある。
However, these means have the following drawbacks.

【0011】カドミウムを添加する手段によれば、γ相
の生成を抑制することができる。カドミウムを添加する
場合には、酸化カドミウムや水酸化カドミウムの粉末を
水酸化ニッケル粉末と混合する手段は、カドミウムを水
酸化ニッケルと共沈する手段と比較してγ相の生成を抑
制する効果が大きい。しかし、カドミウムは環境汚染の
原因物質であるという疑いがある。そして、ニッケル・
金属水素化物蓄電池では、正極へのカドミウムの添加を
おこなわなければ、カドミウムを含有しない電池が得ら
れるので、正極にカドミウムを用いないことが望まれて
いる。
The means for adding cadmium can suppress the production of the γ phase. When adding cadmium, the means of mixing the powder of cadmium oxide or cadmium hydroxide with the nickel hydroxide powder has the effect of suppressing the formation of the γ phase as compared with the means of coprecipitating cadmium with nickel hydroxide. large. However, cadmium is suspected to be a causative agent of environmental pollution. And nickel
In a metal hydride storage battery, a cadmium-free battery can be obtained without adding cadmium to the positive electrode. Therefore, it is desired not to use cadmium in the positive electrode.

【0012】また、酸化カドミウムや水酸化カドミウム
の粉末を水酸化ニッケル粉末と混合して添加する手段で
は、正極からカドミウムが溶出しやすく、このカドミウ
ムが水素吸蔵電極上で還元されて金属カドミウムの樹枝
状晶(デンドライト)や苔状の析出物が生成し、これが
電池の内部短絡の原因になることがあった。
[0012] Further, in the means for adding the powder of cadmium oxide or cadmium hydroxide mixed with the powder of nickel hydroxide, cadmium is easily eluted from the positive electrode, and the cadmium is reduced on the hydrogen storage electrode so that the cadmium of metal cadmium is reduced. Crystals (dendrites) and mossy precipitates were formed, which sometimes caused an internal short circuit of the battery.

【0013】亜鉛を水酸化ニッケルに共沈して添加する
手段は、カドミウムを添加する場合と同様に、水酸化ニ
ッケルの充放電が起こる電位を卑に移行させることな
く、γ相の生成を防止できる。しかも、亜鉛は、カドミ
ウムのような環境汚染の恐れが小さいので、これを添加
することは問題が少ない。しかし、水酸化ニッケルに水
酸化亜鉛を添加する場合には、ニッケルと亜鉛との水溶
性塩(たとえば、硫酸塩、硝酸塩、塩化物など)の溶液
とアルカリ(例えば苛性ソーダや苛性カリなど)とを反
応させて調製するのであるが、亜鉛がアルカリ水溶液に
溶解しやすいので、亜鉛の含有率の制御が困難であると
いう欠点があった。
As in the case of adding cadmium, the means of adding zinc by coprecipitation to nickel hydroxide prevents the formation of the γ phase without shifting the potential at which the nickel hydroxide is charged and discharged to base. it can. Moreover, since zinc is less likely to cause environmental pollution such as cadmium, its addition is less problematic. However, when adding zinc hydroxide to nickel hydroxide, a solution of a water-soluble salt of nickel and zinc (eg, sulfate, nitrate, chloride, etc.) is reacted with an alkali (eg, caustic soda, caustic potash, etc.). However, since zinc is easily dissolved in an alkaline aqueous solution, it is difficult to control the zinc content.

【0014】また、ニッケル−金属水素化物蓄電池は、
単に1時間率という大電流で充電されるだけではなく、
同じ電池が45℃程度の高温下で10時間率という小さ
い電流で充電される場合がある。この場合には、ニッケ
ル−金属水素化物蓄電池では、正極の充電高率が低下し
て放電容量が小さくなるという不都合があった。
Further, the nickel-metal hydride storage battery is
Not only is it charged with a large current of 1 hour rate,
The same battery may be charged at a high current of about 45 ° C. and a small current of 10 hours. In this case, in the nickel-metal hydride storage battery, there is a disadvantage that the charging rate of the positive electrode is reduced and the discharge capacity is reduced.

【0015】したがって、カドミウムまたは亜鉛を水酸
化ニッケルに共沈したり、酸化カドミウムや水酸化カド
ミウムの粉末を水酸化ニッケル粉末と混合することな
く、大きい電流で充電する際の充放電サイクルの進行に
ともなう電池の内部抵抗の増加を抑制して、しかも高温
下における充電効率の低下を抑制したニッケル・金属水
素化物蓄電池が望まれていた。
Therefore, without coprecipitating cadmium or zinc in nickel hydroxide or mixing the powder of cadmium oxide or cadmium hydroxide with the powder of nickel hydroxide, the charging / discharging cycle for charging with a large current can be used. There has been a demand for a nickel-metal hydride storage battery that suppresses an increase in internal resistance of the battery that accompanies it and also suppresses a decrease in charging efficiency at high temperatures.

【0016】[0016]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、充電末期に、正極が満充電になっても
負極に未充電活物質が残りかつ負極が卑に分極する密閉
形アルカリ蓄電池であって、前記の密閉形アルカリ蓄電
池が、水酸化コバルトが共沈された粉末である水酸化ニ
ッケルを主体とする活物質と、亜鉛の酸化物もしくは水
酸化物との混合物を耐アルカリ性導電性支持体に保持し
てなる正極と、水素吸蔵合金を主体とする負極とを備え
ることを特徴とするニッケル−金属水素化物蓄電池を提
供する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention aims to solve the above problems even if the positive electrode is fully charged at the end of charging.
A hermetic seal where uncharged active material remains on the negative electrode and the negative electrode is polarized base
Type alkaline storage battery, wherein the sealed alkaline storage battery is used.
A positive electrode in which a pond holds a mixture of an active material mainly composed of nickel hydroxide, which is a powder in which cobalt hydroxide is coprecipitated, and an oxide or hydroxide of zinc, on an alkali-resistant conductive support. A nickel-metal hydride storage battery comprising: a negative electrode mainly composed of a hydrogen storage alloy.

【0017】さらに、このような水酸化コバルトが共沈
された水酸化ニッケルを主体とする活物質を正極に用い
る場合にあって、共沈された水酸化コバルトが、水酸化
ニッケルと水酸化コバルトとの合計に対して1モル%以
上20モル%以下であることを特徴とするニッケル−金
属水素化物蓄電池を提供する。
Further, when an active material mainly composed of nickel hydroxide co-precipitated with cobalt hydroxide is used for the positive electrode, the co-precipitated cobalt hydroxide is nickel hydroxide and cobalt hydroxide. The present invention provides a nickel-metal hydride storage battery, which is 1 mol% or more and 20 mol% or less with respect to the total of

【作用】本発明の手段を採用すると、カドミウムまたは
亜鉛を水酸化ニッケルに共沈したり、酸化カドミウムや
水酸化カドミウムの粉末を水酸化ニッケル粉末と混合し
なくても、ニッケル・金属水素化物蓄電池を充電して、
正極のγ相の生成が抑制される。その結果、セパレータ
中の電解液が正極に吸収されることが効果的に抑制され
て、ニッケル−金属水素化物蓄電池の充放電サイクル寿
命が長くなる。
When the means of the present invention is adopted, a nickel-metal hydride storage battery can be obtained without coprecipitating cadmium or zinc in nickel hydroxide or mixing cadmium oxide or cadmium hydroxide powder with nickel hydroxide powder. Charge the
Generation of the γ phase of the positive electrode is suppressed. As a result, absorption of the electrolytic solution in the separator by the positive electrode is effectively suppressed, and the charge / discharge cycle life of the nickel-metal hydride storage battery is extended.

【0018】さらに、本発明の手段を採用すると、カド
ミウムまたは亜鉛を水酸化ニッケルに共沈したり、酸化
カドミウムや水酸化カドミウムの粉末を水酸化ニッケル
粉末と混合しなくても、正極の充電効率が高くなって、
ニッケル−金属水素化物蓄電池を高温下で低率で充電し
て、充電効率が低下しないという作用も併せ持つ。
Further, by adopting the means of the present invention, the charging efficiency of the positive electrode can be achieved without coprecipitating cadmium or zinc with nickel hydroxide or mixing powders of cadmium oxide or cadmium hydroxide with nickel hydroxide powder. Is getting higher,
It also has a function of charging the nickel-metal hydride storage battery at a low rate at a high temperature so that the charging efficiency does not decrease.

【0019】この本発明の作用は、従来の共沈法による
水酸化ニッケル粉末への亜鉛の添加の有無にかかわりな
く、発揮されるものである。
The effect of the present invention is exhibited regardless of whether or not zinc is added to nickel hydroxide powder by the conventional coprecipitation method.

【0020】そして、酸化亜鉛や水酸化亜鉛を添加する
場合には、定めた量の水酸化ニッケル粉末と酸化亜鉛も
しくは水酸化亜鉛の粉末とを混合するだけで正極への亜
鉛の添加率を制御できるので、従来の共沈法のように亜
鉛の添加率が不安定になることがなく、品質管理が著し
く容易になる点で有利である。
When zinc oxide or zinc hydroxide is added, the ratio of zinc added to the positive electrode can be controlled simply by mixing a predetermined amount of nickel hydroxide powder and zinc oxide or zinc hydroxide powder. Therefore, unlike the conventional coprecipitation method, the addition rate of zinc does not become unstable, which is advantageous in that the quality control is significantly facilitated.

【0021】なお、本発明の手段で、水酸化ニッケル粉
末と混合した亜鉛の酸化物もしくは水酸化物も、その一
部がアルカリ電解液に溶出する。そして、この水酸化ニ
ッケル電極をカドミウム電極と組み合わせてニッケル・
カドミウム蓄電池を構成する場合には、カドミウム電極
の水素過電圧が著しく高いので、ニッケル・カドミウム
蓄電池の充電末期に負極が著しく卑に分極し、その電位
が亜鉛の電析する値に到達することがある。このような
場合には、カドミウム電極に金属亜鉛のデンドライトが
生成して、電池の内部短絡が起こる。
By the means of the present invention, a part of zinc oxide or hydroxide mixed with nickel hydroxide powder is also eluted in the alkaline electrolyte. Then, combining this nickel hydroxide electrode with a cadmium electrode,
When constructing a cadmium storage battery, the hydrogen overvoltage of the cadmium electrode is extremely high, so at the end of charging of the nickel-cadmium storage battery, the negative electrode may become extremely base polarized and its potential may reach the value at which zinc is deposited. . In such a case, a metallic zinc dendrite is generated at the cadmium electrode, and an internal short circuit of the battery occurs.

【0022】しかし、このような水酸化ニッケル電極を
水素吸蔵電極と組み合わせてニッケル・金属水素化物蓄
電池を構成する場合には、負極の水素吸蔵合金の水素過
電圧が著しく低いので、電池の充電末期に負極が分極し
ても、その電位は金属亜鉛が電析する値に到達すること
がない。
However, when such a nickel hydroxide electrode is combined with a hydrogen storage electrode to form a nickel metal hydride storage battery, since the hydrogen overvoltage of the hydrogen storage alloy of the negative electrode is extremely low, at the end of charging of the battery. Even if the negative electrode is polarized, its potential does not reach the value at which metallic zinc is electrodeposited.

【0023】すなわち、本発明を構成する水酸化ニッケ
ル電極は、ニッケル・カドミウム蓄電池の正極に適用し
た場合に不都合が発生するのであるが、本発明のように
ニッケル・金属水素化物蓄電池の正極に適用する場合に
は、そのような不都合を発生することなく、上述のよう
に充放電サイクル寿命が長くなるという作用効果を奏す
るものである。
That is, although the nickel hydroxide electrode constituting the present invention causes inconvenience when it is applied to the positive electrode of a nickel-cadmium storage battery, it is applied to the positive electrode of a nickel-metal hydride storage battery as in the present invention. In such a case, such an inconvenience does not occur and, as described above, there is an effect that the charge / discharge cycle life becomes long.

【0024】[0024]

【実施例】<実験1> [蓄電池(A1)](参考例) 電池(A1)は、次のように構成した。Example <Experiment 1> [Battery (A1)] (Reference example) The battery (A1) was constructed as follows.

【0025】正極は、次のようにして製作した。すなわ
ち、主として水酸化ニッケルからなる活物質粉末90重
量部、水酸化コバルト粉末5重量部および水酸化カルシ
ウム粉末5重量部を添加して混合し、これに精製水を加
えて混練し、ペースト状混合物を調製した。次に、多孔
度が約98%で厚さが約0.7mmの発泡状ニッケル多
孔体に、このペースト状混合物を充填し、乾燥し、加圧
し、切断して、活物質充填部の厚さが0.55mm、巾
が14mm、長さが57mmの水酸化ニッケル電極を得
た。主として水酸化ニッケルからなるこの活物質粉末に
は、水酸化ニッケルと水酸化コバルトとの合計に対し
て、0.7モル%の水酸化コバルトが共沈してある。こ
の共沈された水酸化コバルトは、水酸化ニッケルと同様
に充放電反応に関与するものと考えられるので、この共
沈された水酸化コバルトは、水酸化ニッケルと区別しな
いで取り扱うことにする。
The positive electrode was manufactured as follows. That is, 90 parts by weight of an active material powder mainly consisting of nickel hydroxide, 5 parts by weight of cobalt hydroxide powder and 5 parts by weight of calcium hydroxide powder were added and mixed, and purified water was added thereto and kneaded to obtain a paste-like mixture. Was prepared. Next, a foamed nickel porous body having a porosity of about 98% and a thickness of about 0.7 mm was filled with this paste-like mixture, dried, pressed, and cut to obtain the thickness of the active material filled portion. Was 0.55 mm, the width was 14 mm, and the length was 57 mm to obtain a nickel hydroxide electrode. In this active material powder mainly consisting of nickel hydroxide, 0.7 mol% of cobalt hydroxide was coprecipitated with respect to the total of nickel hydroxide and cobalt hydroxide. Since this coprecipitated cobalt hydroxide is considered to be involved in the charge / discharge reaction like nickel hydroxide, the coprecipitated cobalt hydroxide will be treated without distinguishing it from nickel hydroxide.

【0026】負極は、次のようにして製作した。すなわ
ち、合金組成がLmNi3.8Co0.7Al
0.5(ここで、Lmは約90重量%のLaを含有する
稀土類金属混合物たるランタンリッチミッシュメタルで
ある)になるように、各成分元素を真空高周波誘導加熱
炉で融解し、これを鋳造して得た鋳塊を粉砕し、平均粒
径が約30μmの水素吸蔵合金粉末を得た。
The negative electrode was manufactured as follows. That is, the alloy composition is LmNi 3.8 Co 0.7 Al
Each component element was melted in a vacuum high-frequency induction heating furnace so as to become 0.5 (where Lm is a lanthanum-rich misch metal which is a rare earth metal mixture containing about 90% by weight of La), and this was melted. The ingot obtained by casting was pulverized to obtain a hydrogen storage alloy powder having an average particle size of about 30 μm.

【0027】次に、この合金粉末100重量部とカーボ
ンブラック3重量部を混合し、これに3重量%のポリビ
ニルアルコール水溶液40重量部を加えてペースト状混
合物を調製した。そして、鉄板にニッケルメッキを施し
た厚さが約0.08mmの穿孔鋼板(開口率は約50
%)に、このペースト状混合物(あ)を塗着し、ドクタ
ーブレードで厚さを調節してから、乾燥し、加圧し、切
断して、活物質坦持部の厚さが0.3mm、巾が15m
m、長さが58mmの水素吸蔵電極を得た。
Next, 100 parts by weight of this alloy powder and 3 parts by weight of carbon black were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol were added to prepare a paste-like mixture. Then, a perforated steel plate having a thickness of about 0.08 mm (aperture ratio of about 50
%), This paste mixture (A) is applied, and the thickness is adjusted with a doctor blade, then dried, pressed, and cut so that the active material carrying part has a thickness of 0.3 mm, Width is 15m
A hydrogen storage electrode having m and a length of 58 mm was obtained.

【0028】電池1個には、上記の正極板4枚と負極板
5枚とを、界面活性剤で親水性を賦与した厚さが0.1
0mmのポリプロピレン製のセパレータ1枚を介して積
層して用いた。この積層体を、ニッケルメッキを施した
厚さが約0.4mmの鉄製の角形電池ケースに収納し、
7Mの水酸化カリウム水溶液に10g/lの水酸化リチ
ウムを溶解した電解液を注入し、電極の端子を兼ねる安
全弁を備えた金属製蓋体の周縁部を、この電池ケースの
周縁部と溶接して、電池を封口した。このようにして、
本発明の密閉形ニッケル−金属水素化物蓄電池を製作し
た。
In one battery, the above-mentioned four positive electrode plates and five negative electrode plates were made hydrophilic by imparting hydrophilicity with a surfactant and had a thickness of 0.1.
It was used by stacking one 0 mm polypropylene separator. The laminated body is housed in a nickel-plated iron prismatic battery case with a thickness of about 0.4 mm,
An electrolytic solution prepared by dissolving 10 g / l of lithium hydroxide in a 7 M aqueous potassium hydroxide solution was injected, and the peripheral portion of the metal lid body provided with the safety valve which also serves as the terminal of the electrode was welded to the peripheral portion of the battery case. And sealed the battery. In this way
The sealed nickel-metal hydride storage battery of the present invention was manufactured.

【0029】この電池1個の正極には、約3.0gの水
酸化ニッケル、約0.167gの水酸化コバルト、およ
び約0.167gの水酸化カルシウムが充填されてい
る。水酸化ニッケルが1電子反応に従うことを仮定する
と、この電池1個の正極に含まれる水酸化ニッケルの理
論容量は、約870mAh(=289×3.0)であ
る。
The positive electrode of this single battery was filled with about 3.0 g of nickel hydroxide, about 0.167 g of cobalt hydroxide, and about 0.167 g of calcium hydroxide. Assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of nickel hydroxide contained in the positive electrode of one battery is about 870 mAh (= 289 × 3.0).

【0030】一方、この電池1個の負極には、約4.6
gの水素吸蔵合金が含有されている。この水素吸蔵合金
を充放電する場合に、水素ガスを放出することなく充電
される電気量は、この水素吸蔵合金1g当たり約270
mAhであり、この充電電気量は、ほぼそのまま放電さ
れる。
On the other hand, the negative electrode of one battery has about 4.6.
g hydrogen storage alloy is contained. When charging and discharging this hydrogen storage alloy, the amount of electricity charged without releasing hydrogen gas is about 270 per 1 g of this hydrogen storage alloy.
It is mAh, and this charge amount of electricity is discharged almost as it is.

【0031】[蓄電池(A5)](実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末の
代わりに、水酸化亜鉛粉末を備え、そのほかの構成は蓄
電池(A1)と同じにして、本発明の蓄電池(A5)を
製作した。
[Storage Battery (A5)] (Example) Instead of the calcium hydroxide powder as the positive electrode additive of the storage battery (A1), zinc hydroxide powder was provided, and other configurations were the same as those of the storage battery (A1). The storage battery (A5) of the present invention was produced.

【0032】[蓄電池(A6)](実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末の
代わりに、酸化亜鉛粉末を備え、そのほかの構成は蓄電
池(A1)と同じにして、本発明の蓄電池(A6)を製
作した。
[Storage Battery (A6)] (Example) Instead of the calcium hydroxide powder as the positive electrode additive of the storage battery (A1), zinc oxide powder was provided, and the other constitutions were the same as those of the storage battery (A1). The storage battery (A6) of the invention was produced.

【0033】[蓄電池(G)](従来例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部を添加することなく、そのほかの構成は蓄電池
(A1)と同じにして、従来例としての蓄電池(G)を
製作した。
[Storage Battery (G)] (Conventional Example) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
A storage battery (G) as a conventional example was manufactured without adding a part by weight and making the other configurations the same as the storage battery (A1).

【0034】[蓄電池(H1)](参考例) 蓄電池(A1)の負極として水素吸蔵合金を備えること
なく、その代わりに、次のものを用いた。なお、負極板
の厚さの増加分だけ電池の厚さを大きくし、そのほかの
構成は蓄電池(A1)と同じにして、参考例としての密
閉形ニッケル−カドミウム蓄電池(H1)を製作した。
[Storage Battery (H1)] (Reference Example) The following was used instead of the storage battery (A1) without the hydrogen storage alloy as the negative electrode. A sealed nickel-cadmium storage battery (H1) as a reference example was manufactured by increasing the thickness of the negative electrode plate and increasing the thickness of the battery in the same manner as the storage battery (A1).

【0035】負極は、次のようにして製作した。すなわ
ち、酸化カドミウム粉末100重量部、および金属カド
ミウム粉末30重量部を混合し、これに3重量%のポリ
ビニルアルコール水溶液40重量部を加えてペースト状
混合物を調製した。そして、鉄板にニッケルメッキを施
した厚さが約0.08mmの穿孔鋼板(開口率は約50
%)に、このペースト状混合物を塗着し、ドクターブレ
ードで厚さを調節してから、乾燥し、加圧し、切断し
て、活物質坦持部の厚さが0.6mm 、巾が15m
m、長さが58mmのカドミウム電極を得た。
The negative electrode was manufactured as follows. That is, 100 parts by weight of cadmium oxide powder and 30 parts by weight of metal cadmium powder were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol were added to prepare a paste-like mixture. Then, a perforated steel plate having a thickness of about 0.08 mm (aperture ratio of about 50
%), This paste mixture is applied, and the thickness is adjusted with a doctor blade, then dried, pressed and cut, and the active material carrying portion has a thickness of 0.6 mm and a width of 15 m.
A cadmium electrode having a length of m and a length of 58 mm was obtained.

【0036】カドミウム電極では、充電生成物である金
属カドミウムのうちで、放電が困難になる量が水素吸蔵
電極と比較して著しく大きいので、電池の放電を正極で
制限するように、充電生成物として作用する金属カドミ
ウム粉末をあらかじめ供えさせている。それゆえ、この
電池を充電した場合に、上述のように、正極の水酸化コ
バルトが3価に酸化され、水酸化ニッケルが3.2価に
酸化されるまでに、約1090mAh(=50+104
0)の電気量が充電される。
In the cadmium electrode, the amount of metal cadmium that is a charge product that makes discharge difficult is significantly larger than that in the hydrogen storage electrode, so that the charge product should be limited so that the discharge of the battery is limited by the positive electrode. The metal cadmium powder that acts as is provided in advance. Therefore, when this battery is charged, as described above, it takes about 1090 mAh (= 50 + 104) before cobalt hydroxide of the positive electrode is oxidized to trivalent and nickel hydroxide is oxidized to 3.2.
The electric quantity of 0) is charged.

【0037】一方、この電池1個の負極には、約3.1
gの酸化カドミウムおよび約0.93g(理論容量:約
440mAh)の金属カドミウムが含有されている。こ
のカドミウムを充放電する場合に、水素ガスを放出する
ことなく充電される電気量は、酸化カドミウム1g当た
り約440mAhである。従って、この電池1個の負極
の酸化カドミウムは、充電電気量が約1240mAh
(=400×3.1)になるまで水素ガスを発生するこ
となく充電される。
On the other hand, about 3.1 is contained in the negative electrode of this battery.
g of cadmium oxide and about 0.93 g (theoretical capacity: about 440 mAh) of metallic cadmium. When charging / discharging this cadmium, the amount of electricity charged without releasing hydrogen gas is about 440 mAh per 1 g of cadmium oxide. Therefore, cadmium oxide of the negative electrode of this battery has a charging electricity of about 1240 mAh.
It is charged without generating hydrogen gas until it reaches (= 400 × 3.1).

【0038】すなわち、この電池を充電すると、負極が
満充電になって水素ガスが発生する充電電気量(124
0mAh)に到達する前に、正極が満充電になる充電電
気量(1090mAh)に到達して、正極から酸素ガス
が発生する。そして、この電池は密閉形であるから、正
極が満充電になってから過充電して発生する酸素ガス
は、負極において電解還元されて消費される。従って、
電池の密閉性が損なわれることがない。
That is, when this battery is charged, the negative electrode is fully charged and hydrogen gas is generated.
Before reaching 0 mAh), the amount of charge electricity (1090 mAh) at which the positive electrode is fully charged reaches, and oxygen gas is generated from the positive electrode. Since this battery is a sealed type, oxygen gas generated by overcharging after the positive electrode is fully charged is electrolytically reduced and consumed in the negative electrode. Therefore,
The airtightness of the battery is not impaired.

【0039】また、電池を放電する際には、正極の放電
可能な容量820mAhは、負極の充電電気量1530
mAh(=1090+440)よりも著しく小さいの
で、電池の放電が正極の放電容量で制限されることもわ
かる。
When the battery is discharged, the dischargeable capacity 820 mAh of the positive electrode is equal to the charge electricity amount 1530 of the negative electrode.
Since it is significantly smaller than mAh (= 1090 + 440), it can be seen that the discharge of the battery is limited by the discharge capacity of the positive electrode.

【0040】[蓄電池(H5)](比較例) 蓄電池(H1)における水酸化カルシウムを備える正極
を用いることなく、その代わりに、蓄電池(A5)に用
いたものと同じ水酸化亜鉛を備える正極を用い、そのほ
かの構成は蓄電池(H1)と同じにして、比較例の密閉
形ニッケル−カドミウム蓄電池(H5)を製作した。
[Storage Battery (H5)] (Comparative Example) Without using the positive electrode provided with calcium hydroxide in the storage battery (H1), a positive electrode provided with the same zinc hydroxide as that used for the storage battery (A5) was used instead. A sealed nickel-cadmium storage battery (H5) of a comparative example was manufactured by using the other configurations in the same manner as the storage battery (H1).

【0041】[蓄電池(H6)](比較例) 蓄電池(H1)における水酸化カルシウムを備える正極
を用いることなく、その代わりに、蓄電池(A6)に用
いたものと同じ酸化亜鉛を備える正極を用い、そのほか
の構成は蓄電池(H1)と同じにして、比較例の密閉形
ニッケル−カドミウム蓄電池(H6)を製作した。
[Rechargeable Battery (H6)] (Comparative Example) Without using the positive electrode provided with calcium hydroxide in the storage battery (H1), a positive electrode provided with the same zinc oxide as that used in the storage battery (A6) was used instead. A sealed nickel-cadmium storage battery (H6) of a comparative example was manufactured in the same manner as the storage battery (H1) in other respects.

【0042】以上に述べた7種類の蓄電池を化成するた
めに、充放電サイクルの前に、次の条件で2回の充放電
を行った。 充電:電流80mAで16時間通電し、1時間放置す
る。 放電:電流160mAで端子電圧1.0Vまで放電し、
1時間放置する。
In order to form the above-mentioned seven kinds of storage batteries, charging / discharging was performed twice under the following conditions before the charging / discharging cycle. Charging: A current of 80 mA is applied for 16 hours and left for 1 hour. Discharge: Discharge to a terminal voltage of 1.0 V with a current of 160 mA,
Leave for 1 hour.

【0043】これらの蓄電池の充放電サイクル寿命試験
を、次の条件で行った。電池の充放電は、20℃で行っ
た。 充電:電流800mAで1.2時間通電し、30分間放
置する。 放電:電流800mAで端子電圧1.0Vまで通電し、
30分間放置する。
The charge / discharge cycle life test of these storage batteries was performed under the following conditions. The battery was charged and discharged at 20 ° C. Charging: A current of 800 mA is applied for 1.2 hours and left for 30 minutes. Discharge: A current of 800 mA is applied to the terminal voltage of 1.0 V,
Leave for 30 minutes.

【0044】この試験の間、電池の内部抵抗を1KHz
の交流法で測定し、その値が初期の化成充放電後の内部
抵抗値の5倍に到達するまでの充放電サイクル数を、そ
の電池の充放電サイクル寿命と判定した。また、この充
放電サイクル寿命に到達するまでに、充電後の放置中に
電池の開回路電圧が1.1V未満に到達した場合には、
その電池に内部短絡が発生したものと判定した。また、
電池の安全弁を観察して、充電中の電解液の漏出を観察
した。
During this test, the internal resistance of the battery was set to 1 KHz.
The alternating current method was used to measure the number of charge / discharge cycles until the value reached 5 times the internal resistance value after the initial chemical charge / discharge was determined as the charge / discharge cycle life of the battery. In addition, when the open circuit voltage of the battery reaches less than 1.1 V while it is left after charging before reaching the charge / discharge cycle life,
It was determined that an internal short circuit had occurred in the battery. Also,
The safety valve of the battery was observed to observe leakage of the electrolytic solution during charging.

【0045】この試験における上記電池の充放電サイク
ル寿命、電池の内部短絡の発生の有無、および電解液の
漏出の有無を表1に示す。
Table 1 shows the charging / discharging cycle life of the battery, occurrence of internal short circuit of the battery, and leakage of electrolyte in this test.

【0046】[0046]

【表1】 [Table 1]

【0047】表1から次のことがわかる。すなわち、参
考例の密閉形のニッケル−カドミウム蓄電池(H1)
は、電解液の漏出が起こって、電池の内部抵抗が増加
し、充放電サイクル寿命が著しく短くなっている。これ
は、正極に添加されているカルシウムやマグネシウムが
負極に移動して、カドミウムの充電反応が阻害され、電
池の充電の途中で水素ガスが負極から多量に発生し、そ
の結果、電池の内圧が著しく増加し、安全弁が開いて、
電解液が溢出し、電池の内部抵抗が増加したものであ
る。
The following can be seen from Table 1. That is, the sealed nickel-cadmium storage battery (H1) of the reference example.
The electrolyte leaks, the internal resistance of the battery increases, and the charging / discharging cycle life is significantly shortened. This is because the calcium and magnesium added to the positive electrode move to the negative electrode, the charging reaction of cadmium is hindered, and a large amount of hydrogen gas is generated from the negative electrode during the charging of the battery. Significantly increased, the safety valve opened,
The electrolytic solution overflowed and the internal resistance of the battery increased.

【0048】比較例の密閉形のニッケル−カドミウム蓄
電池(H5)および(H6)は、充放電サイクル寿命に
到達する前に内部短絡が発生している。この原因は次の
ように考えられる。すなわち、密閉電池では、充電末期
に充電反応の主体が活物質の充電反応から酸素ガス吸収
反応に移行し、その際に電流分布の顕著な変動がおこっ
て負極が卑に分極する。そして、これらの比較例の電池
では、負極活物質にカドミウムを用いているので、その
水素過電圧が著しく大きく、充電末期の負極の分極が著
しく大きくなり、負極の電位が亜鉛の電析し得る値に到
達する。
In the sealed nickel-cadmium storage batteries (H5) and (H6) of the comparative example, an internal short circuit occurred before the charge / discharge cycle life was reached. The cause is considered as follows. That is, in the sealed battery, the main body of the charge reaction shifts from the charge reaction of the active material to the oxygen gas absorption reaction in the final stage of charge, and at that time, the current distribution remarkably fluctuates and the negative electrode is polarized to the base. And, in the batteries of these comparative examples, since cadmium is used as the negative electrode active material, the hydrogen overvoltage thereof is remarkably large, the polarization of the negative electrode at the end of charging is remarkably large, and the potential of the negative electrode is a value at which zinc can be electrodeposited. To reach.

【0049】そして、水酸化亜鉛および酸化亜鉛のアル
カリ電解液中における溶解度は0.6M程度の大きい値
であるから、これらの電池の正極に添加した水酸化亜鉛
及び酸化亜鉛の一部は電解液に溶解している。従って、
これらの電池では、充電末期に負極が著しく分極する
と、電解液中の亜鉛が負極に電析して、電池の内部短絡
を引き起こす。
Since the solubility of zinc hydroxide and zinc oxide in the alkaline electrolyte is a large value of about 0.6 M, part of the zinc hydroxide and zinc oxide added to the positive electrode of these batteries is the electrolyte. Is dissolved in. Therefore,
In these batteries, when the negative electrode remarkably polarizes at the end of charging, zinc in the electrolytic solution is electrodeposited on the negative electrode, causing an internal short circuit of the battery.

【0050】従来例の正極にカルシウム、マグネシウ
ム、および亜鉛の水酸化物や酸化物を備えていない密閉
形ニッケル−金属水素化物蓄電池(G)では、密閉形ニ
ッケル−カドミウム蓄電池のような内部短絡や電解液の
漏出は起こっていないものの、内部抵抗の増加を伴う充
放電サイクル寿命は約600サイクルである。
In the sealed nickel-metal hydride storage battery (G) in which the positive electrode of the conventional example is not provided with hydroxides or oxides of calcium, magnesium, and zinc, an internal short circuit such as a sealed nickel-cadmium storage battery or Although no electrolyte leakage has occurred, the charge / discharge cycle life with an increase in internal resistance is about 600 cycles.

【0051】一方、本発明の密閉形ニッケル−金属水素
化物蓄電池(A5)、(A6)は、いずれも電池の内部
短絡や電解液の漏出を引き起こすことなく、1000サ
イクル以上の充放電をおこなっても内部抵抗の増加を伴
わない。これは、亜鉛の酸化物もしくは水酸化物を正極
に備える構成によって、正極におけるγ相の生成が効果
的に抑制されたことに起因する。
On the other hand, each of the sealed nickel-metal hydride storage batteries (A5) and (A6) of the present invention is charged and discharged for 1000 cycles or more without causing an internal short circuit of the battery or leakage of the electrolytic solution. Is not accompanied by an increase in internal resistance. This is because generation of the γ phase in the positive electrode was effectively suppressed by the configuration in which the positive electrode was provided with zinc oxide or hydroxide.

【0052】<実験2>実験1における密閉形ニッケル
−金属水素化物蓄電池参考例(A1)、実施例(A5)
および実施例(A6)のいずれの正極においても、水酸
化ニッケルと水酸化コバルトとの合計に対する水酸化コ
バルトの含有率が、0、0.4、0.7、1、2、5、
10、15、20、25および30mol%の値になる
ように水酸化コバルトを共沈した水酸化ニッケル粉末を
用いて正極板を製作し、その水酸化ニッケル電極を用い
ることのほかは、それぞれの電池と同じ構成にして、試
験用の電池を製作した。水酸化ニッケルに共沈する水酸
化コバルトの含有率が変わる場合にも、そのほかの構成
が、それぞれ(A1)、(A5)および(A6)と同じ
電池を、それぞれ系列{A1}、{A5}および{A
6}と呼ぶ。
<Experiment 2> Reference example (A1) and embodiment (A5) of the sealed nickel-metal hydride storage battery in Experiment 1.
In any of the positive electrodes of Example (A6), the content ratio of cobalt hydroxide to the total of nickel hydroxide and cobalt hydroxide was 0, 0.4, 0.7, 1, 2, 5,
A positive electrode plate was manufactured using nickel hydroxide powder in which cobalt hydroxide was co-precipitated so as to have values of 10, 15, 20, 25, and 30 mol%, and the nickel hydroxide electrode was used. A test battery was manufactured with the same structure as the battery. Even when the content rate of cobalt hydroxide coprecipitated in nickel hydroxide changes, batteries having the same other configurations as those of (A1), (A5), and (A6) are used as series {A1} and {A5}, respectively. And {A
6}.

【0053】これらの電池を、実験1と同じ条件で化成
の充放電を5サイクル行った後に、次のような高温にお
ける低率充電試験を行って、その後の放電容量を調べ
た。 充電:45℃にて、電流80mA(10時間率)で16
時間通電し、1時間放置する。 放電:25℃にて、電流160mAで端子電圧1.0V
まで放電して放電容量を調べる。
After subjecting these batteries to 5 cycles of charge and discharge for formation under the same conditions as in Experiment 1, a low rate charge test at a high temperature as described below was conducted to examine the discharge capacity thereafter. Charge: 16 at current of 80 mA (10 hour rate) at 45 ° C
Energize for an hour and leave for 1 hour. Discharge: 25 ℃, current 160mA, terminal voltage 1.0V
Discharge up to and check the discharge capacity.

【0054】そして、45℃で低率充電した後の放電容
量と、25℃において化成充放電を5回行った後の放電
容量との比を調べた。この容量比を高温下における充電
効率と呼んで、正極のニッケル粉末に共沈した水酸化コ
バルトの含有率に対してプロットした結果を図1に示
す。
Then, the ratio of the discharge capacity after low-rate charging at 45 ° C. and the discharge capacity after 5 times of chemical charge / discharge at 25 ° C. was examined. This capacity ratio is called the charging efficiency at high temperature, and the results plotted against the content of cobalt hydroxide coprecipitated in the nickel powder of the positive electrode are shown in FIG.

【0055】図1から次のことがわかる。すなわち、
{A1}、{A5}、および{A6}のいずれの系列に
おいても、高温下での充電効率が改善されており、特に
コバルトの含有率が1mol%以上では、高温下の充電
効率の低下が顕著に抑制されていることがわかる。
The following can be seen from FIG. That is,
In any of the {A1}, {A5}, and {A6} series, the charging efficiency at high temperature is improved, and particularly when the cobalt content is 1 mol% or more, the charging efficiency at high temperature decreases. It can be seen that it is significantly suppressed.

【0056】次に、化成充放電を5回行った後の放電容
量と、正極の水酸化ニッケルに共沈した水酸化コバルト
の含有率との関係を図2に示す。
Next, FIG. 2 shows the relationship between the discharge capacity after 5 times of formation and charge and discharge and the content rate of cobalt hydroxide coprecipitated in nickel hydroxide of the positive electrode.

【0057】図2から、次のことが分かる。すなわち、
25℃においては、コバルトの含有率が20mol%を
越えると、放電容量が著しく減少する。これは、コバル
トの含有率が20mol%を越えると、共沈したコバル
トが水酸化ニッケルと遊離して、充放電反応に関与しな
くなることに起因するものと推察される。
The following can be seen from FIG. That is,
At 25 ° C., when the cobalt content exceeds 20 mol%, the discharge capacity remarkably decreases. It is speculated that this is because when the cobalt content exceeds 20 mol%, the coprecipitated cobalt is released from nickel hydroxide and does not participate in the charge / discharge reaction.

【0058】なお、実験1では、コバルトの含有率が
0.7mol%の水酸化ニッケル粉末を用いたが、1m
ol%以上コバルトを共沈した水酸化ニッケルを用いる
場合にも、亜鉛の酸化物もしくは水酸化物を添加する場
合には、実験1と同様の作用効果が得られることを確か
めた。
In Experiment 1, nickel hydroxide powder having a cobalt content of 0.7 mol% was used.
It was confirmed that even when nickel hydroxide in which cobalt was co-precipitated by ol% or more was used, the same action and effect as in Experiment 1 could be obtained when zinc oxide or hydroxide was added.

【0059】また、コバルトの含有率が1mol% 以
上のコバルトを共沈した水酸化ニッケルを用いる場合で
あっても、亜鉛の酸化物もしくは水酸化物を添加しない
場合には、実験2と同じ条件で、高温下における充電効
率を調べると、高い充電効率が得られるが、実験1と同
じ条件で、高率充電をともなう充放電サイクル試験をお
こなうと、γ相の生成を防ぐことが困難であり、電池の
充放電サイクル寿命は著しく短くなった。
Even when nickel hydroxide co-precipitated with cobalt having a cobalt content of 1 mol% or more was used, the same conditions as in Experiment 2 were used unless zinc oxide or hydroxide was added. Then, when the charging efficiency under high temperature is examined, a high charging efficiency is obtained, but when the charge-discharge cycle test with high rate charging is performed under the same conditions as in Experiment 1, it is difficult to prevent the generation of γ phase. , The charge / discharge cycle life of the battery was significantly shortened.

【0060】従って、以上の実験結果から、高率充電す
る条件で充放電サイクル寿命が長くなり、かつ高温下に
おける充電効率の低下が抑制され、しかも常温における
放電容量の低下を招かないという3つの作用効果を併せ
持つのは、水酸化ニッケルと水酸化コバルトとの合計に
対して1モル%以上20モル%以下の水酸化コバルトを
共沈してなる水酸化ニッケルを活物質と、亜鉛の酸化物
もしくは水酸化物との混合物を、耐アルカリ性導電性支
持体に保持してなる正極と、水素吸蔵合金を主体とする
負極とを備えるニッケル−金属水素化物蓄電池であると
いえる。
Therefore, from the above experimental results, it is possible to increase the charging / discharging cycle life under the condition of high rate charging, suppress the decrease in charging efficiency at high temperature, and prevent the decrease in discharge capacity at room temperature. A nickel oxide which is obtained by coprecipitating 1 mol% or more and 20 mol% or less of cobalt hydroxide with respect to the total of nickel hydroxide and cobalt hydroxide has an active material and an oxide of zinc. Alternatively, it can be said to be a nickel-metal hydride storage battery including a positive electrode in which a mixture with a hydroxide is held by an alkali-resistant conductive support and a negative electrode mainly containing a hydrogen storage alloy.

【0061】また、上記の実施例において、亜鉛の酸化
物もしくは水酸化物の添加方法として、その粉末を添加
して混合することを記載しているが、これらの酸化物も
しくは水酸化物は、粉末としての混合だけではなく、主
として水酸化ニッケルからなる活物質粉末の表面に析出
または付着させることによって混合したものであって
も、同様の作用効果を奏することは言うまでもない。
Further, in the above-mentioned examples, as a method of adding zinc oxide or hydroxide, it is described that the powder is added and mixed, but these oxides or hydroxides are Needless to say, similar effects can be obtained not only by mixing as a powder, but also by mixing by depositing or adhering the active material powder mainly made of nickel hydroxide on the surface.

【0062】なぜなら、これは、本発明がこれらの酸化
物もしくは水酸化物を、水酸化ニッケルを主体とする活
物質とは別の酸化物もしくは水酸化物との混合物として
添加することによって構成していることに基づくからで
ある。
This is because, according to the present invention, these oxides or hydroxides are added as a mixture with an oxide or hydroxide other than the active material mainly containing nickel hydroxide. This is because it is based on

【0063】なお、以上の実施例では、正極に備える亜
鉛の酸化物もしくは水酸化物の量を、水酸化ニッケルを
主体とする活物質粉末100重量部に対して、5重量部
に固定した場合について説明したが、本発明の作用効果
は、このような特定の添加率の場合に限定して奏するの
ではなく、0.5重量部以上であれば実質的な作用効果
が得られる。ただし、その添加率が高くなりすぎると、
活物質の含有率が低下するので、正極の体積当たりの放
電容量が低下する。従って、これら添加物の添加率の上
限は、当業者の設計上の理由によって変動するものであ
る。実質的には、活物質粉末100重量部に対して、2
0重量部以下の範囲で添加することが望ましいであろ
う。
In the above examples, when the amount of zinc oxide or hydroxide provided in the positive electrode is fixed to 5 parts by weight with respect to 100 parts by weight of the active material powder mainly composed of nickel hydroxide. However, the function and effect of the present invention are not limited to the case of such a specific addition rate, and the substantial function and effect can be obtained if the content is 0.5 parts by weight or more. However, if the addition rate becomes too high,
Since the content rate of the active material decreases, the discharge capacity per volume of the positive electrode decreases. Therefore, the upper limit of the addition rate of these additives varies depending on the design reasons of those skilled in the art. Substantially, 2 parts with respect to 100 parts by weight of the active material powder.
It may be desirable to add in a range of 0 parts by weight or less.

【0064】また、上記の実施例では、亜鉛の酸化物も
しくは水酸化物を選択して使用する場合に、特定の比率
で混合して用いた場合について説明したが、本発明の作
用効果は、このような特定の混合比率だけではなく、全
ての混合比率において奏するものである。
Further, in the above-mentioned embodiment, the case where zinc oxide or hydroxide is selected and used, and it is mixed and used at a specific ratio, the operation and effect of the present invention are as follows. Not only such a specific mixing ratio, but all mixing ratios.

【0065】さらに、上記の実施例では、正極の耐アル
カリ性導電性支持体として、発泡状ニッケル多孔体を用
いる場合について説明したが、そのほかに、ニッケル繊
維の焼結体、パンチングメタル、エキスパンデッドメタ
ル、金属網などを用いる場合にも、同様の作用効果を奏
する。
Further, in the above-mentioned embodiment, the case where the foamed nickel porous body is used as the alkali resistant conductive support of the positive electrode has been described, but in addition to this, a sintered body of nickel fiber, punching metal, and expanded metal are also available. Similar effects can be obtained when using metal or metal net.

【0066】また、上記の実施例では、負極の水素吸蔵
合金として、特定の組成の稀土類系合金を用いる場合に
ついて説明したが、そのほかに、稀土類元素の配合比の
異なる合金、稀土類元素以外の金属元素の種類や配合比
の異なる合金、稀土類元素に少量のZr,Ti,Hfな
どを添加した合金、ZrNiに近い化学量論比であっ
てZrやNiを部分的にほかの金属で置換した合金、T
iNi合金やその一部を異種金属で置換した合金などを
用いる場合にも、同様の作用効果を奏する。
In the above embodiment, the case where a rare earth alloy having a specific composition is used as the hydrogen storage alloy for the negative electrode has been described. In addition to this, alloys having different mixing ratios of rare earth elements and rare earth elements are also used. Other than the above, alloys with different types and mixing ratios of metallic elements, alloys with small amounts of Zr, Ti, Hf, etc. added to rare earth elements, stoichiometric ratios close to ZrNi 2 and Zr and Ni partially Alloys replaced with metals, T
Similar effects are obtained when an iNi alloy or an alloy in which a part of the iNi alloy is replaced with a different metal is used.

【0067】そして、上記の実施例では、負極の水素吸
蔵電極として、プラスチック結合電極を用いる場合につ
いて説明したが、そのほかに、水素吸蔵合金を発泡状ニ
ッケル多孔体のような耐アルカリ性導電性多孔体に充填
した電極や、水素吸蔵合金の焼結体からなる電極を用い
る場合にも同様の作用効果を奏する。
In the above embodiments, the case where a plastic bonding electrode is used as the hydrogen storage electrode of the negative electrode has been described. In addition to this, a hydrogen storage alloy is used as an alkali resistant conductive porous body such as a foamed nickel porous body. Similar effects can be obtained when using an electrode filled in the electrode or an electrode made of a sintered body of a hydrogen storage alloy.

【0068】さらに、上記の実施例では、矩形状の電極
を積層してなる外形が角形のニッケル−金属水素化物蓄
電池の場合について説明したが、そのほかに、帯状の電
極を捲回してなる外形が円筒状のものや、円板状の電極
を積層してなる外形が円筒状のものなど、形状が異なる
場合にも、同様の作用効果を奏するものである。
Further, in the above embodiment, the description has been made of the nickel-metal hydride storage battery in which the rectangular electrodes are laminated and the outer shape is rectangular. However, in addition to this, the outer shape formed by winding the band-shaped electrodes is used. Even when the shape is different, such as a cylindrical shape or a cylindrical outer shape formed by stacking disk-shaped electrodes, the same operational effect is obtained.

【0069】また、上記の実施例では、密閉形の電池に
ついて説明したが、液量が多い開放形の電池の場合に
も、本発明の構成によれば、充放電サイクルの進行にと
もなう正極の厚さの増加が抑制されるので、電池の厚さ
の増加が抑制されるという作用効果も奏する。
Further, in the above-mentioned embodiments, the sealed type battery is explained. However, even in the case of an open type battery having a large amount of liquid, according to the constitution of the present invention, the positive electrode of the positive electrode as the charging / discharging cycle proceeds is advanced. Since the increase in the thickness is suppressed, there is an effect that the increase in the battery thickness is suppressed.

【0070】そして、上記の実施例では、正極に水酸化
コバルトを添加した場合について説明したが、そのほか
に、酸化コバルトや金属コバルトを単独で添加する場合
や、水酸化コバルト、酸化コバルト、及び金属コバルト
の群から選択した2つ以上を用いる場合にも同様の作用
効果を奏する。
In the above embodiment, the case where cobalt hydroxide is added to the positive electrode has been described. In addition to the above, cobalt oxide or metal cobalt is added alone, or cobalt hydroxide, cobalt oxide, and metal are added. Similar effects are obtained when two or more selected from the group of cobalt are used.

【0071】[0071]

【発明の効果】以上に述べたように、本発明の手段を採
用すると、カドミウムまたは亜鉛を水酸化ニッケルに共
沈したり、酸化カドミウムや水酸化カドミウムの粉末を
水酸化ニッケル粉末と混合することなく、充放電サイク
ルの進行にともなう電池の内部抵抗の増加を抑制したニ
ッケル−金属水素化物蓄電池が得られる。さらに、高温
下で低率充電した場合の充電効率の低下および常温下で
充放電する場合の放電容量の低下を抑制するという効果
をも併せ持つニッケル−金属水素化物蓄電池が得られ
る。
As described above, when the means of the present invention is adopted, it is possible to coprecipitate cadmium or zinc with nickel hydroxide or to mix powders of cadmium oxide or cadmium hydroxide with nickel hydroxide powder. Thus, a nickel-metal hydride storage battery in which an increase in internal resistance of the battery with the progress of charge / discharge cycles is suppressed can be obtained. Further, it is possible to obtain a nickel-metal hydride storage battery that also has an effect of suppressing a decrease in charging efficiency when charged at a low rate at a high temperature and a decrease in discharge capacity when charging / discharging at a normal temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】 正極のニッケル粉末に共沈した水酸化コバル
トの含有率と高温下における充電効率との関係を示した
図。
FIG. 1 is a graph showing the relationship between the content rate of cobalt hydroxide co-precipitated in nickel powder of a positive electrode and the charging efficiency at high temperature.

【図2】 化成充放電を5回行った後の放電容量と、正
極の水酸化ニッケルに共沈した水酸化コバルトの含有率
との関係を示した図。
FIG. 2 is a diagram showing the relationship between the discharge capacity after five times of chemical charge and discharge and the content rate of cobalt hydroxide coprecipitated in nickel hydroxide of the positive electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−77273(JP,A) 特開 平5−21064(JP,A) 特開 平4−322073(JP,A) 特開 平4−137368(JP,A) 特公 昭54−3836(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-3-77273 (JP, A) JP-A-5-21064 (JP, A) JP-A-4-322073 (JP, A) JP-A-4- 137368 (JP, A) JP-B 54-3836 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/00-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】充電末期に、正極が満充電になっても負極
に未充電活物質が残りかつ負極が卑に分極する密閉形ア
ルカリ蓄電池であって、前記の密閉形アルカリ蓄電池
が、水酸化コバルトが共沈された粉末である水酸化ニッ
ケルを主体とする活物質と、亜鉛の酸化物もしくは水酸
化物との混合物を耐アルカリ性導電性支持体に保持して
なる正極と、水素吸蔵合金を主体とする負極とを備える
ことを特徴とするニッケル−金属水素化物蓄電池。
1. A negative electrode even when the positive electrode is fully charged at the end of charging.
Uncharged active material remains in the
Lucari storage battery, said sealed alkaline storage battery
However, an active material mainly composed of nickel hydroxide, which is a powder in which cobalt hydroxide is coprecipitated, and a positive electrode formed by holding a mixture of zinc oxide or hydroxide on an alkali-resistant conductive support, A nickel-metal hydride storage battery comprising: a negative electrode mainly composed of a hydrogen storage alloy.
【請求項2】共沈された水酸化コバルトが、水酸化ニッ
ケルと水酸化コバルトとの合計に対して1モル%以上2
0モル%以下であることを特徴とする前記請求項1記載
のニッケル−水素化物蓄電池。
2. Coprecipitated cobalt hydroxide is 1 mol% or more with respect to the total of nickel hydroxide and cobalt hydroxide.
The nickel-hydride storage battery according to claim 1, wherein the content is 0 mol% or less.
JP2001307814A 2001-10-03 2001-10-03 Nickel-metal hydride storage battery Expired - Lifetime JP3482478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307814A JP3482478B2 (en) 2001-10-03 2001-10-03 Nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307814A JP3482478B2 (en) 2001-10-03 2001-10-03 Nickel-metal hydride storage battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29083891A Division JP3362400B2 (en) 1991-10-09 1991-10-09 Nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2002158032A JP2002158032A (en) 2002-05-31
JP3482478B2 true JP3482478B2 (en) 2003-12-22

Family

ID=19127220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307814A Expired - Lifetime JP3482478B2 (en) 2001-10-03 2001-10-03 Nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3482478B2 (en)

Also Published As

Publication number Publication date
JP2002158032A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JPH0515774B2 (en)
JP3482606B2 (en) Sealed alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP2595967B2 (en) Hydrogen storage electrode
JP3200822B2 (en) Nickel-metal hydride storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP2001313069A (en) Nickel hydrogen storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP6951047B2 (en) Alkaline secondary battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP4573609B2 (en) Alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH06283170A (en) Nickel-hydrogen battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term